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1. Introduction

Let p and d be two positive numbers. We shall be concerned in this paper
with two classes of entire functions, namely:

(i) the class C (p, d) of all entire functions of order p and type not exceeding
d — we note that this class includes all entire functions of order less than p;
and

(ii) the class C(p) of all entire functions of order not greater than p.
A metric topology for C(p, d) has been introduced by Ganapathy Iyer in

[10, Part(II]. The topological space thus obtained will be called F{p,d).
The relevant results of his are catalogued in § 2 below. In Part I of this
paper we consider the question of proper bases in F{p, d). The idea of a
proper basis was first proposed by Ganapathy Iyer [8, p. 880] in his study
of the space of all entire functions. Arsove ([1, p. 266]; [2, p. 45]) has
modified the definition of a proper basis so as to make it possess more
characteristic properties of the "natural" basis {en}, where en == zn,
n = 0, 1, 2 • • •. Using a theorem of Ganapathy Iyer [8, Theorem 6] he
has obtained a characterisation [1, Theorem 4] of the linearly homeomorphic
images of the space (of all entire functions) into itself as those closed sub-
spaces admitting proper bases. In [2] he obtains further important informa-
tion on proper bases and in [3] he extends the basis theory to the space of
functions analytic at the origin. The aim of Part I of this paper is to obtain
analogous results for F{p, d). We adapt, throughout, Arsove's definition of
proper bases and his terminology for linear combinations interpreted in the
infinite series sense [2], [3] as explained in § 4 below.

Theorem 1 below is the analogue of [8, Theorem 6]. We obtain therein a
necessary and sufficient condition in order that there may exist a continuous
linear mapping of the space into itself carrying the fundamental basis {en}
into a given sequence {<xw} of entire functions belonging to the space. This
enables us to establish as in [2, p. 45], a characterisation of proper bases in
terms of conditions on their growth and, also, the same interrelationship
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between automorphisms and proper bases as in [2, Theorem 3]. In § 6,
we take up the question of determining sufficient conditions under which
functions of the form ctn = zn(l -\- kn(z)), where ^n(0) = 0 and the ^n's
belong to the space, constitute proper bases. Such bases have been called
Pincherle bases by Arsove [2]. Ganapathy Iyer's answer [7, Theorem 8]
to this question for his space of all entire functions has been improved by
Arsove [2, Theorem 4]. The same problem for F(p, d) is answered by Theo-
rem of this paper. We also set up, as an immediate corollary to Theorem 4,
a general method of constructing proper Pincherle bases from certain entire
functions belonging to the space.

In Part II, we first introduce a topology for C(p) and make it into a
metric space F(p) on the lines of Ganapathy-Iyer's work [10, Part II] for
C(p, d). The proofs being exactly similar, only the results are detailed.
We then discuss the question of proper bases in F(p) and obtain results
analogous to those already obtained in Part I.

In Part III, we consider two algebraic structures on F(p): namely,
FN(p), where multiplication is the natural multiplication a/3 and Fc(p),
under termwise multiplication of the coefficient sequences. We note that
both these are topological algebras and we obtain characterisations of the
general automorphisms — linearly homeomorphic mappings of the space
onto itself with preservation of multiplication — in these algebras.

The author acknowledges with pleasure the time and assistance spared by
Prof. V. Ganapathy Iyer in the course of the preparation of this paper-.
The author's thanks are also due to the Referee for many useful suggestions.

PART I: PROPER BASES IN r(g, d)

2. The Space r(g, d)

In this section we detail Ganapathy Iyer's results pertaining to the
topology of F(p, d). The proofs are contained in his paper [10, Part II].

Let a = a(z) = Eanen, where en =s zn, n = 0, 1, 2, • • •, be in C(p, d).
For each d > 0, the convergent series *

oo / n \n/p

\\*'.d + *\\ = \*o\ + I \ * » \ { ( t i , -
n-i I (d + o)ep)

defines a norm on C(p, d). Denote the corresponding normed space by
F(p, d, d). As d decreases, the norm increases and the topology becomes
weaker (in the sense of Alexandroff-Hopf). The lattice product of these
normed topologies on C(p, d) for all 6 > 0 is denoted by F(p, d). It is metri-

1 It may be more specific to use the notation ||oc; p, d + S\\, instead of ||a; d + d\\, but we
shall stick to the latter for brevity. See Footnote 3.
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sable with the metric ||a — /?[| where

Ml = 2 i& 2> 1 + \\*; d + 1/PW

Under this metric, F(p, d) becomes a complete linear metric space. The
sequence of partial sums of the series for a, converges to a in F(p, d). Con-
vergence in F(p, d) is equivalent to uniform convergence relative to the
function exp {(d + <5)|2|p}> f° r each <5 > 0. In other words, the statement
ocn -> a in F(p, d) implies and is implied by the following property in the
language of classical analysis: for every <5 > 0, given a positive e, it is
possible to choose an integer N(e), independent of z, such that

\xn(z) - <x{z)\ ^ e exp{{d + d)\z\f>}, for n ^ N(e).

3. Continuous linear transformations of F(Q, d) into itself

Let T (<5X -> (52) stand for a continuous linear transformation from
F(p, d, (5X) into F(p, d, <52). The family of all such transformations for a fixed
pair (5X and 62 may be denoted by F(d1 -> <52). Naturally we denote a con-
tinuous linear transformation of F(p, d) into itself by 7"(0 ->• 0) and the
family of such transformations by F(0 -> 0). The main result of this section
can now be stated as

THEOREM 1. A necessary and sufficient condition that there exists a
T = T(0-> 0) with T(en) = <xB, n = 0, 1, 2, • • •, where an e F{p, d), is that,
for each 6 > 0,

n—»-oo

In order to prove this, we first establish two lemmas on linear operators
— which are also of independent interest — corresponding to the analogous
results of Ganapathy Iyer [7, Lemma 1] and [8, Theorem 5].

LEMMA 1. If ||a|| ̂  k > 0, then we must have,

for some d = d0, where 0 < So ^ 1, and therefore for all values of 6 ^ <50.
PROOF. The sequence of norms | | a ; ^ + lfp\\ increases for increasing

values of p. Choose p0 such that

1 ||«;rf+ltfl|

Then we have,
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l|a|i = l + + + J+

which gives the required result.

REMARK. A consequence of this lemma is that, if a series converges in
F(p, d, d) for each d > 0, then it converges in F(p, d). We know that the
converse is true, because F(p, d) is weaker than all the F{p, d, 6) 's. Thus
convergence in F(p, d) is equivalent to convergence in all of the F(p, d, <5)'s.
This property will often be used in the sequel without further mention.

LEMMA 2.

In other words, if T be a linear transformation of F(p, d) into itself, in order that
it may also be continuous, it is necessary and sufficient that, to each d2 > 0,
there exists some d1 > 0 such that T e F(d1 -> <32).

The proof is parallel to that of the corresponding theorem of Ganapathy
Iyer [8, p. 879]. We only note that we make use of Lemma 1, a theorem of
Banach [4, p. 54, Theorem 1] and the definition of the metric for F(p, d).

REMARK. This Lemma is contained in a general result on locally convex
linear topological spaces by Bourbaki [5, Chapter II, Prop. 9, Cor.]. But in
conformity with the general trend of this paper we note the above proof
based on the particular metric introduced.

PROOF OF THEOREM 1. T e F(0 -> 0) with T(en) = <xrt. It follows therefore
from Lemma 2 that there exists a dt = d^d) > 0 such that T e F(d1 -»• d)
for each «5 > 0. A theorem of Banach [4, p. 54, Theorem 1] now shows that
there exists a K = K(d) such that

\\T{en);d + d\\£K\\en;d + (5JI,

which implies
( n \nlfi

So

IKii + ail1'" i
< /T , , , for all large n.

Conversely, let (an) satisfy (3.1). Let a = Eanen e F{p, d). This implies

lim sup \an\
1/n «1/p ^ {dep)1"*.

n-t-oo
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So, given rj > 0, we have, for n ^ n0 = no(rj)

and, taking rj' > rj, we can find n'o = r)'0(rj') from (3.1) such that, for n ^ n'Q,

So, if n ^ max («0, n^),
f (rf + rt)ep ]"!*>

{(d + ^')ep J

and, since jy' > rj, the series of norms E\an\ ||aB; ^ + ^|| is convergent, for
each <5 > 0. Therefore, Zana.n{z) converges to an element in F{p, d). Define
T(a) = Zanan, for a e F{p, d). Then T(en) = aw. We have only to prove the
continuity of T. Given d > 0, d' > 0, we have, for all large n depending on d
and <5',

~ {(d +
and so

and the inequality is true for all n > 0. Now

= K \\*; d + d%

Hence, by the theorem of Banach already referred to, T e F(d' -> d) for all
d > 0 and <$' > 0 and this proves, in virtue of Lemma 2 that T e F(0 -> 0).

4. Proper bases and their characterisation

Let {an}, n = 0, 1, 2, • • • be a sequence of entire functions in F{p, d).
If 2^LoCnan = 0 implies cn = 0 for all sequences {cn} of complex numbers
for which £cna.n converges in F(p, d), the sequence {<xn} will be called linearly
independent. We shall say that {<xn} spans a subspace Fo of F(p, d) provided
that Fo consists of all linear combinations 2«^ocna« f°r which ScBaB

converges in F(p, d). A sequence {an} which is linearly independent and
spans a closed subspace FQ of F(p, d) will be said to be a basis in Fo. Clearly
{en} is a basis in F(p, d). We now define a proper basis as a basis {<xn} in a
subspace Fo of F(p, d), which possesses, in addition, the property:
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For all sequences {cn} of complex numbers, 2cnaB converges in F{p, d) if
and only if 2cnen converges in F(p, d).

We know that "lucnen converges in F(j>, d)" is equivalent to saying

(4.1) lim sup |cn|
1/«wi//> ^

n-+oo

We shall now characterize proper bases in terms of growth conditions on
{aft} and for that purpose we first prove two lemmas, using arguments
parallel to those of Arsove ([2], [3]).

LEMMA 3. The following three properties are equivalent:

(A) "lim sup l |gw' ** "j" 6^ < lJ(dePyfp, for each <5 > 0.

(B) For all sequences {cn} of complex numbers "Ucnen converges in F(p, d)"
implies "Zcncn.n converges in F(p,d)". . '

(C) For all sequences {cn} of complex numbers', "Ecnen converges in F(p, d)"
implies "cnctn tends to zero in F{p,d)". '

PROOF. It is clear that (B) =>{C). We have already proved, in the course
of the sufficiency part of the proof of Theorem 1, that (A).=>' (B). We have
therefore only to show- that (C) '=> (A).

To prove this,; we assume that (C) is true and (A) is not. The latter means
that, for a particular <5., say d', there exists a sequence {nk} of positive integers,
such that

; f o r ^ n =

k)ePfiP

We shall define a sequence {cn} by

'\\ when n = nk,[ ' c»-\ o when nj=nk.

So we have,
nVp

in virtue of (4.2). Therefore,

lim sup ic^'^nl'P ^ (dePyiP.
k—*oo

But cn = 0 when n =£nh and, consequently,

lim sup \cn\
x'nnVP ^ (dep)W.

n-yoo

Thus {cn} defined by (4.3) satisfies (4.1). So by the hypothesis (C), cna.n
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should tend to zero in F(p, d). On the contrary, we have, for all n = nk,

K**; d + d'\\ = fc^ W*^; d + d'\\ = 1.
So cna.n does not tend to zero in F(p, d, <5') and this contradiction establishes
that (C) => (A).

LEMMA 4. The following three properties are equivalent:

(a) 2 Hm J lim inf — j
S—+00 v n—>-oo

(/?) For all sequences {cn} of complex numbers, "Zcnccn converges in F{p, d)"
implies "Ecnen converges in F(p, d)".

(y) For all sequences {cn} of complex numbers, "cnccn tends to zero in F(p, d)"
implies "£cnen converges in F(p,d).

PROOF. It is clear that (y) => (/S). We shall prove that (/?) => (a) and

First, we suppose that (/?) is true and (a) is not. The latter means that

(4.4) .
) (dep)VP

Since ||an; d + <5|| increases as <5 decreases, it follows that, for each 6 > 0,

(4 . 5 )

n—*-oo

If now r\ be a fixed small positive number, we can find, for each r > 0,
in virtue of (4.4) and (4.5), a positive number nr such that, we have for all r,
nr+l > nr>

(4.6)

We choose a positive number r\x < rj and define a sequence {cn} by

when n = nr,
cn
c" — M n I

0 when n ^ nr.

Then, for any d > 0,

2K\ \K;d+-6\\ = - 2 X J ll«nr;^.+ ^ll-
Given d > 0, omit from the above series those terms (finite in number)
which correspond to those nr for which 1/r is greater than 6. The remainder

* Note that the symbol a, without parentheses, stands for a.(z), a member of the class of
entire functions in question. •
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of the series is dominated by S|cn | ||aB \d-\- \fr\\. Now, in virtue of (4.6)
and (4.7), we see that

\cn I IKr;
 d + l/r\\ is dominated by

T h i s i s

which is a convergent series, since r\x < r\. Thus {cn} as defined by (4.7), is a
sequence for which Scnan converges in F(p, d, <5) for each 6 > 0, and there-
fore converges in .T(/>, d). So, by our hypothesis (/S), we must have (4.1) for
{cn}. On the contrary, we have,

lim sup IcJ1/"
n-*oo

v {{d + Tl= hm sup (

This contradiction proves that (/?) => (a).
To prove (a) => (y) we assume that (a) is true and consider sequences

{cn} of complex numbers for which cnan -> 0 in F{p, d). We must now show
that every such sequence {cn} satisfies (4.1). If one such sequence {cn} does
not satisfy (4.1), we shall then obtain a contradiction, using the hypothesis
(a).

Let there be a sequence {c'n} for which

(4.8) <,an->0 in r{p, d)\

and

(4.9) lim sup \cn\
1lnn1"> >

n—too

The latter means that there exists a sequence (nk) of positive integers and a
number A > 0 such that,

(4.10) Kl^n 1 /* ^ {{d + X)epflP for all n = «».

Choose a positive number ?y such that A > (Srj)/2. The validity of (a) now
implies that, we can find a <5 = <5(»7), so that

•OO

This means that there exists an N = N(rj) such that
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IK: i + a i r i _ f o r a l l M a i v

Therefore,

max

| n
- \ nk J \(d+ Srj/2)ep)

in virtue of (4.10) and (4.11). This last expression is greater than 1, since
A > 3?y/2. c'na.n does not therefore tend to zero in F(p, d, d) at least for this 6
and this contradicts (4.8). We have thus proved that (a) => (y).

Our definition of proper basis is that (B) and {ft) are the conditions to be
satisfied by a basis {<xn} to be proper. So we have, combining Lemmas 3 and
4, a characterisation of proper bases in the form of

THEOREM 2. A basis {<xw} in a closed subspace Fo of F(p, d) is proper if and
only if conditions [A) and (a) hold.

5. Proper bases and Linear homeomorphisms in F(g, d)

One aspect of the importance of proper bases in the study of F(p, d) is that
it enables us to characterize linear homeomorphisms in F{p, d) in terms of
proper bases as in

THEOREM 3. If T is a linear hotneomorphic mapping of F(p, d) into itself,
then T(en) is a proper basis in some closed subspace Fo of F(p, d). Conversely, if
{ocn} is a proper basis in a closed subspace Fo of F(p, d), then there exists a linear
homeomorphic mapping T of F(p, d) onto Fo such that T(en) = an, n = 0, 1,
2,

The argument is essentially the same as in [3, p. 241, Theorem 2] of
Arsove, except for the fact that our condition (A) plays the role of the
condition (a) [3, p. 237] of his paper. We note also that a suitable combina-
tion of mappings leads to the following interrelationship between proper
bases and automorphisms — linear homeomorphic mappings of F(p, d)
onto itself: If {aj,} and {<x̂} are proper bases in F(p, d), there exists an auto-
morphism T of F(p, d) such that T{CL\) = aj , n — 0, 1, 2, • • • and, conversely,
if T is an automorphism of F(p, d) and {a*} is a proper basis in F(p, d),
then {a*}, where a^ = Ta.\, n = 0, 1, 2, • • • is also a proper basis in
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6. Proper Pincherle bases in f(g, d)

A Pincherle basis in F(p, d) is a basis {an} in F(p, d) of the form

(6.1) an(*) = *»{1 + ln(z)},

where An(0) = 0. Obviously Xn[z) is also in F(p, d). So we may write

(6.2) * . (* )= 2 *.»**> n = 0 , 1 , 2 , . . - ,

with each A0Jfc = 0, where, for each n,

lim sup |Anfc|
1W//> ^ (^p)1/*.

It is easy to see that, since

{^f"- foreachd>0-
{an} satisfies the condition (a) without any further hypothesis, and so, from
Theorem 2, for a Pincherle basis to be proper, it is necessary and sufficient
that it satisfies condition (A). Given functions of the Pincerle form, we shall
now obtain sufficient conditions on t\ie growth of Xn{z) in order that {<%„}
form a proper basis. This result is contained in

THEOREM 4. / / {ocB} as defined in (6.1) and (6.2} satisfies,

(6.3) lim sup \hnk\Vin+k> (n +

then it constitutes a proper basis in F(p, d).
PROOF. First we note that {xn} satisfies (A) and therefore, if it is a basis in

F{p, d), it is also a proper basis. To see this, we have, for each 6' > 0, in
virtue of the hypothesis (6.3),

( Id + d')epVn+k)/P
(6.4) \hnk\ ^ ( K ^+

}
k
P ] for all (n + k) 2> N,

where N = N(d') is independent of n and k. So, for each 5 > 0, and for a
fixed n,

n \n/p oo / n _|_ fe Un+k)/p I n \n/p

(d -f- d)ep) j.=i n \ (d + )̂<?pi ~ \(d -\- d)ep)

2 IA»*I 7J-7f
for some positive d' < <5.

The last sum on the right being the sum of a convergent series, we have,
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for all n^N,

for each d > 0, fj, being a finite constant depending only on d, <$', d, p.
It follows that

n—•oo

IK;* + *ir i f o r e a c h a > 0 .
nxlP {deP)1/f

This completes the proof that {<xn} satisfies condition (A). So to complete
the proof, it remains to show that {<xn} is a basis in F(p, d). But the an's are
clearly linearly independent and so it is enough to show that {<xn} spans
r(p,d).

Let f(z) = Zanen e F(p, d). Form the equations

(6-5) «0 = Co". an = <>n + 2 Cn-lcK-k,k>

These equations determine cn uniquely in terms of the an's and yield

f{z) = Jtanen = Jtcncf.n,

provided we can justify the step by showing that 2 \cn\ ||an; d + <5|| is conver-
gent for each <5 > 0. This will be the purpose of the following argument.

Fix <5 > 0 and write |||/||| to denote ||/; d + <5||. Putting pn{z) = znXn{z),
n = 1, 2, • • •, it is clear that the convergence of 2£«ilcnl ll|a«lll will follow
from that of

n-l n-1
Since

(6.6) \cn\ ̂  \an\ + f \cn_k\ \hn_k>k\,

we see that the series 2S"i \cn\ 111̂ 111 is dominated by

1 M 111*111 + 1{III*"III I \c->\ I*-..J},
n - l n - l fcl

which is equal to

2 K I 111*111+1 {K\ I \K.k-n\ \\\zk\\\}
n-l n- l *-n+l

Kl MAM.
n-l n- l

Since l,anz
n e F{p, d), the above shows that, for the required convergence of

2|cw| MaB|||, we need only prove the convergence of S|cn|
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Now choose a 6' < d and two positive numbers N' and N" such that

(Id + d')ep \nlf>
(6.7) |«J ^ \±—L—L!L\ for au n^N' = N'(d')

and

(6.8) « > 2P(d + <5>/> for all n ^ AT = N"(dr).

We note that (6.7) is possible since S an en e F(p, d). Choose No =
max {AT, iV', JV"}, where N = N(d') is as defined in (6.4). So iV0 = N0(d').
The inequalities (6.6), (6.7) and (6.4) now give, for n *^N0,

• J + ( » ) l
Now define positive numbers (dn) as

n

ô = l«ol; 4 = 1 + 2 dn_k, n ^ 1.
* - l

This gives us

from which we get

dn = 2 - i | ^ | = 2-i(l + Kl).
So

^ ^ 2W'1(1 +

Now

I kl 111/8.111
n-1

oo oo / n

We shall split this double summation as
N0-l N0-l N9-l eo oo oo

I 2 + 2 2-
n - l * - l n - 1 *-JT0 n-N0 fc-1

The first series is clearly finite. The second series is dominated, because of
(6.4), by the convergent series

00 Id 4- <5'\ <«+*>//»
^ 1 x ^ JTT . where C = max |CJ.

The third series is dominated by
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n~N0 I n ) k=N0\d + 6/

in virtue of (6.9) and (6.4). This latter series is now equivalent to

* (2P(d + 6') ep \nlt> Id + d'\{n+N°)lp

K'J} ) \Ti)w + d)
where K = K(d, <5'), since 6' < d. This again, for the same reason, is domi-
nated by

K Z
n~N0 \ n )

and this is a convergent series, because of (6.8). This completes the proof of
the Theorem.

7. Construction of Proper Pincherle bases in F(g, d).

A direct application of Theorem 4 gives a general method of construction
of proper Pincherle bases from certain entire functions belonging to C(p, d).
We express it in the form of

COROLLARY 7.1. Let <f>(z) = 22Lo**z* €C(p,d). Further, let, for each
d > 0 and for k ^ 0,

t.
Km sup
(n+*)-K»

(n + k)V<> ^

Then the sequence {<xn} defined by
1

ln *-0ln

constiitutes a proper Pincherle basis in F(p, d).
PROOF. It suffices to note that, in the notation of Theorem 4,

KM = '»+*/'». for aU w = 0, 1, 2, • • • and k = 1, 2, • • •.
This Corollary is the analogue, for F(p, d), of Arsove's theorem [2, p. 49,

Theorem 6] for the space Foi all entire functions. Following Arsove, we make
use of the interrelationship between proper bases and automorphisms in
F{p, d) (cf. remark at the end of § 5) and obtain the following corollary,
thereby constructing another proper Pincherle basis in F(p, d). Since the
arguments are precisely the same as those of Arsove [2, pp. 50, 51], we omit
them.

COROLLARY 7.2. Under the hypothesis of Corollary 7.1, the sequence {/Sn

defined by

/?„(*) - i - ( i - *

is a proper Pincherle basis in F(p,d).
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We give below two examples of proper Pincherle bases in r{p, d), where
p ̂  1, illustrative of Corollaries 7.1 and 7.2.

EXAMPLE 1. The sequence {<xn} defined by

z(n+k) "I

EXAMPLE 2. The sequence {/?w} defined by

The second example follows from the first and Corollary 7.2. To see the
truth of the first, we need only verify, in virtue of Corollary 7.1, the hy-
pothesis on tn+jtn, where tn= l/(n\)n. It is no loss of generality to assume
n ^ 3; for the other particular cases may be directly verified. If n ^ 3, then,

K {(n + k) !}<"+*>
1 1

X(w + l)n(n -f 2)n • • .• (n + k)n {(« + k) If

So we have,
(n+k)

(«-f

X
(w + 1) (n + 2) • • • (n + k — 1) j (« + £)n

1
X

Now Stirling's expression for (n -f- ^)!, when (» + ^) is large, gives

{ ) exp j ^ ^ + 0 (^ljJ/1.

Using this in (7.1), we see that, when (n -f- k) is large, the right side of (7.1)
is asymptotically equivalent to

f I
[ (n + 1) • • • (n -h k —

«/(»»+*)
X(» + 1) • • • (» + fc — 1) J (2jr)fc/2(n+A:)

x xfi + i±-
I 12IW

where C(n+t) tends to zero as n + k tends to infinity.
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This expression is less than or equal to

1 1 1 /*\*-I/P
\s V V I I
~ ^ 2 ) f c / 2 ( n + * : )

 n n / ( n + k ) + k / 2 ( n + k ) \ n f

ivhich tends to

1 J

/ P \k-l/p
X I — I X * " X ^lA2^-*/(n+*)f

I f /rt \Jcl9tnJ-k\ V /

This last expression tends to zero as k ->• oo for any « ^ 3 and as n -»• oo
for any & ^ 1/p. Since p 2> 1, the hypothesis of Corollary 7.1 is easily satis-

PART II: THE SPACE T{q)

8. Topology for the class C(Q)

A function a == 1tanen e C(p), en == zn, n — 0, 1, 2, • • • is characterised by

wlogn
hm sup • < p.

n-+~ log (l/\an\) ~ P

This is equivalent to the condition

(8.1) |aB|1/«M1/(/'+*) -> 0 for each <5 > 0.

so the expression 3

n=l

s convergent for each d > 0 and defines a norm on C(p). We call the normed
Inear space thus obtained as F{p, 6). As d decreases, F(p, d) becomes
weaker. The lattice product of these topologies for d > 0 is denoted by
r(/>). It is therefore weaker than each of the F(p, d)'s. It is metrisable with
the metric

»vhere
l Ha;P + i/p\\

* The scrupulous use of the letters p for order and d for type will help to distinguish between
|<x; p + <5|| defined here and ||a; d + <5|| defined in § 2. When a is considered as a member of
3(p, d), we write the corresponding sequence of norms as ||a; d + <5||» where, though the order p
s not mentioned, the use of the letter d is sufficiently decisive. (See Footnote 1). When we
unite ||a; p + 6\\, we shall think of a only as a member of C(p).
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Now Ganapathy Iyer's arguments in [10, Part II] lead to the following
theorems pertaining to the space F(p) analogous to his results for the space
F(p, d) — some of which were referred to in § 2 above — and also to his
earlier results for the space F of all entire functions:

THEOREM 5. The space F(p) is a complete linear metric space.
We omit the proof as it is similar to that of the corresponding theorem of

Ganapathy Iyer [10, Theorem 6].
We denote the dual space of continuous linear functionals on F(p) as

F*(p) and of those on F(p, d) as F*(p, d). Since a functional continuous in any
topology is also continuous in a weaker topology, F* (p, d) C F* (p) for each
6 > 0. So we have,

(8.3) 2r*(M)cr*(/>).
*>o

That the reverse inclusion is also true is shown by the following Lemma.
LEMMA 5. Let Fo be a subspace of F(p). Let /(a) be a linear functional defined

and continuous on Fo in the topology of F(p). Then /(a) wiU be continuous on Fo

regarded as a subspace of F(p, d) for some d > 0.
PROOF. Suppose that /(a) is not continuous on Fo regarded as a subspace of

F{p, d) for any d > 0. Then, by Banach's theorem [4, p. 54, Theorem 1],
we can, for each positive integer p, find an element a, e F9 such that

\\*ml P + W\ £ VP and

Now, we have, for all n ^ p,

l + ||a,;/> + l / » | | - l + lip

When p is sufficiently large, the above gives

oo

Hence ||a,|| -*- 0 as p -+ oo, whereas we already have |/(ap)| ^ 1 for all p.
This means that /(a) is not continuous on Fo in the topology of F(p). This
contradiction proves the Lemma.

Combining Lemma 5 and (8.3) we have

THEOREM 6. The set F* (/>) of continuous linear functionals on F(p) is the
union of the sets F*(p, d) for all 6 > 0.

F(p) being a locally convex space, the Hahn-Banach theorem on the
extension of linear functionals is valid in F(p), but it may also be directly
proved as in [7, p. 89, Theorems 3 and 4]. We state it as

THEOREM 7. (i) Let f be a continuous linear functional defined on Fo CF(p).
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Then there exists a continuous linear functional g over the whole of F(p) and
equal to f on Fo. (ii) Let Fo C (p) and let a e F(p) such that a 4 Fo. Then there
exists a continuous linear functional f e F*(p) such that /(a) = 1 and /(/9) = 0
for all PeF0.

The general form of continuous linear functionate is given by

THEOREM 8. (i) A functional f e F*(p, 6) is of the form

/(a) = Scnan , a = Z,anen€F{p, d),

where

(8.4) |cn|/n
n/p+»> is bounded)

and conversely, (ii) Every f€F*(p) is of the form

where

\cn\ln»/' 0.

PROOF. The second part follows from the first, in virtue of Theorem 6.
To prove (i), suppose that feF*(p,d) with f = 'Lcnan and cn =
Then there is a K such that

Taking a = en here, we get (8.4). Conversely if (8.4) be true, then there
exists a K such that |/(a)| 5* -K]|a; /> + 1̂1 a n d so / is continuous in F(p, 6).

9. Convergence in F(Q)

It is well-known [6] that convergence in the space F of all entire functions
topologised according to the metric

Hoc = max [\a0 - bo\; \an - bn\V
n, n ^ 1]

is equivalent to uniform convergence on compact sets. Convergence in
F(p,d) is equivalent to uniform convergence relative to exp{(a + <5) \z\p)
for all <5 > 0, as explained in § 2. We shall presently obtain a similar inter-
pretation of convergence in F{p).

As a preliminary, the following properties of convergence in F(p) may be
noted:

(i) The topology induced on C(p) by /Ms stronger than F(p); because, if a
sequence of elements in F(p) converges in F(p), then it also converges in F.

(ii) Convergence in F(p) is equivalent to convergence in F(p, d) for each
d > 0; because, we can prove the analogue of Lemma 1, (Part I) for F(p).

(iii) The sequence of partial sums of a = San«n converges to a in F(p);
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because, the proof by Ganapathy Iyer [10, Theorem 10] of the corresponding
result for F(p, d) holds here with obvious modifications.

To obtain a classical interpretation of convergence in r(p), we first intro-
duce a new set of norms in C{/>). For each positive <5, the expression

m a x { e x p ( -

defines a norm on C(p) and, since

max \an\ r
n exp {—

\e(p -f- d))

^ \an\ n
n/<f>+*\ if p ^ 1/<J, for each (5 > 0;

and > \an\ »»/</>+*>, if p < 1/*, for each <5 4 in 0 < d < 1/e — p,

the topology introduced by the above norm is comparable with F{p, 6) for
each p. The lattice product, for all positive d's, (sufficiently small, if p < 1/e),
of these normed topologies, which grow weaker as d decreases, can be shown
to be a complete linear metric space, whose topology is therefore stronger
than F(p) if p ^ 1/e and weaker than F(p) if p < 1/e. I t now follows from a
theorem of Banach, [4, p. 41, Theorem 6] that the two metrics are equivalent
and the interpretation of convergence in F(p) may therefore be given by

THEOREM 9. Let {<xw} be a sequence of elements in F(p). The statement
an -> a is equivalent to the statement that, for every 6 > 0, the sequence {<xn(z)}
converges to <x(z) uniformly over the whole finite complex plane relative w the
function {exp (|^|(/>+*))}.

We have, finally, by arguments similar to those of Ganapathy Iyer in
[7, p. 89],

THEOREM 10. Weak and strong convergence in F(p) are equivalent.

10. Continuous Linear transformations of F(Q) into itself
Denoting, as in § 3, by T(Q -> 0) a continuous linear transformation of

F(p) into itself, we obtain the following theorem giving the equivalent
growth condition on a given {an} in order that T{en) = <xft, n = 0, 1, 2, • • •.
Since the proof is parallel to that of the analogous theorem for F(p, d)
(Theorem 1, Part I), we merely give the statement.

THEOREM 11. A necessary and sufficient condition that there exists a
T = 7(0 ^ 0) with T(en) = <xn, n = 0, 1, 2, • • • is that, for each d > 0,

s u p

„_>«> n log n
* This restriction of <5 from above does not matter because we are concerned only with the

lattice product of F(p, <5)'s as 6 tends to zero.
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11. Proper bases in F(Q)

A proper basis in F(p) is defined as in § 4, namely:
A proper basis is a basis {an} in a subspace Fo of F(p), which possesses, in

addition, the property:
For all sequences {cn} of complex numbers, 2cnan converges in F(p), if and

only if, 1iCnen converges in F(p).
We note that the statement "1,cnen converges in F(p)" is equivalent to

saying

(11.1) Km \cn\
1/nn^lf>+8) = 0 for each d > 0.

n—*-oo

We are now in a position to obtain the characterisation of proper bases in
F(p) in terms of growth conditions on {<xn} as in § 4, the methods being quite
similar. We therefore state, without proof, the following two Lemmas and
Theorem 12 which are respectively the analogues of Lemma 3, Lemma 4 and
Theorem 2 of Part I.

LEMMA 6. The following three properties are equivalent:

(A') lim sup 1Ogl |a^>/> + <311 < 1/p for each 6 > 0.
n log nn—*-oo

(B') For all sequences {cn} of complex numbers, "'Lcnen converges in F(p)"
implies "2cnocn converges in F(p)".

(C) For all sequences {cn} of complex numbers, '"Lcnen converges in F(p)"
implies "cnan -> 0 in F(p)".

LEMMA 7. The following three properties are equivalent:

(a ) lim ( h m inf } 2> 1/p.
»_M) \ n-voo nlogn )

(/?') For all sequences {cn} of complex numbers, "2cnan converges in F(p)"
implies "lLcnen converges in F(p)".

(/) For all sequences {cn} of complex numbers, "cncnn -> 0 in F(p)" implies
"1,cnen converges in F(p)".

THEOREM 12. A basis {an} in a subspace Fo of F(p) is proper if and only if
conditions (A') and (a') hold.

It may be remarked that the comments about the interrelationship
between proper bases and linear homeomorphisms made in § 5 are valid in
F{p) in analogous fashion.

12. Proper Pincherle bases in F(Q)

A Pincherle basis in F(p) is a basis {<xn} in F(p) of the form
(12.1) «.(*) = *-{l + *.
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where ^n(0) = 0. Obviously Xn(z) cF(p). So we may write

(12.2) *„(*)=!
*«0

with each hok = 0, where, for all n,

lim ^V^VC/n-*) = 0, for each d > 0.

It is easy to see that, since

IK; p + d\\^ »"/</»+*> for each d > 0,

{<xn} satisfies condition (a') without any further hypothesis. So, from Theorem
i2, in order that a Pincherle basis may be proper, a necessary and sufficient
condition is that it satisfies (A'). As in the case of F(p, d), we obtain the
following theorem, giving sufficient conditions on the growth of Xn, for a
given {an} to be a proper Pincherle basis. We omit the proof, because of its
similarity with that of Theorem 4.

THEOREM 13. If {an} as defined in (12.1) and (12.2) satisfies, for each
6 > 0 the condition

lim l*, ,!1 '^) (» -f *)VCP+«) = o,
(n+t)-+oo

then, it constitutes a -proper Pincherle basis in F(p).
Moreover, we obtain the following two corollaries, which set up a general

method, as in the earlier case, of constructing proper Pincherle bases from
certain functions belonging to F{p).

COROLLARY 12.1. Let <f>{z) = 2£.o****€ i » . / /

OC =

and if

lim
tn+*)->-oo

1 f n-i -j
n = - U(*) - 2 Mfc

tn L *=o -i

(» + kyH'+'t = o

for each d > 0, then {aB} is a proper Pincherle basis in F(p).
CoROLtARY 12.2. Under the hypothesis of the previous corollary, if

then {^ is a proper Pincherle basis in F{p).
EXAMPLE. A scrutiny of examples 1 and 2 of § 7 will show that we have

actually proved, for the sequences considered there, the conditions of
Corollaries 12.1 and 12.2 respectively, so that we may state: {aw} and {/?„}
as defined in Examples 1 and 2 of § 7 are proper Pincherle bases in F(p),
provided p ^ 1.
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PART III: ALGEBRAS IN F(Q)

13. The Algebra FN(Q)

We/know that if a € F(p) and 0 e r{p), then a/S = <x.{z)p{z) is also in r(j>).
F(p) is thus closed under natural multiplication. Since convergence in F(p)
is equivalent to uniform convergence relative to (exp(|-2:|/)+*)}, for each
d > 0, it follows that the natural multiplication is continuous in the topology
of F(p). So we get a topological algebra, which we may call FN(p). This is a
commutative algebra with e0 as unit element. Repeating the arguments that
Ganapathy Iyer [9, p. 646] uses for his algebra F(N) of all entire functions,
we now obtain

THEOREM 14. The general automorphism of FN(p) — a linearly homeomorphic
mapping of the algebra onto itself with preservation of multiplication — is
Precisely of the form T(cc) = <x.(az + b), where a e FN(p) and a and b are
complex numbers, with a ^ O .

It is an immediate consequence of this theorem that the group of auto-
morphisms of FN(p) is isomorphic to the group of one-to-one conformal
transformations of the complex plane onto itself, leaving the point at oo
invariant.

14. The Algebra FC(Q)

We define multiplication in F(p) by using Hadamard composition,
namely, if a = T,anen c F(p) and 0 = T,bnen c F(p), we write

From
|aji/«wi/<*>+»> _> o for each <5 > 0

and
|&n|i/»wi</>+»> .+ o for each d > 0,

it follows that a o ft is also in F(p). F(p) thus becomes an algebra under the
multiplication defined. That the multiplication is continuous in F{p, d) for
each 6 > 0 and therefore continuous in F(p) is shown by the inequality

\\*op;p + d\\£\\*;p + d\\ | | # p + a | | .
seen to be true by writing out the norms in full. F(p) is therefore a topological
algebra, which we denote by Fc(p). It is a commutative algebra without any
unit element. The characterisation of automorphisms in this algebra may
now be stated in the form of

THEOREM 15. The general automorphism of Fc{p) is precisely of the form

T(a) = 2 > . r ( O for all a = ^anen e Fc(p),
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where

T{en) = ee{n)

and 6 in-^-N = 6(n) denotes a permutation of the set I of non-negative integers,
satisfying the conditions

(13.1) NlogN = 0{n\ogn)\ « log» = 0{NlogN).

These conditions may also be combined in the form

(13.2) | log»- logiV| = 0(1).

REMARK. It follows at once from this theorem that the group of auto-
morphisms of Fc(p) is isomorphic to the group G(I) of all permutations 6 oil
with the property (13.1).

PROOF OF THEOREM 15. (i) Taking T to be an automorphism we shall
prove that T(en) = eN. The formula for T{ct) will then follow from the
linearity of T.

Since T is an atomorphism, T(en) ^ 0. So T(en) = Hanpep, where, for a
fixed n not all ann's are zero. Since T preserves multiplication, T(em) o T(en) =
= T(em ' en). This latter is equal to T(0) = 0 when m = n, and is equal to
T(em) when m = n. So

ampanp = 0 for all p ^ 0 and m ^= n

and

a^9 = amp for all p 2> 0 and m ^ 0.

The second of these two equations shows that, for a fixed m,

amp = 0 or 1 for all p ^ 0.

But T(em) being an entire function, only a finite number of amp's are equal
to 1, for each fixed m. The other equation now shows that, if amp = 1 for a
fixed P = Pi, then anp = 0 for all n ^ m. Thus the matrix (anp) has the
following properties: (i) each row contains at least one 1; (ii) each row
contains at most a finite number of l's; (iii) the remaining elements in each
row are 0's; and (iv) no column contains more than one 1. So we can write

T(en) = 2 eNf

where Hn, n — 0, 1, 2, • • • are nonempty disjoint finite subsets of the set / .
We note the following properties about Hn:

No Hn can contain more than one integer oil. For if some Hn, say Hm,
contained mlt m2, • * • mr, then, an element of Fc(p) of the form

V « x + hem% H f- K^mT

with no two of the b's equal, cannot be the transform of any element of
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Fc(p). Thus Hn is made up of a single integer, which we may call 0(n) or N.
Also, every N e I must be in some Hn, for, if an integer N' e / is not in any
Hn, then T[rc{p)) cannot contain an entire function having a Taylor
expansion with a nonzero term in zN\

Hence the correspondence n^-N — 6(n) is one-one and so defines a
permutation of / . We have now only to prove (13.1).

From T(en) = eN and Theorem 11, we have

tag \\e,: P+H\ < for e a c h t > 0

n log nn—»-oo

This gives, for all large n, the inequality

N/(p + d) logiV <: njp log w for each <5 > 0.

Therefore,

N log 2V = 0(w log n).

The same argument applied to the inverse of T shows that

n log n = 0(2V logN).
(ii) Defining T(a) = H,anT(en), where T(en) = e(?(n) with N = d(n) satis-
fying (13.1), we shall prove that I is an automorphism.

That T is linear, follows from its definition. That it is continuous is a
consequence of the hypothesis NlogN = 0(nlogn), from which we may
deduce the condition of Theorem 11. We now assert that T is one-one; for, if
T{*) = T{fi) for a = S V n and /5 = S6nen, then, ZanT(en) = XbnT(en),
which implies Saflefi(B) = T,bnee{n), so that an = bn for all n. This shows that
a = /?. Further, the image of -Tc(/°) by ̂  is *n e whole of Fc{p). This is because
every a. — "Lanen€ Fc(p) can be written as a = T(<x.'), where a' = HuaneN*
and N' el such that n log n = 0(N' logN'). Thus T is a linear continuous
map of rc(p) onto T{Fc{p)) in a one-to-one manner. It follows then from a
theorem of Banach [4, p. 41, Theorem 5] that the inverse of T, which is
linear, is also continuous.

To complete the proof it only remains to demonstrate the preservation of
multiplication. For this, we note,

T{a) = 2>n

and

So T is multiplicative and this completes the proof of the theorem.
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