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Abstract. The genetic analysis of physiological time series has to accommodate the pres­
ence of autocorrelation. This can be accomplished by means of orthogonal transforma­
tion of the series, thus enabling the use of standard genetic analysis techniques for the 
sequence of uncorrelated transforms. In view of the oscillatory character which typifies 
various physiological time series, it is customary to invoke spectral techniques for the anal­
ysis of these series. It can be shown that spectral analysis is an orthogonal transformation 
that asymptotically resembles principal component analysis. Consequently, standard ge­
netic analysis methods for the uncorrelated spectral transforms may be used. This 
approach will be illustrated with simulated and real (heart rate) data for univariate twin 
time series. Furthermore, it will be indicated that the proposed analysis can be readily 
generalized to multivariate time series. 
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INTRODUCTION 

The study of heart rate in cardiovascular psychophysiology is guided by the assumption 
that heart rate not only reflects adaptation to metabolic demands, but also central nervous 
system functioning. Especially with the introduction of advanced measurement equipment 
the study of heart rate shifted from a crude measure of arousal to a sensitive index of 
cognitive processing, mental stress or attentional load. Within a psychophysiological con­
text, there are two approaches in studying heart rate: 1) description of directional changes 
in heart rate level, and 2) description of heart rate variability. 

Variability of heart rate is influenced by several factors, the most important ones 
being respiration, changes in blood pressure and changes in the thermoregulatory system. 
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In addition, heart rate variability is also influenced by mental and physical exercise. 
Heart rate variability may be quantified using spectral analysis. In spectral analysis 

heart rate variability is expressed as a function of underlying frequency, providing infor­
mation on the sources of variability. That is, the spectrum or power density function that 
results from spectral analysis shows the contribution of oscillations within a range of fre­
quencies to the total variance of the signal, thus comparable to the partioning of variance 
in ANOVA. Spectral analysis of a sequence of interbeat intervals (ie, time between succes­
sive R waves in the electrocardiogram) can reveal significant peaks in the spectrum that 
might reflect the presence of important oscillatory processes underlying the sequence. 
For example, the spectrum ofa series ofinterbeat intervals during rest usually shows peaks 
that correspond to the dominant respiratory frequency of the subject (around 0.25 Hz) 
and to baroreceptor resonance (around 0.10 Hz). A peak at still lower frequencies (< 0.05 
Hz) is attributed to the thermoregulatory system. The amplitude of the respiration band 
often is used as an index of vagal control on the heart. 

Heart rate variability has been used to study stress- and task-related fluctuations, for 
example it has been found that heart rate variability decreases during mental load. Heart 
rate variability spectra also have been used in patho-physiological studies of the cardio­
vascular system, for example in diabetics. 

METHOD 

Application of spectral analysis to a sequence of interbeat intervals requires the sequence 
to be weakly stationary. This means that the sequence has to have both a constant mean 
function as well as an autocorrelation function that is invariant along the time axis. Sta-
tionarity of the autocorrelation function automatically implies that the power density 
function or spectrum also is stationary, as there exists a one-to-one relationship between 
autocorrelation and power density. Biological signals, however, can exhibit complex time-
dependent variation, yielding an autocorrelation, and thus a spectrum, that varies with 
time. However, if the state of a subject remains relatively constant, such as during a resting 
condition, the observed signal will show stationary behavior, that is the autocorrelation 
will be stable. 

Stationary levels of autocorrelation (spectra) obtained within the same experimental 
condition or state differ substantially from one person to another. Apparently, the func­
tional systems underlying biological signals are not constant across subjects and conse­
quently this intersubjective variation may reflect genetic influences. In order to assess 
these influences, a genetic analysis is called for in which the autocorrelation of biological 
signals figures predominantly. On the one hand, this autocorrelation offers a description 
of the functional dynamics of the underlying biological system and as such is the proper 
measure for our genetic analysis. On the other hand, the typical autocorrelation structure 
of biological signals requires the use of special techniques. We therefore elaborated an 
earlier approach to the genetic analysis of biological signals [3], constituting of the fol­
lowing steps: 

1) Each original autocorrelated signal is transformed into a sequence of uncorrected 
variables. The transformation is accomplished by means of time-dependent base functions 
or eigenvectors which describe the dynamics of the original signal. The transformation 
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results in a sequence of uncorrelated variables that can be conceived of as amplitudes of 
the associated base functions in a given signal. The square of these amplitudes gives the 
amount of variance explained by the corresponding base function. 
2) For each given base function the intersubjective variation can be analyzed by means 
of standard genetics techniques. In the case of twins, maximum likelihood estimates of 
the proportions of genetic and environmental variance may be obtained from the mean 
squares of amplitudes between and within MZ and DZ twin pairs. 
3) Estimates of the proportion of genetic and environmental variance of the original 
signal can be obtained by means of inverse transformation in which the results obtained 
in the second step are averaged across base functions. 

SPECTRAL ANALYSIS OF GENETIC INFLUENCES 

Consider the following basic genetic model for an observed biological signal y(t): 

y(t)=G(t)+E(t) t = 0,l,. . . ,n 

where G(t) and E(t) are latent time series of genetic and non-shared environmental in­
fluences and are mutually uncorrelated. In general, the latent time series G(t) and E(t), 
and consequently the observed series y(t), will be autocorrelated. According to the first 
step in our approach to the genetic analysis of biological signals, then, the observed series 
y(t) is transformed into a sequence of uncorrelated variables: 

y*(k)=T^[y(t)] k = 0,l, . . . ,n 

where T denotes a transformation by means of base functions 0^(0 such that 

cor(y*(k),y*(k'))=0, i f k # k ' 

In an earlier publication [3], the transformation T was determined by means of principal 
component analysis. As biological signals typically are observed across several hundreds of 
consecutive time points, however, transformation by means of principal component anal­
ysis is no longer computationally feasible. 

Fortunately, it can be shown [4] that principal component analysis of sufficiently 
long, stationary time series converges to spectral analysis in which 

(^(t) = exp [-i27rco,t] = cos [27ra>kt] - i sin [27rcj. t] i = V - l 

Accordingly, the base functions or eigenvectors 0k(t) as obtained from a principal compo­
nent analysis of the dynamics of y(t) converge to the complex-valued exponentials that 
span up the frequency domain. Hence, with stationary biological signals a spectral anal­
ysis is formally equivalent to a transformation by means of principal component analysis. 

We are now in a position in which the transformation of y(t) into a sequence of un­
correlated variables can be carried out efficiently because the required base functions are 
analytically given. The transformation in question is known as the discrete Fourier 
transform: 
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y*(wk) = 2y(t) exp [-i27rcokt] k = 0,1,..., n 

where 

Sy(wk)=var[y*(wk)] 

is the power density at frequency cok, ie, that part of the variance explained by oscilla­
tions with frequency wk. 

As cor (y*(cok), y*(wk.)) = 0 if k * k'.the intersubjective variation at each frequency 
cjk can be analyzed by means of standard genetics techniques. Notice, however, that 
y*(o;k) is complex-valued. Therefore special care has to be taken in order to arrive at val­
id estimates and their sampling distribution (see [l] for an extensive overview of these 
issues). Accordingly, the observed power density at each frequency a)k is decomposed as: 

S y (w k )=S G (w k ) + S E (w k ) 

where SG and S^ denote the power densities of G(t) and E(t). In addition, the proportion 
h2(cjk) of genetic variance at each frequency cok can be determined in a straightforward 
manner. In the final, third step of our approach, the proportion of genetic variance of the 
original signal y(t) is obtained by inverse discrete Fourier transformation: 

h2 = 1/N S h2(w. )exp[i27ro;. u] 
u K K 

at u = 0, where u is the lag between time t and time t'. 

APPLICATIONS TO SIMULATED DATA 

We will present a few illustrative applications of the proposed analysis to simulated data 
in order to show the reliability of our approach. A computer program has been written 
which generates simulated data according to the basic genetic model for time series and 
which carries out the three steps in our spectral analysis of genetic influences. A detailed 
description of the simulation program is given in [3 ]. 

Time series y(t) were generated for 10 MZ and 10 DZ twin pairs. Each series consist­
ed of 512 time points. Three different time series were simulated for each twin pair, in 
which, respectively: 
1. The environmental series E(t) is autocorrelated, whereas the genetic series G(T) is not. 
2. G(t) is autocorrelated, but E(t) is not autocorrelated, and 
3. Both G(t) and E(t) are autocorrelated. 

In case a time series is not autocorrelated, it is called a white noise series. For example, 
in the first data set G(t) is white noise. Each data set was generated in such a way that the 
proportion of genetic variance was 0.5. 
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RESULTS 

Henceforth, a power density function will be called a spectrum. Fig. 1A, then, shows 
the observed spectrum for the first data set in which G(t) is white noise and E(t) is auto-
correlated. In this plot, the abscissa denotes frequencies: from zero up to 0.5 cycles per 
second. The ordinate denotes power density, that is the spectral value S at each frequency. 
Figs. IB and IC show the main results of our technique, namely the decomposition of 
the total spectrum S (CJ. ) into the underlying genetic and environmental spectra SG(o;k) 
and ^(co. ). In these figures, the continuous lines represent the true spectra used in the 
simulation, whereas the broken lines represent estimates of these spectra. Notice that 
with this data set the genetic spectrum SG(a;k) has the typical flat appearance of a white 
noise spectrum. In contrast, the environmental spectrum SE(CJ. ) varies considerably 
across frequencies, as is typical of autocorrelated series. Estimated heritability was 0.47, 
which is close to the true value of 0.5. 
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Fig. 1. A: Total observed spectrum for simulated data y(t) = G(t) +E(t) where G(t) is white noise 
and E(t) is autocorrelated. B: Estimated (broken line) and true (solid line) genetic spectrum. C: Esti­
mated and true environmental spectrum. 
Note that ordinates for the 3 spectra are differently scaled. 

In the second data set G(t) is autocorrelated whereas E(t) is white noise. Fig. 2A 
shows the observed spectrum obtained with this data set. Figs. 2B and 2C depict the re­
sulting decomposition of S (cok) into the underlying genetic and environmental spectra. 
Estimated heritability was 0.52, which is again close to the true value of 0.5. 
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Fig. 2. A: Total observed spectrum for simulated data y(t) = G(t) + E(t) where G(t) is autocorrelated 
and E(t) is white noise. B: Estimated and true genetic spectrum. C: Estimated and true environmental 
spectrum. 

In the third and final data set both G(t) and E(t) are autocorrelated. Fig. 3 A shows 
the obtained spectrum Sy(cok) while Figs. 3B and 3C give the underlying genetic and 
environmental spectra. Estimated heritability was 0.51. 

These figures show that, even with a small sample of 10 MZ and 10 DZ twin pairs, 
the genetic and non-shared environmental spectra underlying biological signals can be 
reliably estimated. 

APPLICATION TO HEART RATE DATA 

We will now illustrate the proposed spectral analysis by an application to heart rate data. 
For 10 MZ and 10 DZ twin pairs between the age of 14 and 19, ECG was recorded during 
an 8.5 minutes period of rest. Subjects were seated in a comfortable chair and were in­
structed to relax as much as possible. ECG was measured by Ag-AgCl electrodes placed on 
sternum and lateral margin of the chest. The ECG signal was digitized at 250 samples/se­
cond via 12 bit A-D converter and stored on disk. These data were then used to determine 
successive R-R intervals (interbeat intervals). Mean interbeat was 918 ms (SD = 18.8). 
Differences between subjects in mean interbeat interval of course correspond to diffe­
rences in the number of beats during each 8.5 minute period. No corrections on the in­
terbeat interval sequence were carried out before invoking the spectral analysis. 
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Fig. 3. A: Total observed spectrum for simulated data y(t) = G(t) + E(t) where both G(t) and E(t) 
are autocorrelated. B: Estimated and true genetic spectrum. C: Estimated and true environmental 
spectrum. 

Fig. 4 A shows the observed spectrum of interbeat intervals. Notice the slight peak at 
0.10 cycles per second (blood pressure band). Figs. 4B and AC show the decomposition 
into underlying genetic and environmental spectra. Each spectrum was standardized in 
order to show more clearly the morphological features. Estimated heritability was 0.07. 

Perhaps more revealing is Fig. 4D, showing the frequency-dependent heritability 
estimates. There is some interesting variation of heritability across frequencies. For in­
stance, the highest frequency-dependent heritabilities are obtained with frequencies of 
about 0.35 cycles per second. Such high-frequency oscillations above 0.25 cycles per sec­
ond may reflect vagal influences on the heart [2]. In contrast, heritabilities at frequencies 
of about 0.10 cycles per second appear to be close to zero. These 0.10 cycles per second 
oscillations are supposed to be coupled to the blood pressure system. Finally, oscillations 
with frequencies close to zero, which are supposed to be coupled to the thermo-regulatory 
system, show medium heritabilities. 

CONCLUSIONS 

Our applications to simulated data indicate that a spectral analysis of genetic influence 
underlying interindividual variability of biological signals can yield reliable results with 
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Fig. 4. A: Total observed spectrum of interbeat intervals. B: Estimated genetic spectrum. C: Esti­
mated environmental spectrum. D: Frequency-dependent heritability estimates. 

only a few subjects. This is partly due to the availability of numerous repeated measures 
making up an observed biological signal. As to this, the proposed method is the only meth­
od which can easily handle a practically unlimited amount of repeated measures, where 
at each frequency various suitable genetic models can be fitted by means of maximum 
likelihood techniques. Furthermore, the statistical theory of spectral estimates thus ob­
tained is well developed, yielding practical guides at each level of the analysis. Hence, the 
proposed method would seem quite eligible for the genetic analysis of biological signals. 

In the final step of our approach, the proportion of genetic variance of the original 
signal is obtained by inverse discrete Fourier transformation of h2(cok). In effect, this 
inverse transformation amounts to averaging across frequency-dependent heritabilities, 
and therefore may not yield very informative results in case h2(a>,) has substantial fre­
quency-dependent variation. It then will be more informative to consider a frequency-
dependent plot of h2(cjk), like Fig. 4D. Such a plot might be called a heritability spec­
trum, showing the proportions of frequency-dependent genetic variance of a biological 
signal. 

The proposed spectral method can be generalized in order to analyze genetic influ­
ences underlying multidimensional biological signals. Multidimensional biological signals 
are obtained in the study of, for instance, respiratory influences on the heart beat or 
neural sources of electroencephalografic (EEG) activity at different regions of the head. 
The genetic analysis of these multidimensional signals is based upon Hermitian matrices 
of auto- and cross-spectra, where at each frequency a complex-valued factor analysis can 
be carried out in order to determine common and specific genetic influences. Again, the 
spectral method is the only method which can easily handle a multidimensional genetic 
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analysis of biological signals and therefore is of central importance in this field of appli­
cation. 
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