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Abstract

The goal of this paper is to identify exponential convergence rates and to find computable
bounds for them for Markov processes representing unreliable Jackson networks. First,
we use the bounds of Lawler and Sokal (1988) in order to show that, for unreliable
Jackson networks, the spectral gap is strictly positive if and only if the spectral gaps for
the corresponding coordinate birth and death processes are positive. Next, utilizing some
results on birth and death processes, we find bounds on the spectral gap for network
processes in terms of the hazard and equilibrium functions of the one-dimensional
marginal distributions of the stationary distribution of the network. These distributions
must be in this case strongly light-tailed, in the sense that their discrete hazard functions
have to be separated from 0. We relate these hazard functions with the corresponding
networks’ service rate functions using the equilibrium rates of the stationary one-
dimensional marginal distributions. We compare the obtained bounds on the spectral
gap with some other known bounds.
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1. Introduction

We start with a description of the general setting used in this paper. Let X = (Xt , t ≥ 0) be a
Markov process on a countable state space E with a bounded generator Q and the corresponding
semi-group of operators (Pt , t > 0) onL2(E, π). We assume ergodicity of this process and the
existence of the invariant probability measure π . The usual scalar product on L2 := L2(E, π)

and the corresponding L2 norm we denote by

〈f, g〉π =
∑
n∈E

f (n)g(n)π(n), ‖f ‖2 = 〈f, f 〉π ,

and by 111 the constant function equal to 1 on E. We will use the symbol π(f ) to denote
〈f,111〉π = Eπ(f (Xt )). We denote the L2 spectral gap corresponding to X by

gap(Q) := inf{−〈f,Qf 〉π : ‖f ‖ = 1, π(f ) = 0}. (1.1)

We say that X = (Xt , t ≥ 0) has an exponential rate of convergence if gap(Q) > 0.
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Spectral gap for network processes 403

Then, for reversible processes, the following conditions are equivalent (see, e.g. [10, Theo-
rem 1.9])

(i) for all f ∈ L2(E, π),

‖Ptf − π(f )‖ ≤ e−gap(Q)t‖f − π(f )‖, t > 0,

(ii) for each e ∈ E there exists C(e) > 0 such that

‖δePt − π‖TV ≤ C(e)e−αt , t > 0,

for some α > 0, where ‖ · ‖TV denotes the total variation norm, δe denotes the measure with
single atom at e, and δePt is the distribution of Xt .

Denote by α0 the best rate in ‖δePt − π‖TV convergence. It is known that for ergodic
birth and death processes gap(Q) = α0; see, e.g. [46] or [8, Theorem 5.3]. We will point
out (Section 3.1) that we have this equality also for ergodic reversible (unreliable) Jackson
networks.

It is usually a very difficult (if not impossible) task to compute gap(Q). Sometimes it is
possible to prove that gap(Q) > 0) (the existence) without being able to give computable
bounds on the gap. We consider the problem of finding computable bounds for the L2
spectral gap of unreliable Jackson network Markov processes which we will define later by
the corresponding generators.

There is extensive literature on the speed of convergence to stationarity for general pro-
cesses X. Let us recall a few references. In order to prove the existence of the spectral gap
for X it is possible to use the theory of Harris recurrent Markov processes, utilizing Lyapunov
functions with appropriate drift conditions; see Meyn and Tweedie [40]. However, computable
bounds are not easily obtainable by the Harris recurrence techniques. Some exceptions are
known such as, for example, when E = R (totally ordered state space) and in addition when
the process is stochastically monotone; see [38] and [41]. Other approaches are possible via
coupling methods or renewal theory methods; see, e.g. [2], [3], [4], and [10]. Sharper results
leading to bounds on the spectral gap are possible via strong stationary times, strong stationary
duality, Cheeger-type inequalities, Poincare inequalities, or direct spectral representations for
the semi-group (Pt , t > 0); see, e.g. [16], [17], [19], [22], [23], [33]–[35], and [37], and the
book [10]. Symmetry assumptions turned out to be especially effective in analysis, and the
reversibility of X is a typical assumption for many results. However, even for birth and death
processes analysis of spectra and transient behaviour of (Pt , t > 0) is far from being simple;
see, e.g. [6], [7], [11], [26], [31], [32], [36], [45], [48], and [49], for some results on bounds on
the gap, and [18], [25], and [37] for strong stationary times and duals approach to finite-state
birth and death processes.

Jackson network processes can be seen as a generalization of birth and death processes,
and one can expect that bounds for the spectral gap of a network should be related to some
bounds on spectral gaps for some related birth and death processes. In fact, Jackson network
processes are much more complicated than birth and death processes because they are built upon
an additional Markov chain which guides the routeing inside the network. Reversibility for
Jackson networks depends upon reversibility of the routeing matrix. It is known that the simplest
Jackson networks with constant service rates are stochastically monotone (under coordinate-
wise ordering), but in general the stochastic monotonicity depends on the properties of the
corresponding state dependent service rates; see, e.g. [12] for many monotonicity properties
of Jackson networks. Unfortunately, for unreliable Jackson networks no reasonable stochastic
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monotonicity is present (see, e.g. [15]), therefore known methods to find computable bounds
on the spectral gap, using the stochastic monotonicity property, are not applicable for networks
(also because all known results on computable bounds with a use of stochastic monotonicity
require totally ordered state spaces). A plausible expectation is that the speed of convergence to
stationarity of a network should correspond to a bottleneck node of the network. Some partial
results in this direction can be found for networks with state independent service rates in [1]
(for finite capacity networks), [5], and [20] (for tandems). For networks with state independent
rates Lyapunov drift functions were studied in [21] and [27].

A related line of research is to study the essential spectrum of the generator Q of (Pt , t > 0).
A broad view on this topic can be found in [51]. The generator Q can act as operator on various
function spaces (Banach lattices), such as, for example, Lp, p ≥ 1, and the corresponding
essential spectral gap is always larger than the gap defined by the underlying norm in a given
function space. The essential spectral radius is directly related to large deviation principle
(LDP) theory, to Lyapunov functions, and to compact sets with asymptotic results for the tail
distributions of (the first) returning times. Finding the essential spectral radius for the L2

space gives at once an upper bound on the speed of convergence in L2, which is interesting,
but more interesting for assessing the speed of convergence is to have lower bounds on the
gap. In general, we do not know the results that characterize when the L2 spectral radius
is equal to the corresponding essential spectral radius, however some examples showing this
equality for some ergodic birth and death processes are known; see, e.g. [51, Example 8.4]. For
ergodic birth and death processes with constant (state independent) rates the L2 spectral gap is
known; see, e.g. examples after [9, Corollary 1.3]. For ergodic birth and death processes with
constant rates the essential L2 spectral gap is also known; see, e.g. in the context of Jackson
networks, [28] and [29]. In the language of queueing processes, for an ergodic single M/M/1
station the L2 spectral gap and the L2 essential spectral gap are both equal to (

√
λ − √

μ)2.
It would be interesting to characterize the class of networks for which this equality holds true
more generally. The fact that the problem of using spectral theory to characterize rates of
convergence is a rather complex problem, even for countable Markov chains used in queueing
theory, can be seen, for example, from [10], [39], or [50].

Positive lower bounds for the spectral gap of Jackson networks with state dependent service
rates were obtained via some related birth and death processes in [30] by using conductance
bounds from [34]. A related comparison result for spectral gaps for classical Jackson networks
is given in [14, Proposition 3.6], where a direct comparison involving the spectral gaps for some
related birth and death processes is given using an additional assumption on the routeing. In
this paper we give some bounds on the spectral gap for networks with state dependent service
rates using Cheeger-type constants from the approach of [34], similarly as in [30], but related
to some other birth and death processes than those defined in [30]. We consider in addition
the possibility of having unreliable nodes. Unreliable Jackson networks are networks where in
some subsets of the set of nodes the service stations can be broken and then repaired during
the time evolution of the system. The breakdown and repair events can be of a rather general
nature, but driven by a Markov process. In the time intervals when nodes are broken, there are
several rules for rerouteing. For full details of such networks see [44] and [43]. We assume
the property of reversibility for unreliable networks, however this assumption can be skipped
if the nodes are reliable. In a few examples we compare our bounds with bounds obtainable
from the results of [14] (lower bounds) and [29] (upper bounds). Jackson networks possess two
remarkable properties crucial for our analysis, namely, the stationary distribution has a product
form (also for unreliable networks) and exponential ergodicity that is directly related to the
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strong light-tailness of the stationary distribution. It is worth mentioning that admitting service
rates which are state dependent in the model implies that each discrete distribution with the
support {0, 1, 2, . . .} can appear as the stationary distribution for a node in the network. We will
characterize light-tailness of the stationary distribution by the corresponding discrete hazard
rate functions. The stationary distribution can be also characterized by the corresponding so-
called equilibrium rates which turn out to be equal to individual, state dependent traffic intensity
functions for the nodes of a network. Roughly speaking, the speed of convergence for a network
will depend on a joint effect of how heavy the tails of the marginals of the stationary distribution
are, together with how fast each single node operates, which in turn depends on the routeing in
the network.

The paper is organized as follows. In the next section we introduce unreliable networks
by giving the respective generator. In Section 3 we present a result relating the existence of
the spectral gap of unreliable networks with the tail properties of its stationary distribution.
In Section 4 we use equilibrium rates to reformulate our results from Section 3. In Section 5
we provide the proofs of the results from Section 3. Finally, in Section 6 we provide some
examples of bounds on the spectral gap for networks.

2. Description of the network process

The classical Jackson network consists ofm numbered servers, denoted byM := {1, . . . , m}.
Station j ∈ M is a single server queue with infinite waiting room under the FCFS (first come
first served) discipline. All the customers in the network are indistinguishable. There is an
external Poisson arrival stream with intensity λ and arriving customers are sent to node j with
probability r0j ,

∑m
j=1 r0j = r ≤ 1. Customers arriving at node j from the outside or from

other nodes request a service which is at node j provided with intensity μj (n) (μj (0) := 0),
where n is the number of customers at node j including the one being served. All service times
and arrival processes are assumed to be independent.

A customer departing from node i immediately proceeds to node j with probability rij ≥ 0
or departs from the network with probability ri0. The routeing is independent of the past of
the system, given the momentary node where the customer is. We assume that the stochastic
matrix R := (rij , i, j ∈ M ∪ {0}) is irreducible.

Let Zj (t) be the number of customers present at node j at time t ≥ 0. Then

Z(t) = (Z1(t), . . . , Zm(t))

is the joint queue length vector at time instant t ≥ 0 and Z := (Z(t), t ≥ 0) is the joint queue
length process with the state space E = Z

m+.
The unique stationary distribution for Z exists if and only if the unique solution of the traffic

equation

λi = λr0i +
m∑
j=1

λj rji , i = 1, . . . , m (2.1)

satisfies

Ci := 1 +
∞∑
n=1

λni∏n
y=1 μi(y)

< ∞, 1 ≤ i ≤ m.

The parameters of a Jackson network are the arrival intensity λ, the routeing matrix R (with
the corresponding traffic arrival intensities vector λλλ = (λ1, . . . , λm)), the vector of service
rates μμμ = (μ1(·), . . . , μm(·)), and the number of servers m. Our standing assumption for all
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considered networks is that for all j , μ
j

:= infn≥1 μj (n) > 0. We denote the overall minimal
service intensity by μ = minj μj .

Assume now that the servers at the nodes in the Jackson network are unreliable, i.e. the nodes
may break down. The breakdown event may occur in different ways. Nodes may break down
as an isolated event or in groups simultaneously, and the repair of the nodes may end for each
node individually or in groups as well. It is not required that those nodes which stopped service
simultaneously return to service at the same time instant. To describe the system’s evolution
we have to enlarge the state space for the network process as we will describe below. Denote
by M0 := {0, 1, . . . , m} the set of nodes enlarged by adding the outside node.

Let D ⊆ M be the set of servers out of order, i.e. in down status.

• If I ⊆ M \D, I 
= ∅ is a subset of nodes in up status then all servers in I break down
simultaneously with intensity αDD∪I (ni : i ∈ M).

• If H ⊆ D,H 
= ∅ then all servers from H return from repair simultaneously with
intensity βDD\H (ni : i ∈ M).

• The routeing is changed according to the so-called repetitive service-random destina-
tion blocking (RS-RD blocking) rule: for the D-set of servers under repair routeing
probabilities are restricted to nodes from M0 \D as follows:

rDij =
⎧⎨
⎩
rij , i, j ∈ M0 \D, i 
= j,

rii +
∑
k∈D

rik, i ∈ M0 \D, i = j.

The external arrival rates are

λrD0j = λr0j for nodes j ∈ M \D,
and 0, otherwise.

Let RD = (rDij )i,j∈M0\D be the modified routeing. Note that R∅ = R.
We assume that for the intensities of breakdowns and repairs ∅ 
= I ⊆ M \D and ∅ 
=

H ⊆ D that

αDD∪I (ni : i ∈ M) := ψ(D ∪ I )
ψ(D)

,

βDD\H (ni : i ∈ M) := φ(D)

φ(D \H),

where ψ and φ are arbitrary positive functions, defined for all subsets of the set of nodes, and
ψ(∅) = φ(∅) = 1. That means that breakdown and repair intensities depend on the sets of
servers but are independent of the particular numbers of customers present in these servers.

In order to describe unreliable Jackson networks we need to attach to the state space Z
m+ of the

corresponding standard network process an additional component which includes information
on the availability of the system. We consider a new state space

n = (D, n1, n2, . . . , nm) ∈ P (M)× Z
m+ =: E,

where P (M) denotes the powerset of M . The first (0) coordinate in n we call the availability
coordinate.
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The setD is the set of servers in down status. At node i ∈ D there are ni customers waiting
for server to be repaired. Denote possible transitions by

Tijn := (D, n1, . . . , ni − 1, . . . , nj + 1, . . . , nm),

T0jn := (D, n1, . . . , nj + 1, . . . , nm),

Ti0n := (D, n1, . . . , ni − 1, . . . , nm),

THn := (D \H, n1, . . . , nm),

T In := (D ∪ I, n1, . . . , nm).

Definition 2.1. The Markov process X = (X(t), t ≥ 0) defined by the infinitesimal generator

Qf (n) =
m∑
j=1

[f (T0jn)− f (n)]λrD0j +
m∑
i=1

m∑
j=1

[f (Tijn)− f (n)]μi(ni)rDij

+
∑

∅
=I⊆M\D
[f (T In)− f (n)]ψ(D ∪ I )

ψ(D)
+

∑
∅
=H⊆D

[f (THn)− f (n)] φ(D)

φ(D \H)

+
m∑
j=1

[f (Tj0n)− f (n)]μj (nj )rDj0 (2.2)

is called an unreliable Jackson network.

We denote the corresponding transition intensities (written in matrix form) by [q(n,n′)]n,n′∈E.
Similarly to the classical case, the invariant distribution for this Markov process can be

written in a product form.

Theorem 2.1. (See Sauer and Daduna [44].) Let X be an unreliable Jackson network following
the RS-RD blocking. If the routeing matrix R is reversible, i.e.

λj rji = λirij , i, j ∈ M
then the stationary distribution of process X is given by

π(n) = π(D, n1, . . . , nm) = 1

C

ψ(D)

φ(D)

m∏
i=1

πi(ni), (2.3)

where

πi(ni) = 1

Ci

λ
ni
i∏ni

k=1 μi(k)
, Ci = 1 +

∞∑
n=1

λni∏n
y=1 μi(y)

(2.4)

and C is the normalization constant used for the availability coordinate. Constants Ci, i =
1, . . . , m are all finite if and only if the network is ergodic.

Note that in this generality, the reduced state vector associated to the number of customers
alone, without the availability coordinate, does not form a Markov process. The model of an
unreliable network is an analogue of the classical Jackson network model but it can not be
reduced to the classical one by adjusting parameters of the availability coordinate since all
configurations of down nodes are possible with positive probability under our assumptions.

https://doi.org/10.1239/aap/1435236981 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1435236981


408 P. LOREK AND R. SZEKLI

2.1. Equilibrium rate and hazard rate for a stationary distribution

For a nonnegative random variable X ∈ Z+, with probability function p(k) = P{X = k},
such that for any k ∈ Z+, P{X = k} > 0, the total hazard function Hp is defined for all
x ≥ 0 by

Hp(x) = −log F̄ (x).

Further, the discrete hazard function we define for natural arguments by

hp(k) = p(k)

F̄ (k − 1)
, k ≥ 0,

where F̄ (k) = P{X > k}. Note that for such a variable, for natural arguments k ≥ 0,

Hp(k) = −log
k∏
j=0

(1 − hp(j)),

and for arbitrary x ≥ 0 we have

Hp(x) = −log
�x�∏
j=0

(1 − hp(j)) =
�x�∑
j=0

log

(
1

1 − hp(j)

)
, (2.5)

where �x� denotes the integer part of x and hp is the hazard function.

Definition 2.2. We say that a discrete distribution (p(k), k = 0, 1, . . .) (or a discrete random
variable X) is strongly light-tailed if there exists ε > 0 such that infk≥0 hp(k) > ε.

The following lemma and example explain how the strong light-tailness and the usual light-
tailness are related. Recall the usual light-tailness. An arbitrary distribution function F with
its support contained in [0,∞) is light-tailed if

∫ ∞
0 esx dF(x) < ∞ for some s > 0.

Lemma 2.1. Consider a random variable X ∈ Z+, with probability function p(k) = P{X =
k}, such that for any k ∈ Z+, P{X = k} > 0, andp is strongly light-tailed. Then it is light-tailed
in the usual sense.

Proof. It is known (see, e.g. [42, Theorem 2.3.1]) that

lim inf
x→∞ − 1

x
log(F̄ (x)) > 0

implies that F is light-tailed. Note that

Hp(x)

x
≥ Hp(�x�)

�x� + 1

for all x ≥ 0, therefore,

inf
n

Hp(n)

n+ 1
> 0 �⇒ lim inf

x→∞
Hp(x)

x
> 0. (2.6)

From the exponential light-tailness we have for all j , log(1/(1 − hp(j))) > log(1/(1 − ε)),
and, hence, from (2.5),

Hp(n)

n+ 1
> log

(
1

1 − ε

)
> 0,

which from (2.6) implies that F is light-tailed.
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We now provide a simple example in order to demonstrate that for discrete distributions,
strong light-tailness is a strictly stronger notion than the usual light-tailness. (This example
shows at the same time that there exists a birth and death process having its rate of convergence
to stationarity not exponentially fast, but having its stationary distribution light-tailed).

Example 2.1. Let us take as p the distribution which corresponds to the hazard function hp
given by hp(1) = 1

2 ,

hp(k) =

⎧⎪⎪⎨
⎪⎪⎩

1

k
if k = 2n+ 1, n ≥ 1,

1

2
if k = 2n, n ≥ 0.

This distribution is not strongly light-tailed since infk hp(k) = 0. However, for each natural n,
limn→∞Hp(2n+ 1)/(2n+ 2) = limn→∞Hp(2n)/(2n+ 1) = log(2)/2 > 0, and from (2.6)
we obtain that p is light-tailed.

For a nonnegative random variable X ∈ Z+, with probability function p(k) = P{X = k},
such that for any k ∈ {0, 1, 2, . . .}, P{X = k} > 0, we define the equilibrium rate function for
k ∈ Z+ by

ep(k) =
⎧⎨
⎩
p(k + 1)

p(k)
if k ≥ 0,

0 if k < 0.

Since under our assumptions the equilibrium rate function (ep(k), k ≥ 0) uniquely
determines the probability function (p(k), k ≥ 0), it is therefore possible to express strong light-
tailness in terms of equilibrium rates. The following equations connect hazard and equilibrium
rate functions:

ep(k) = hp(k + 1)(1 − hp(k))

hp(k)
, k ≥ 0 (2.7)

and

hp(k) = 1

1 + ∑∞
j=k ep(k) · · · ep(j)

, k ≥ 0. (2.8)

It is worth mentioning that each discrete distribution with the support Z+ can appear as the
stationary distribution for a birth and death process with constant birth rates and variable death
rates. Strong light-tailness of πi can be expressed in terms of the corresponding equilibrium
rates, which in turn are equal to the corresponding birth/death ratios. We provide a precise
formulation for a single birth and death process in the following lemma.

Lemma 2.2. Consider {p(k)}k≥0, an arbitrary probability function on Z+, such that p(k) >
0, k ≥ 0, with the corresponding equilibrium rate ep(k), k ≥ 0. Then for each birth and death
process Z with fixed λ(k) ≡ λ > 0, k ≥ 0, and death rates defined by

λ

μ(k + 1)
= ep(k), k ≥ 0,

the stationary distribution of Z is equal to p(k), k ≥ 0.

Proof. For the stationary distribution π̌ of the birth death process Z we have

π̌(i)

π̌(0)
= λi

μ(1) · · ·μ(n) = λi
[
λi
p(0)

p(1)

p(1)

p(2)
· · · p(i − 1)

p(i)

]−1

= p(i)

p(0)
, i ≥ 1.

Thus, we have p = π̌ .
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Neither hp(k) nor ep(k) have to be convergent as k → ∞. However, from (2.7) and (2.8)
we obtain a connection between these limits if they exist and are finite.

Lemma 2.3. Consider {p(k)}k≥0, an arbitrary probability function on Z+, such that p(k) >
0, k ≥ 0, with the corresponding equilibrium rate ep(k), k ≥ 0. Then hp = limk→∞ hp(k)

exists and hp ∈ (0, 1) if and only if ep = limk→∞ ep(k) exists and ep ∈ (0, 1). In this case

hp = 1 − ep.

Example 2.2. Recall that the negative binomial distribution is defined by

p(k) =
(
r + k − 1

k

)
(1 − p)kpr, r > 0, k = 0, 1, . . . , p ∈ (0, 1).

The corresponding equilibrium rate is given by

ep(k) = (1 − p)(k + r)

(k + 1)
, k = 0, 1, . . . .

The corresponding limit at ∞ fulfills ep = (1 −p), and for the corresponding limit at ∞ of the
hazard rate we obtain hp = p > 0, which means that this distribution is strongly light-tailed.

Example 2.3. For the Poisson distribution

p(k) = e−λλk

k! , λ > 0, k = 0, 1, . . . ,

and

ep(k) = λ

k + 1
.

For the corresponding limits at infinity we have here ep = 0, and hp = 1, the Poisson
distribution is strongly light-tailed.

It is worth mentioning that the negative binomial and Poisson distributions fit into the so-
called Panjer recurrence scheme; more precisely, we say that p(k) fulfills Panjer’s recurrence
if, for some a, b ∈ R,

p(k + 1) =
(
a + b

k + 1

)
p(k), k = 0, 1, . . . ,

which is equivalent to saying that the corresponding equilibrium rate has a hyperbolic form

ep(k) = a + b

k + 1
.

For the negative binomial distribution a := 1 − p and b := (r − 1)(1 − p). In both cases
the equilibrium rate function is monotone. Distributions with nonincreasing equilibrium rates
are equivalently called PF2 densities, for more details in connection with queueing networks;
see [13].

Example 2.4. A discrete analog of the Pareto distribution can be defined by

p(k) = C
1

(k + 1)α
, α > 1, k = 0, 1, . . . ,
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where C is the normalization constant. Then

ep(k) =
(
k + 1

k + 2

)α
.

For the corresponding limits at ∞ we have here ep = 1, and hp = 0, this distribution is
heavy-tailed.

In the context of unreliable queueing networks it is natural to define the ratio λi/μi(k + 1),
where k is a variable, as the traffic intensity function for the ith station. From Lemma 2.2 it
follows that for ergodic networks the traffic intensity function at the ith station is equal to the
equilibrium rate of the marginal distribution πi of the network’s stationary distribution π . If
we assume that the service intensity at node i is nondecreasing as a function of the number
of customers at this node then πi has a PF2 density, and it is strongly light-tailed. Another
possibility is that the traffic intensity function is increasing to 1 at a selected node i, and the
network is ergodic but having at the node i a heavy-tailed distribution πi . In the next section we
will show that in such a case the network process will not converge to stationarity geometrically
fast. Also, if at a fixed station i the traffic intensity function is not monotone and corresponds
to a light-tailed distribution which is not strongly light-tailed as in Example 2.1, then such a
network also will not converge to stationarity geometrically fast.

3. Existence of a spectral gap and light-tailed distributions

Theorem 3.1. (i) Let X be an ergodic unreliable Jackson network process following the RS-
RD blocking, with the infinitesimal generator Q. Suppose that Q is bounded and the minimal
service intensity is μ > 0.

If the routeing matrix R is reversible then gap(Q) > 0 if and only if all distributions
πi, i = 1, . . . , m are strongly light-tailed.

(ii) Let Z be an ergodic classical Jackson network process with the corresponding infinitesimal
generator Q(Z). Suppose that Q(Z) is bounded and the minimal service intensity μ > 0.

Then gap(Q(Z)) > 0 if and only if all distributions πi, i = 1, . . . , m are strongly light-
tailed.

The proof of this theorem will be given in Section 5.
We formulated the results on the positivity of the spectral gap and on the convergence to

stationarity in terms of the discrete hazard functions of the stationary distribution. For queueing
networks it would be however more reasonable to formulate the assumptions in terms of the
parameters of the network.

The existence of the spectral gap of an unreliable network can be formulated in terms of the
corresponding arrival and service rates (as a consequence of Theorem 3.1 and Lemma 2.2) as
follows.

Corollary 3.1. Let X be an ergodic unreliable Jackson network process following the RS-RD
blocking, with the infinitesimal generator Q. Suppose that Q is bounded and the minimal
service intensity μ > 0. If the routeing matrix R is reversible then gap(Q) > 0 if and only if
for each i = 1, . . . , m,

inf
k

[
1 +

∞∑
j=k+1

λ
j−k
i

μi(k + 1) · · ·μi(j)
]−1

> 0.
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In particular for ergodic networks, if for all i = 1, . . . , m, the limits for the traffic intensity
functions limk→∞ λi/μi(k) < 1 exist then gap(Q) > 0.

For the classical Jackson network the assumption on reversibility can be skipped.

3.1. Speed of convergence to stationarity

Denote by α0 the best rate in ‖δePt − π‖TV convergence. It is known that for ergodic birth
and death processes gap(Q) = α0; see, e.g. [46] or [8, Theorem 5.3]. From [10, Theorem 8.8,
Equation (2)], for ergodic reversible processes it is known that α0 ≥ gap(Q). From [10,
Theorem 8.13, Equation (4)], we have the following result.

Theorem 3.2. Let X be an ergodic, unreliable Jackson network following the RS-RD blocking,
with generator Q, given by (2.2), and the corresponding transition semigroup (Pt ). Suppose
the routeing matrix R is reversible.

If πi is strongly light-tailed for each i = 1, . . . , m then the following conditions are
equivalent:

(i) for all f ∈ L2(E, π)

‖Ptf − π(f )‖ ≤ e−gap(Q)t‖f − π(f )‖, t > 0,

(ii) for each e ∈ E there exists C(e) > 0 such that

‖δePt − π‖TV ≤ C(e)e−gap(Q)t , t > 0,

where ‖ · ‖TV denotes the total variation norm.

Proof. First note that the network process is reversible under the assumption that R is
reversible. It is enough to check the assumptions of Theorem 8.13 and [10, Equation (4)]. Let

pt (e, e
′) = dPt (e, ·)

dπ
(e′), t > 0, e, e′ ∈ E.

Then

p2s(e, e) = P{X(2s) = e | X(0) = e}
π(e)

.

Hence, p2s(·, ·) ∈ L
(1/2)
loc (π) (with the usual notation for Lp(π) spaces as in [10]) if∑

e∈A⊂E
(π(e))(1/2) < ∞ for bounded A, which trivially holds. The set of bounded functions

with compact support is (also trivially) dense in L2(π) since E is a discrete space.

Remark 3.1. For the classical Jackson networks, the reversibility assumption on the routeing
matrix R can be relaxed in order to obtain the implication (i) ⇒ (ii).

4. Bounds on the spectral gap

In this section we recall some bounds on the spectral gaps of birth and death processes. For
a more complete description; see [10, Chapter 5], [11], [48], [49], and the references therein.

Let us recall [35, Theorem 3.7]. For convenience we give a simplified formulation of it to
the case of state independent birth rates.
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Theorem 4.1. (See Liggett [35].) Assume that Z is an ergodic birth and death process on Z+,
with state independent birth rates λ > 0, and possibly state dependent death rates μ(n) > 0,
and for all i ≥ 0, and for some c, d > 0, we have

∑
j>i

π(j) ≤ cπ(i)λ and
∑
j>i

π(j) ≤ dπ(i).

Then for the corresponding generator Q(Z),

gap(Q(Z)) ≥ (
√
d + 1 − √

d)2

c
≥ 1

2c(1 + 2d)
. (4.1)

In the case of constant birth rates, from [35, Corollary 3.8], we have a necessary and sufficient
condition for gap(Q(Z)) to be positive is that the stationary distribution is such that

inf
i≥0

π(i)∑
j≥i π(j)

> 0,

which is by definition the strong light-tailness. Therefore from [35, Corollary 3.8] we have the
following lemma.

Lemma 4.1. Assume that Z is an ergodic birth and death process on Z+, with state independent
birth rates λ > 0, and possibly state dependent death rates μ(n) > 0. Then gap(Q(Z)) > 0 if
and only if the stationary distribution π is strongly light-tailed. Moreover, if for some ε > 0,
we have

inf
n≥0

hπ(n) ≥ ε

then

gap(Q(Z)) ≥ λ(1 − √
1 − ε)2

1 − ε
≥ λε2

2(1 − ε)(2 − ε)
. (4.2)

Proof. From
∑
j>i π(j) ≤ cπ(i)λ we have

∑
j≥i π(j) ≤ cπ(i)λ+ π(i), so for the lower

bound on the hazard function we have ε = 1/(1 + cλ), therefore c = (1 − ε)/(λε). Similarly,
we obtain d = (1 − ε)/ε, and using (4.1) we obtain (4.2).

A lower bound on the spectral gap can be given directly in terms of the birth and death rates;
see, e.g. [48].

Lemma 4.2. Assume that Z is an ergodic birth and death process on Z+, with state independent
birth rates λ > 0, and possibly state dependent death rates μ(n) > 0. Then

gap(Q(Z)) ≥ inf
n≥0

[λ+ μ(n+ 1)− √
λμ(n)− √

λμ(n+ 1)].

Remark 4.1. For more details on the estimation of spectral gaps for birth and death processes;
see [9, Corollary 1.2 and Corollary 1.3] and also [10], [11], [47], [48], and [49]. It is natural to
ask how do different bounds compare. It turns out that the optimality of a given bound strongly
depends on the parameters of a given birth and death process, as described in an example
after [8, Theorem (5.2)]. In a sense, different bounds are incomparable; as stated there. For
particular cases it is reasonable to examine all possibilities.

Combining the above bounds for birth and death processes and the bounds obtained in the
proof of Theorem 3.1 (see (5.9)) we have from (4.2) the following proposition.
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Proposition 4.1. (i) Let X be an ergodic, unreliable Jackson network following the RS-RD
blocking, with generator Q, given by (2.2). Suppose the routeing matrix R is reversible.

If πi is strongly light-tailed for each i = 1, . . . , m, and

inf
n≥0

hπi (n) ≥ εi > 0,

then

gap(Q) ≥ 1

8|Q|
(
qmin

q̌max

gap(Q̌0) ∧ min1≤i≤m λi(1 − √
1 − εi)

2/(1 − εi)

1 + d̄ b̄(2m+ 1)

)2

and

gap(Q)

≥ 1

8|Q|
(
qmin

q̌max

gap(Q̌0) ∧ min1≤i≤m infn≥0[λi + μi(n+ 1)− √
λiμi(n)− √

λiμi(n+ 1)]
1 + d̄b̄(2m+ 1)

)2

,

where d̄, b̄, |Q|, qmin, q̌max are defined by (5.7), (5.6), (5.2), (5.4), and (5.5), respectively.

(ii) Let Z be an ergodic classical Jackson network process with the corresponding infinitesimal
generator Q(Z). Suppose that Q(Z) is bounded and the minimal service intensity is μ > 0.
If πi is strongly light-tailed, for each i = 1, . . . , m, and

inf
n≥0

hπi (n) ≥ εi > 0,

then

gap(Q(Z)) ≥ 1

8|Q(Z)|
(
qmin

q̌max

min1≤i≤m λi(1 − √
1 − εi)

2/(1 − εi)

1 + b̄2m

)2

(4.3)

and

gap(Q)

≥ 1

8|Q(Z)|
(
qmin

q̌max

min1≤i≤m infn≥0[λi + μi(n+ 1)− √
λiμi(n)− √

λiμi(n+ 1)]
1 + b̄2m

)2

.

In all the above given bounds the factor 1 + d̄ b̄(2m+ 1) can be reduced to 1 if in the network
ri0 > 0 and r0i > 0 for all i = 1, . . . , m. The bounds obtained in the above proposition are
valid for a quite general class of networks but it is reasonable to search for alternative bounds
and alternative methods under some additional structural assumptions. We recall two cases
for classical Jackson networks, the first one with state dependent service rates but fulfilling a
partial balance requirement for the roueting matrix (see [14, Proposition 4.4]), the second one
for classical Jackson networks with state independent service rates (see [29]).

Proposition 4.2. Let Z be an ergodic classical Jackson network process with the corresponding
infinitesimal generator Q(Z). Suppose that Q(Z) is bounded and the minimal service intensity
is μ > 0. Assume that the routeing matrix R has strict positive departure probabilities ri0 > 0
and that λr0i > 0 for i = 1, . . . , m.

Assume further a partial balance condition

λj

m∑
i=1

rji =
m∑
i=1

λirij for all j = 1, . . . , m. (4.4)
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Then
gap(Q(Z)) ≥ min

1≤i≤m gap(Q̃i),

where, for i = 1, . . . , m, Q̃i denotes the generator of the birth and death process with the birth
rate λr0i and the state dependent death rate μi(ni)ri0.

Corollary 4.1. Under the assumptions of Proposition 4.2, if, in addition, πi is strongly light-
tailed for each i = 1, . . . , m, and

inf
n≥0

hπi (n) ≥ εi > 0,

then

gap(Q(Z)) ≥ min
1≤i≤m

λr0i (1 − √
1 − εi)

2

1 − εi

and

gap(Q(Z)) ≥ min
1≤i≤m inf

n≥0
[λr0i + μi(n+ 1)ri0 − √

λr0iμi(n)ri0 − √
λr0iμi(n+ 1)ri0].

Now we recall from [29] some special cases of classical Jackson networks in order to present
some (upper) bounds on the correspondingL2 spectral gap. The results of [29] are related to the
essential spectral gap. In Section 6 we will compare our lower bounds with the upper bounds
presented below and we will obtain in some cases a nice approximation for the L2 spectral gap.
Because the essential L2 spectral gap is larger then the L2 spectral gap from [29, Corollary 3.4
and Proposition 3.6].

Proposition 4.3. Let Z be an ergodic classical Jackson network process with the corresponding
infinitesimal generator Q(Z). Assume that the service intensities are state independent.

(i) If the routeing is completely symmetrical, i.e. rij = p < 1/(m − 1) for all i 
= j ,
i, j = 1, . . . , m, and for some i0 ∈ {1, . . . , m} we have

min
1≤i≤m(

√
μi − √

λi) = √
μi0 − √

λi0

and

min
1≤i≤m

(
μi√
μi0

− λi√
λi0

)
= √

μi0 − √
λi0 ,

then

gap(Q(Z)) ≤
(

1 − (m− 1)p2

1 − (m− 2)p

)
min

1≤i≤m(
√
μi − √

λi)
2.

(ii) If m = 3, and

R =

⎛
⎜⎜⎝

0 r01 r02 r03
1 − (p + q) 0 p q

1 − (p + q) q 0 p

1 − (p + q) p q 0

⎞
⎟⎟⎠ , (4.5)

where p, q ∈ (0, 1), p + q < 1, then

gap(Q(Z)) ≤ 1 − p3 − q3 − 3pq

1 − pq
min

1≤i≤m(
√
μi − √

λi)
2,

provided that λi/μi = λj/μj , i, j ∈ M , or there exists i0 such that μi ≥ μi0 and
λi ≤ λi0 for all i.
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5. Proof of Theorem 3.1

We present the proof of Theorem 3.1 using the following theorem.

Theorem 5.1. (See [35, Theorem 2.6].) Suppose that a pure jump Markov process X, with
generator Q̌ and stationary distribution π evolves on the product state space E = E0 × E1 ×
· · · Em, m ≥ 1, having coordinates which are independent Markov processes such that the ith
coordinate has generator Q̌i , denumerable state space Ei , and invariant probability measure
πi . Then π is the product measure of πis and

gap(Q̌) = min
0≤i≤m gap(Q̌i ).

Proof of Theorem 3.1(i). We assume that the availability coordinate process is not degen-
erate with φ and ψ positive. Let Q̌ be the generator associated with an (m + 1)-dimensional
process (Yt , Žt )t≥0, where Žt is the vector of m independent birth and death processes with
generators Q̌i , i = 1, . . . , m, given by

Q̌if (n) = [f (n+ 1)− f (n)]λi + [f (n)− f (n− 1)]μi(n), n ∈ N,

and Yt is the process on state space P (M) with infinitesimal generator denoted by Q̌0 and the
stationary distribution:

π0(I ) = 1

C

ψ(I)

φ(I )
, C :=

(∑
I⊆M

ψ(I)

φ(I )

)
.

We write [q̌(n,n′)]n,n′∈E for the corresponding transition intensities.
The stationary distribution of the process with generator Q̌i is πi , which is given in the

product equation (2.4) for networks.
Consider the following Cheeger’s constants for A ⊂ E:

κ(A) :=
∑

n∈A π(n)q(n, Ac)
π(A)π(Ac)

, κ := inf
A:π(A)∈(0,1) κ(A),

κ̌(A) :=
∑

n∈A π(n)q̌(n, Ac)
π(A)π(Ac)

, κ̌ := inf
A:π(A)∈(0,1) κ̌(A),

where π is given by (2.3).
We will show that there exist 0 < v1, v2 < ∞ such that, uniformly for all A ⊂ E,

v2

∑
n∈A

π(n)q̌(n, Ac) ≥
∑
n∈A

π(n)q(n, Ac) ≥ v1

∑
n∈A

π(n)q̌(n, Ac). (5.1)

Then with 0 < v1, v2 < ∞ as in (5.1), we use [34, Theorem 2.1], and since the process
with the generator Q̌ is reversible, we have that gap(Q̌) ≤ κ̌ . Furthermore, uniformly in A,
κ̌(A) ≤ (v1)

−1κ(A), hence, κ̌ ≤ (v1)
−1κ . Under our assumptions we will have gap(Q̌) > 0

which in turn, using [34, Theorem 2.3] (which assures that κ2/(8|Q|) ≤ gap(Q)) will imply
that gap(Q) > 0. Here

|Q| = π − ess supn q(n, {n}c). (5.2)

Similarly, it is possible to argue that gap(Q) > 0 implies that gap(Q̌) > 0.
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In order to complete the proof we turn now to show the validity of (5.1), which is equivalent
to

inf
A⊂E

π(A)∈(0,1)

{∑
n∈A π(n)q(n, Ac)∑
n∈A π(n)q̌(n, Ac)

}
≥ v1 > 0 (5.3)

and

sup
A⊂E

π(A)∈(0,1)

{∑
n∈A π(n)q(n, Ac)∑
n∈A π(n)q̌(n, Ac)

}
≤ v2 < ∞.

For a fixed A such that π(A) ∈ (0, 1), we define

∂A = {n ∈ A : q(n, Ac) > 0}, ∂Ǎ = {n ∈ A : q̌(n, Ac) > 0}.
Let

qmin = inf
A:π(A)∈(0,1) inf

n∈∂A{q(n, Ac)}, qmax = sup
A:π(A)∈(0,1)

sup
n∈∂A

{q(n, Ac)}. (5.4)

From our assumptions it follows that the generators are bounded andμ > 0, therefore, qmin > 0
and qmax < ∞.

For

q̌min = inf
A:π(A)∈(0,1) inf

n∈∂Ǎ
{q̌(n, Ac)}, q̌max = sup

A:π(A)∈(0,1)
sup
n∈∂Ǎ

{q̌(n, Ac)}, (5.5)

we also have q̌min > 0 and q̌max < ∞.
For each A such that π(A) ∈ (0, 1), we have

∑
n∈A π(n)q(n, Ac)∑
n∈A π(n)q̌(n, Ac)

=
∑

n∈∂A π(n)q(n, Ac)∑
n∈∂Ǎ π(n)q̌(n, Ac)

,

so we obtain

qmax

q̌min ·
∑

n∈∂A π(n)∑
n∈∂Ǎ π(n)

≥
∑

n∈∂A π(n)q(n, Ac)∑
n∈∂Ǎ π(n)q̌(n, Ac)

≥ qmin

q̌max ·
∑

n∈∂A π(n)∑
n∈∂Ǎ π(n)

.

We will continue our argument in the case of the lower bound (5.3). The existence of this
lower bound ensures that if gap(Q̌) > 0 then gap(Q) > 0. Note that from Theorem 5.1 and
Lemma 4.1, the inequality gap(Q̌) > 0 is equivalent to the condition that πi is strongly light-
tailed, for each i = 1, . . . , m. The proof for the upper bound is similar and we skip it. In order
to show (5.3) it is enough to check that

0 < inf
A:π(A)∈(0,1) ζ(A), where ζ(A) :=

∑
n∈∂A π(n)∑
n∈∂Ǎ π(n)

.

If the network is such that for all i = 1, . . . , m, r0i > 0 and ri0 > 0 then ∂Ǎ ⊆ ∂A. In
that case infA : π(A)∈(0,1) ζ(A) ≥ 1, and we can take v1 = qmin/q̌max. Otherwise, we have to
analyse ∂Ǎ, and ∂A in more detail.

Let us examine the difference between π(n) and π(n′) when n′ and n differ exactly on one
nonavailability coordinate by at most 1 and when n and n′ have two different sets of broken
nodes D and D′, respectively.
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Recall from (2.3) that for n = (D, n1, . . . , nm) ∈ P (M)× Z
m+ we have

π(n) = π(D, n1, . . . , nm) = 1

C

ψ(D)

φ(D)

m∏
i=1

πi(ni), where πi(ni) := 1

Ci

λ
ni
i∏ni

y=1 μi(y)
.

For ni ≥ 1,

πi(ni + 1) = 1

Ci

λ
ni+1
i∏ni+1

y=1 μi(y)
= πi(ni)

λi

μi(ni + 1)

and

πi(ni − 1) = 1

Ci

λ
ni−1
i∏ni−1

y=1 μi(y)
= πi(ni)

μi(ni)

λi
,

thus, using μ
i
:= infn μi(n) > 0 and μ̄i := supn μi(n) < ∞, we have bounds

λi

μ̄i
πi(ni) ≤ πi(ni + 1) ≤ πi(ni)

λi

μ
i

,
μ
i

λi
πi(ni) ≤ πi(ni − 1) ≤ πi(ni)

μ̄i

λi
.

Define

b̄ = max
1≤i≤m

(
μ̄i

λi

)
, b = min

1≤i≤m

(
λi

μ̄i

)
, (5.6)

d̄ = max
D1 
=D2

ψ(D2)φ(D1)

φ(D2)ψ(D1)
and d = min

D1 
=D2

ψ(D2)φ(D1)

φ(D2)ψ(D1)
. (5.7)

Then, if n and n′ differ by at most 1 on exactly one coordinate i ∈ {1, . . . , m}, and have setsD
and D′, respectively, on the availability coordinate, then

bπi(ni) ≤ πi(n
′
i ) ≤ b̄πi(ni)

and
dbπ(n) ≤ π(n′) ≤ d̄ b̄π(n). (5.8)

We rewrite ζ(A) as

ζ(A) =
∑

n∈∂A∩∂Ǎ π(n)+ ∑
n∈∂A\∂Ǎ π(n)∑

n∈∂Ǎ∩∂A π(n)+ ∑
n∈∂Ǎ\∂A π(n)

.

Let us consider n ∈ ∂Ǎ \ ∂A. Then there exists some n′ ∈ Ac such that original process
with the intensity q cannot move there in one step, but the process with q̌ can. The state n′ must
be of the form n′ = T0i0n or n′ = Tj00n (arrival or departure) since changing the availability
coordinate is always possible in both processes, i.e. either both processes would leaveA or none.
We will analyse the case of arrival since in the case of departure we can argue analogously.
The key observation in this argument is the following: if n′ = T0i0n, but the arrival intensity
to node i0 is equal to 0 for the network process or this arrival movement is blocked by D, then
the node i0 must be reachable by an unblocking movement D → ∅ and then a T0i0 transition,
or by an unblocking movement D → ∅ and then an arrival to some station different from
i0, and a migration movement or a series of consecutive migration movements. There are
possibly multiple paths, but we can search for the minimal ones (which can be multiple with
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the same length). Intuitively speaking, we search for the shortest connection to a source node
(i.e. a node which admits arrivals from the outside) from the i0 node (in the case of departure
movement n′ = Tj00n we search for the shortest connection to a sink node). Consider all
shortest paths of movements that connect n with n′ in the network. Denote such a path by
n = n0,n1 = TDn0, . . . ,nk = T Dnk−1 = n′ for k ≤ m + 1. Note that each such path is
not greater than m + 1 since we can take as the first transition the one which puts D to ∅ on
the availability coordinate, and the worst case for the other transitions is when the station i0
is the last station in a m-series network. Moreover, each state on the path differs from n by
at most 1 on only one nonavailability coordinate (because on nonavailability coordinates an
arrival changes one coordinate by +1, and consecutive transitions change coordinates in such
a way that after a transition the resulting state has exactly one coordinate changed by +1).
Furthermore, there exists a state nj on this path such that the network process leaves A, and
either nj ∈ ∂Ǎ ∩ ∂A or nj ∈ ∂A \ ∂Ǎ. Since nj differs from n by at most 1 on exactly one
coordinate, from (5.8) we have π(n) ≤ d̄ b̄π(nj ). If we take two points on the border ∂Ǎ \ ∂A
for which the coordinate-wise distance is large enough then the corresponding border points on
∂A defined above must be different because nj always differs from n by at most 1 on a single
coordinate. More precisely, let n ∈ ∂Ǎ \ ∂A and m ∈ ∂Ǎ \ ∂A be such that they are different
by more than 2 on each coordinate, then the corresponding points nj and mj ′ , elements of ∂A,
are distinct. In order to give a very rough bound on

∑
∂Ǎ\∂A π(n)we observe that for a fixed nj

point there are not more than 2m+1 points that are different by at most 1 on a single coordinate
from nj , and nj can potentially be on a transition (unblocking and migration) path described
above for these points. Therefore, we have

∑
∂Ǎ\∂A

π(n) ≤ d̄ b̄(2m+ 1)

( ∑
n∈∂Ǎ∩∂A

π(n)+
∑

n∈∂A\∂Ǎ
π(n)

)

and

ζ(A) ≥
∑

n∈∂Ǎ∩∂A π(n)+ ∑
n∈∂A\∂Ǎ π(n)∑

n∈∂Ǎ∩∂A π(n)+ d̄ b̄(2m+ 1)(
∑

n∈∂Ǎ∩∂A π(n)+ ∑
n∈∂A\∂Ǎ π(n))

≥
∑

n∈∂Ǎ∩∂A π(n)+ ∑
n∈∂A\∂Ǎ π(n)

(1 + d̄ b̄(2m+ 1))(
∑

n∈∂Ǎ∩∂A π(n)+ ∑
n∈∂A\∂Ǎ π(n))

= 1

1 + d̄ b̄(2m+ 1)
.

Summing up, we obtain∑
n∈∂A π(n)q(n, Ac)∑
n∈∂Ǎ π(n)q̌(n, Ac)

≥ qmin

q̌max

∑
n∈∂A π(n)∑
n∈∂Ǎ π(n)

≥ qmin

q̌max

1

1 + d̄ b̄(2m+ 1)

and

κ̌
qmin

q̌max

1

1 + d̄b̄(2m+ 1)
≤ κ,

which implies (using [34, Theorem 2.3])

gap(Q) ≥
(
κ̌
qmin

q̌max

1

1 + d̄ b̄(2m+ 1)

)2

[(8|Q|)]−1,

gap(Q) ≥
(
qmin

q̌max

gap(Q̌)

1 + d̄ b̄(2m+ 1)

)2

[(8|Q|)]−1
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and, finally,

gap(Q) ≥
(
qmin

q̌max

min0≤i≤m gap(Q̌i )

1 + d̄ b̄(2m+ 1)

)2

[(8|Q|)]−1. (5.9)

Proof of Theorem 3.1(ii). Note that we cannot specify the parameters of an ergodic
unreliable Jackson network process X in order to obtain the classical ergodic Jackson network
process Z as a special case. However, it is possible to repeat all steps in the proof of
Theorem 3.1(i) for Z (skipping the availability coordinate, and reducing 2m + 1 to 2m) to
obtain

gap(Q(Z)) ≥
(
qmin

q̌max

min1≤i≤m gap(Q̌i )

1 + b̄2m

)2

[(8|Q(Z)|)]−1.

6. Numerical examples

We will use two examples from [29] in order to estimate the L2 spectral gap.

Example 6.1. Let Z be the classical Jackson network with m = 3 stations with the arrival
intensity λ and the routeing matrix R given in (4.5) and with r01 = r02 = r03 = 1

3 , where
p, q ∈ (0, 1), p + q < 1. Then λ1 = λ2 = λ3 = λ/(3(1 − (p + q)) is the solution to
the traffic equation. Moreover, assume that service intensities are constant and are given by
μi = cλi, i = 1, 2, 3, where c > 1. The network is ergodic with a stationary distribution being
the product of πi, i = 1, 2, 3, where πi(k) = (1 − 1/c)(1/c)k, i = 1, 2, 3, k = 0, 1, . . . . The
conditions of Proposition 4.3(ii) are fulfilled and we have:

gap(Q(Z)) ≤ gapess

:= 1 − p3 − q3 − 3pq

1 − pq
λ1(

√
c − 1)2

= p2 + p − pq + q2 + q + 1

1 − pq

λ

3
(
√
c − 1)2,

where gapess denotes the essential spectral gap of the Wolf essential spectrum; see [51]. We will
compare the above upper bound with the bounds given in Proposition 4.2 and
Proposition 4.1.

Let us start with the bound given in Proposition 4.2. The partial balance condition (4.4)
holds, and all birth and death processes Q̃i, i = 1, 2, 3 are equal in distribution. Denote the
arrival intensity of Q̃i process by λ̃i and its service rate by μ̃i . We have λ̃i = λr0i = λ/3 and
μ̃i = μiri0 = cλ/3. As already indicated in the introduction the equation for the L2 spectral
gap, for ergodic birth and death processes with constant rates, is known. The L2 spectral gap
(and the corresponding essential spectral gap) of Q̃i is given by

gap(Q̃i) = (
√
μ̃i −

√
λ̃i )

2 = λ

3
(
√
c − 1)2,

therefore, the resulting bound is

gap(Q(Z)) ≥ λ

3
(
√
c − 1)2.

It is worth mentioning that this bound does not depend on p or q. Moreover,

inf
p,q∈(0,1)
p+q<1

gapess := λ

3
(
√
c − 1)2.
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On the other hand,
sup

p,q∈(0,1)
p+q<1

gapess = λ(
√
c − 1)2,

which means that the bound given in Proposition 4.2 is at most three times smaller than the
considered upper bound on the spectral gap. Moreover, gap(Q(Z)) is arbitrarily close to
(λ/3)(

√
c − 1)2 for small values of p and q.

Now, let us turn to Proposition 4.1. Each distribution πi is geometric with the corresponding
hazard functions hπi (n) = 1 − 1/c. We have ri0 > 0 and r0i > 0 for i = 1, 2, 3, thus, we can
reduce 1 + d̄ b̄(2m+ 1) to 1 in this proposition. We need yet to calculate:

|Q| = λr01 + λr02 + λr03 + μ1 + μ2 + μ3 = λ+ 3c
λ

3(1 − (p + q)
= λ

(
1 + c

1 − (p + q)

)

qmin = min

(
λ

3
, μ(1 − (p + q)), μip, μiq

)
= λ

3
min

(
1,

cp

1 − (p + q)
,

cq

1 − (p + q)

)

q̌max = 3λ1 + 3μ1 = 3(1 + c)λ1 = λ(1 + c)

1 − (p + q)
.

For the resulting bound with λ = 1, c ranging from 2 to 9 and for p and q close to 0, the ratio
of the spectral gap and (4.3) in the best case is of order 10−5. In this example the bound (4.3)
is rather rough.

Example 6.2. Let Z be the classical completely symmetrical Jackson network withm stations,
the routeing matrixR given by rij = p < 1/(m−1) for all i 
= j , r0i = 1/m, i, j = 1, . . . , m,
and the arrival intensity λ. Note that we have ri0 = 1 − (m − 1)p for i = 1, . . . , m. The
solution of the traffic equation is given by λi = (1/m)(λ/1 − (m− 1)p) for all i = 1, . . . , m.
Moreover, assume thatμi = cλi, c > 1. Then the assumptions of Proposition 4.3(i) are fulfilled
and

gap(Q(Z)) ≤ gapess

:=
(

1 − (m− 1)p2

1 − (m− 2)p

)
λi(

√
c − 1)2

= 1

m

1 + p

1 − p(m− 2)
(
√
c − 1)2λ.

Note that for p ∈ (0, 1/(m− 1)) we have

1

m
(
√
c − 1)2λ ≤ gapess ≤ (

√
c − 1)2λ

Let us compare the value of the upper bound with the lower bound obtained in
Proposition 4.2. Again, the partial balance condition (4.4) holds, and all birth and death
processes Q̃i, i = 1, . . . , m, are equal in distribution. The intensities are λ̃i = λr0i = λ/m

and μ̃i = μiri0 = cλ/m. We have (similarly, as in the previous example)

gap(Q̃i) = (
√
μ̃i −

√
λ̃i )

2 = λ

m
(
√
c − 1)2,

therefore,

gap(Q(Z)) ≥ λ

m
(
√
c − 1)2.
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The obtained bound is the best we can have as a bound which is independent of p. The
lower bound is at most m times smaller than the above given upper bound of the spectral gap.
Moreover, the exact value gap(Q(Z)) can be arbitrarily close to (λ/m)(

√
c − 1)2 for small

values of p.
Regarding the bound from Proposition 4.1, again each πi, i = 1, . . . , m, is geometric with

the hazard function hπi (n) = 1 − 1/c. We can reduce 1 + d̄ b̄(2m+ 1) to 1. We need to
calculate the following constants:

|Q| = λ

(
1 + c

1 − (m− 1)p

)
,

qmin = min

(
λ

m
,μi(1 − (m− 1)p), μip

)
= λ

m
min

(
1,

cp

1 − (m− 1)p

)
,

q̌max = mλ1 +mμ1 = λ(1 + c)

1 − (m− 1)p
.

We skip writing the exact equation for the lower bound. The resulting values with λ = 1,
c ranging from 2 to 9 and for p close to 0, compared to the spectral gap, in the best case, are of
order 10−5, so the bound (4.3) is again rather rough.

Remark 6.1. Although the bounds obtained from our Proposition 4.1 gave rather rough results,
it is worth stressing that it is possible to compute them for a large class of networks with variable
service rates and unreliable nodes. The results that are possible to obtain via Proposition 4.3 are
limited to very special cases of classical networks with constant service intensities. The bounds
from Proposition 4.2 are limited to reliable networks and require a kind of partial balance (4.4)
(which is fulfilled, for example, for reversible networks) but they are applicable to networks
with variable service intensities and seem to work quite well. It is not true in general that the
gap for a network is equal to the gap of a bottleneck station in this network. There still remains
a lot of research to do in order to provide good computable bounds for networks, especially
when the service rates are dependent on the queue size and where the nodes can be unreliable.
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