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ON OCCURRENCES OF F -S STRINGS
IN LINEARLY AND CIRCULARLY
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Abstract

Consider a sequence of exchangeable or independent binary trials ordered on a line or
on a circle. The statistics denoting the number of times an F -S string of length (at least)
k1 + k2, that is, (at least) k1 failures followed by (at least) k2 successes in n such trials,
are studied. The associated waiting time for the rth occurrence of an F -S string of length
(at least) k1 + k2 in linearly ordered trials is also examined. Exact formulae, lower/upper
bounds and approximations are derived for their distributions. Mean values and variances
of the number of occurrences of F -S strings are given in exact formulae too. Particular
exchangeable and independent sequences of binary random variables, used in applied
research, combined with numerical examples clarify further the theoretical results.

Keywords: Distribution of order (k1, k2); linear and circular binary sequences; exchange-
able trial; Poisson trial; urn model; records; runs

2000 Mathematics Subject Classification: Primary 60E05; 62E15
Secondary 60C05; 60G09; 60F05

1. Introduction

The study of runs and run-related statistics has attracted much attention in the literature
because of their wide range of applications in many areas, including statistical hypothesis
testing, reliability theory and quality control, molecular biology, and computer science. In
particular, special attention has been devoted to the number of runs, under certain enumerative
schemes, defined on binary sequences of several internal structures as well as to the variety of
techniques that have been used to derive their probability distributions. Since Feller (1968),
Philippou and Muwaffi (1982), and Philippou et al. (1983) shed light on the number of runs
of fixed length k and the associated waiting times defined on binary sequences, that is, the
discrete distributions of order k, a series of articles has been published on the subject. Past and
current developments in the area along with the relevant nomenclature are well documented in
Balakrishnan and Koutras (2002) as well as in Fu and Lou (2003). Recent studies on the topic
are included among others in the works of Antzoulakos et al. (2003), Koutras (2003), Makri
and Philippou (2005), Eryilmaz and Demir (2007), Makri et al. (2007a), (2007b), Demir and
Eryilmaz (2008), and Eryilmaz (2008), (2009).

Let X1, X2, . . . , be a sequence of binary trials resulting in either a success (denoted by S or
1) or a failure (denoted by F or 0). According to Feller’s nonoverlapping enumeration scheme,
once k (k > 0) consecutive Ss show up a success run of length k is counted and the enumeration
procedure starts anew (from scratch). The number of nonoverlapping success runs of length k

in n (n > 0) trials is denoted by Nn,k , whereas the waiting time for the rth (r ≥ 1) appearance
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of a success run of length k is denoted by Tr,k . A generalization of the pre-mentioned scheme
was introduced in Huang and Tsai (1991), who also addressed two possible applications: the
security installation of a safe box and the process of random mating. Let k1 and k2 be two
nonnegative integers with (k1, k2) �= (0, 0). We say that an F -S string of length (at least)
k1 + k2, a (k1, k2)-event in their terminology, has occurred if (at least) k1 consecutive F s are
followed by (at least) k2 consecutive Ss; that is, an

FF . . . F︸ ︷︷ ︸
≥k1

SS . . . S︸ ︷︷ ︸
≥k2

pattern appears. Let Nn;k1,k2 denote the number of occurrences of such strings in n binary trials.
Then, the support of Nn;k1,k2 is the set S(n, k1, k2) = {0, 1, . . . , �n/(k1 + k2)�}, where by �x�
we denote the greatest integer less than or equal to x. The latter authors also suggested looking
at the waiting time, say Tr;k1,k2 , of the rth (r ≥ 1) occurrence of an F -S string of length (at least)
k1 + k2. Readily, Nn;0,k = Nn,k and Tr;0,k = Tr,k . Furthermore, for k1 = 1 and k2 = k, we
obtain the random variable (RV) that counts the number of occurrences of the pattern FSS . . . S

(at least k Ss) in n trials. It has been studied in Godbole and Schaffner (1993) and plays, in
addition to its independent merit, an important role in obtaining Poisson approximations of
other run-related statistics (see, e.g. Balakrishnan and Koutras (2002, pp. 170–179)).

The random variables Tr;k1,k2 and Nn;k1,k2 are associated and they are related via the dual
relationship

Tr;k1k2 > n if and only if Nn;k1k2 < r, r ∈ S(n, k1, k2) − {0}. (1.1)

Hence, (1.1) offers an alternative way of obtaining results for Tr;k1,k2 through formulae estab-
lished for Nn;k1,k2 , and vice versa.

For Bernoulli trials (independent and identically distributed binary trials), Huang and Tsai
(1991) called the distribution of Nn;k1,k2 a binomial distribution of order (k1, k2) and denoted it
by Bk1,k2(n, p). Apparently, B0,k(n, p) is identical to Bk(n, p), that is, the binomial distribution
of order k (see, e.g. Hirano (1986) and Philippou and Makri (1986)), which generalized the
ordinary binomial distribution B(n, p) or B1(n, p). For Bernoulli trials, they recursively
provided the probability mass function (PMF) as well as a Poisson limit theorem for Nn;k1,k2 .
They also derived the probability generating function of Nn;k1,k2 and Tr;k1,k2 . Vellaisamy
(2004) employed the Stein–Chen method to obtain a total variation upper bound for the rate of
convergence of Nn;k1,k2 , defined on Bernoulli trials, to a suitable Poisson RV. As a special case
of his approach, the limit theorem of Huang and Tsai (1991) is re-established. He also presented
Poisson approximation results for the occurrences of F -S strings of length at least k1 +k2 under
stationary Markov-dependent binary trials. Sen et al. (2006) considered binary trials derived
according to the Pólya–Eggenberger urn model (sampling scheme) and established the PMFs of
Nn;k1,k2 and Tr;k1,k2 on such a model. The corresponding distributions of Nn;k1,k2 and Tr;k1,k2

were called Pólya and inverse Pólya distributions of order (k1, k2), respectively. Depending on
the specific urn sampling procedure, several discrete distributions of order (k1, k2) are obtained,
along with the binomial distribution of order (k1, k2), as special cases.

If we assume that the outcomes of the binary trials X1, X2, . . . , Xn are ordered on a circle,
in such a way that the first outcome is adjacent to (and follows) the nth outcome, then we
denote by Nc

n;k1,k2
the number of occurrences of F -S strings of length (at least) k1 + k2, i.e. (at

least) k2 successes are preceded by (at least) k1 failures, on a circle. Its support is again the set
S(n, k1, k2). Readily, Nc

n;0,k
= Nc

n,k , denoting the number of nonoverlapping success runs of
length k on a circle. The PMF of this RV has been studied formally in Charalambides (1994),
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Makri and Philippou (1994), and Koutras et al. (1995). Specific probabilities of Nc
n,k have

appeared previously in the works of Philippou and Makri (1990) and Alevizos et al. (1993) in
connection with the longest success run on a circle and the reliability of cyclic m-consecutive-
k-out-of-n : F systems.

The forgoing definitions are illustrated using the following example. Let the outcomes of the
first 15 binary trials be SSFFFSSFSFFFSSF. Then, N15;1,1 = 3, N15;1,2 = 2, N15;2,2 = 2, and
N15;3,2 = 2; Nc

15;1,1 = 4, Nc
15;1,2 = 3, Nc

15;2,2 = 2, and Nc
15;3,2 = 2; T2;1,1 = 9, T1;2,2 = 7,

T2;2,2 = 14, and T3;2,2 > 15. We note that, since N15;2,2 = 2 < 3, T3;2,2 > 15, and vice versa.

In this paper we study the RVs Nn;k1,k2 , Nc
n;k1,k2

, and Tr;k1,k2 , with min(k1, k2) ≥ 1, defined
on binary sequences of exchangeable or independent RVs. Specifically, our work is organized
as follows. In Section 2 we derive the exact PMFs of Nn;k1,k2 , Nc

n;k1,k2
, and Tr;k1,k2 for

exchangeable sequences of binary RVs and the exact PMF of Nn;k1,k2 for Poisson (independent
but not necessarily identically distributed) sequences of binary RVs. The PMFs are given
via sums of binomial coefficients and recursively for exchangeable and Poisson sequences,
respectively. The PMF of Tr;k1,k2 for Poisson sequences is derived via its relation with the PMF
of Nn;k1,k2 . In Section 3, exact formulae for the means and variances of Nn;k1,k2 and Nc

n;k1,k2
are given for both exchangeable and Poisson sequences. Their expressions are obtained via
representations of these RVs as sums of indicator RVs holding for any binary sequence. The
same setup of the indicator RVs is also used to establish the asymptotic normality of Nn;k1,k2 and,
consequently, of Tr;k1,k2 defined on Bernoulli sequences (Poisson sequences with a common
success probability). The means and variances, in addition to their independent merit, are
also used to derive lower/upper bounds and approximations for the probability distributions of
Nn;k1,k2 , Nc

n;k1,k2
, and Tr;k1,k2 , which hold for both types of sequences. Finally, in Section 4 our

results are illustrated for various, widely used in applied probability, exchangeable and Poisson
sequences of RVs, e.g. the Pólya–Eggenberger urn model, the record threshold model, and the
record indicator model.

We end this section by noting that the vast majority of the presented results are new. In the
paper we introduce the RV Nc

n;k1,k2
and generalize, unify, and/or provide alternative formulae

for particular results on the RVs Nn;k1,k2 and Tr;k1,k2 due to Huang and Tsai (1991), Vellaisamy
(2004), and Sen et al. (2006).

2. Exact distributions

In this section we provide the exact PMFs of the RVs Nn;k1,k2 , Tr;k1,k2 , and Nc
n;k1,k2

defined
on sequences of exchangeable (Theorems 2.1, 2.2, and 2.3) or independent (Theorem 2.4 and
Remark 2.4) binary trials. First we consider a sequence, X1, X2, . . . , of exchangeable RVs.

Let the outcomes of n exchangeable binary trials X1, X2, . . . , Xn, n > 0, be arranged on
a line or on a circle, and let Yn denote the number of F s (0s) in the n trials. The elements ω

of the appropriate sample space � are linear or circular permutations (i1, . . . , in) with ij ∈
{S, F }, j = 1, 2, . . . , n. For convenience, we use Xn;k1,k2 to represent either the RV Nn;k1,k2

or the RV Nc
n;k1,k2

. An element of the event

�Xn;k1,k2
(x, y) = {ω ∈ � : Xn;k1,k2(ω) = x, Yn(ω) = y}

is a sequence of y F s and n − y Ss. Exchangeability implies that all finite sequences with the
same length and the same number of failures, and, hence, the same number of successes, are
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equally likely. By Theorem 2.1 of George and Bowman (1995) we obtain

pn(y) = P(X1 = X2 = · · · = Xn−y = 1, Xn−y+1 = Xn−y+2 = · · · = Xn = 0)

=
y∑

i=0

(−1)i
(

y

i

)
λn−y+i , y = 0, 1, . . . , n, (2.1)

where
λi = P(X1 = X2 = · · · = Xi = 1), i = 1, 2, . . . , n and λ0 = 1.

Then
P(Xn;k1,k2 = x) =

∑
y

|�Xn;k1,k2
(x, y)|pn(y) (2.2)

and

P(Xn;k1,k2 = x | Yn = y) =
(

n

y

)−1

|�Xn;k1,k2
(x, y)|,

where |�Xn;k1,k2
| denotes the number of binary sequences in �Xn;k1,k2

(x, y), i.e. its cardinality.
Now, it is evident that the problem of establishing the exact PMF of Xn;k1,k2 and the conditional
PMF of Xn;k1,k2 , given the number of failures, is a combinatorial one, namely the computation of
the number |�Xn;k1,k2

|. The same argument holds for the PMF of Tr;k1,k2 by a slight modification
on the definition of �. We will give a preliminary result.

Lemma 2.1. (Makri et al. (2007b).) The number of allocations of α indistinguishable balls
into r distinguishable urns, where each of the m, 0 ≤ m ≤ r , specified urns is occupied by at
most k balls, is given by

Hm(α, r, k) =
�α/(k+1)�∑

j=0

(−1)j
(

m

j

)(
α − (k + 1)j + r − 1

α − (k + 1)j

)
.

Setting k = 0, Hm(α, r, 0) represents the number of allocations of α indistinguishable balls
into r − m distinguishable urns, and is given by

Hm(α, r, 0) =
(

α + r − m − 1

α

)
.

Theorem 2.1. The PMF of Nn;k1,k2 defined on a sequence of exchangeable binary RVs X1, X2,

. . . , Xn ordered on a line, for n ≥ k1 + k2, is given by

(a) for k1 > 1 and k2 > 1,

P(Nn;k1,k2 = x)

=
n−k2x∑
y=k1x

pn(y)

m1∑
m=x

m∑
�=x

(
m

�

)(
�

x

)
Hm−�(y − �(k1 − 1) − m, m + 1, k1 − 2)

× H�−x(n − y − x(k2 − 1) − m, m + 1, k2 − 2);
(b) for k1 = 1 and k2 > 1,

P(Nn;k1,k2 = x)

=
n−k2x∑
y=x

pn(y)

m1∑
m=x

(
m

x

)(
y

m

)
Hm−x(n − y − x(k2 − 1) − m, m + 1, k2 − 2);
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(c) for k1 > 1 and k2 = 1,

P(Nn;k1,k2 = x)

=
n−x∑

y=k1x

pn(y)

m1∑
m=x

(
m

x

)(
n − y

m

)
Hm−x(y − x(k1 − 1) − m, m + 1, k1 − 2);

(d) for k1 = k2 = 1,

P(Nn;k1,k2 = x) =
n−x∑
y=x

pn(y)

(
y

x

)(
n − y

x

)
;

where m1 = min{y − x(k1 − 1), n − y − x(k2 − 1)}.
Proof. We first note that a pattern

FF . . . F︸ ︷︷ ︸
≥1

SS . . . S︸ ︷︷ ︸
≥1

appears in a sequence of �Nn;k1,k2
in one of

FF . . . F︸ ︷︷ ︸
≥k1

SS . . . S︸ ︷︷ ︸
≥k2

, FF . . . F︸ ︷︷ ︸
≥k1

SS . . . S︸ ︷︷ ︸
≤k2−1

, or FF . . . F︸ ︷︷ ︸
≤k1−1

SS . . . S︸ ︷︷ ︸
≥1

,

which we refer to as type A, B, or C, respectively. The pattern A, B, or C may be considered
as an urn with two distinguishable cells. Then, a sequence in �Nn;k1,k2

(x, y) can be visualized
as an arrangement of m + 2 distinguishable urns, say U1, U2, . . . , Um+2, with each of U1 and
Um+2 having one cell receiving Ss and F s only, respectively, and each of U2, . . . , Um+1 being
of type A, B, or C, having two cells, the first of which receives only F s and the second only
Ss. For example, for k1 = k2 = 2, the sequence SSFFFSSFSFFFSSFFSF may be visualized
as SSACABF. The number of permutations of x urns of type A, � − x urns of type B, and
m − � urns of type C, m = x, x + 1, . . . , m1 and � = x, x + 1, . . . , m, equals

(
m
�

)(
�
x

)
. For

each specified permutation of As, Bs, and Cs, k1 F s are placed in the first cell of every urn
of types A and B, and one F is placed in the first cell of every urn of type C. The number
of distributions of the remaining y − �k1 − (m − �) F s into Um+2 and the first cells of the
m urns U2, . . . , Um+1 so that each urn of type C receives no more than k1 − 2 F s equals
Hm−�(y − �k1 − (m− �), m+ 1, k1 − 2), by Lemma 2.1. For the same permutation of As, Bs,
and Cs, k2 Ss are placed in the second cell of every urn of type A and one S in the second cell of
every urn of types B and C. The number of distributions of the remaining n−y−xk2 −(m−x)

Ss into U1 and the second cells of the m urns U2, U3, . . . , Um+1 so that each urn of type B

receives no more than k2 − 2 Ss equals H�−x(n − y − xk2 − (m − x), m + 1, k2 − 2). Thus,
according to the multiplicative principle and summing with respect to m and � we conclude
that the cardinality of �Nn;k1,k2

(x, y) equals

m1∑
m=x

m∑
�=x

(
m

�

)(
�

x

)
Hm−�(y−�k1−m+�, m+1, k1−2)H�−x(n−y−xk2−m+x, m+1, k2−2).

Part (a) of the theorem is then implied by (2.2). Parts (b), (c), and (d) follow by employing an
analogous method of distributing indistinguishable balls into distinguishable urns.
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Theorem 2.2. The PMF of Tr;k1,k2 defined on a sequence of exchangeable binary RVs for
n = r(k1 + k2), r(k1 + k2) + 1, . . . is given by

(a) for k1 > 1 and k2 > 1,

P(Tr;k1,k2 = n)

=
n−rk2∑
y=rk1

pn(y)

m1∑
m=r

m∑
�=r

(
m − 1

r − 1

)(
m − r

� − r

)
Hm−�(y − �(k1 − 1) − m, m, k1 − 2)

× H�−r (n − y − r(k2 − 1) − m, m, k2 − 2);
(b) for k1 = 1 and k2 > 1,

P(Tr;k1,k2 = n) =
n−rk2∑
y=r

pn(y)

m1∑
m=r

(
m − 1

r − 1

)(
y − 1

m − 1

)

× Hm−r (n − y − r(k2 − 1) − m, m, k2 − 2);
(c) for k1 > 1 and k2 = 1,

P(Tr;k1,k2 = n) =
n−r∑

y=k1r

pn(y)

m1∑
m=r

(
m − 1

r − 1

)(
n − y − 1

m − 1

)

× Hm−r (y − r(k1 − 1) − m, m, k1 − 2);
(d) for k1 = k2 = 1,

P(Tr;k1,k2 = n) =
n−r∑
y=r

pn(y)

(
y − 1

r − 1

)(
n − y − 1

r − 1

)
,

where m1 = min{y − r(k1 − 1), n − y − r(k2 − 1)}.
Proof. A typical element of the event (Tr;k1,k2 = n, Yn = y) is (as in the proof of

Theorem 2.1) an arrangement of y failures and n − y successes, which we consider form
m + 1 distinguishable urns numbered from 1 to m + 1. The first urn has one cell receiving
only Ss, the (m + 1)th urn is of type A and the 2nd, 3rd, . . . , mth urns are of type A, B, or
C. We recall that each urn of type A, B, or C has two distinguishable cells. Then, the number
of permutations of the first r − 1 urns of type A, � − r urns of type B, and m − � urns of
type C, m = r, r + 1, . . . , m1 and � = r, r + 1, . . . , m, equals

(
m−1
r−1

)(
m−r
m−�

)
. For each such

permutation, k1 F s are placed in the first cell of each urn of types A and B, and one F is
placed in the first cell of each urn of type C. The number of distributions of the remaining
y − k1� − (m − �) F s in the first cells of the m urns of types A, B, and C so that each cell of
an urn of type C receives no more than k1 − 2 F s equals Hm−�(y − �k1 − m + �, m, k1 − 2).
Next, we place k2 Ss in the second cell of each urn of type A and one S in the second cell of
each urn of types B and C. The number of distributions of the n−y −k2r − (m− r) remaining
Ss into the first urn and the second cells of the m − 1 urns of types A, B, and C (except the
(m + 1)th one) so that each cell of an urn of type B receives no more than k2 − 2 Ss equals
H�−r (n − y − rk2 − m + r, m, k2 − 2). Applying the multiplicative principle and summing
with respect to m and � we get the cardinality of (Tr;k1,k2 = n, Yn = y), y = rk1, . . . , n− rk2.
The results follow by proceeding as in Theorem 2.1.
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Remark 2.1. Sen et al. (2006, Theorems 2.1, 3.1) obtained the PMFs of Nn;k1,k2 and Tr;k1,k2

defined on a particular (in our approach) exchangeable sequence derived by the Pólya–
Eggenberger urn model (see Section 4.1). Although the method we have used for the proof of
Theorems 2.1 and 2.2 is based on a similar combinatorial approach to theirs, their formulae are
more complicated than ours since the PMFs of Nn;k1,k2 and Tr;k1,k2 are expressed as a sum of
two sums each with eight summations involving binomial coefficients, instead of a sum of five
summations in our formulae. The latter improvement is due to the unified consideration of F -S
strings as urns of types A, B, and C each with two cells, as well as, to the employment of the
coefficient Hm(α, r, k).

Next we proceed to derive the PMF of the RV Nc
n;k1,k2

. We will first give a preliminary
result.

Let BNn;k1,k2
(x, y), y ≥ 1, be a subset of �Nn;k1,k2

(x, y) defined by

BNn;k1,k2
(x, y) = {ω ∈ � : Nn;k1,k2(ω) = x, Yn(ω) = y, X1 = 0, Xn = 1}.

Then the number of its elements is given by the following lemma.

Lemma 2.2. The cardinality |BNn;k1,k2
(x, y)| of the set BNn;k1,k2

(x, y) is given by

(a) for n < k1 + k2,

|BNn;k1,k2
(0, y)| =

(
n − 2

y − 1

)
and |BNn;k1,k2

(x, y)| = 0, x �= 0;

(b) for n ≥ k1 + k2 and x = 0, 1, . . . , �n/(k1 + k2)�,

|BNn;k1,k2
(x, y)|

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m1∑
m=x

m∑
�=x

(
m

�

)(
�

x

)
Hm−�(y − �(k1 − 1) − m, m, k1 − 2)

×H�−x(n − y − x(k2 − 1) − m, m, k2 − 2) for k1 > 1, k2 > 1,
m1∑

m=x

(
y − 1

m − 1

)(
m

x

)
×Hm−x(n − y − x(k2 − 1) − m, m, k2 − 2) for k1 = 1, k2 > 1,

m1∑
m=x

(
n − y − 1

m − 1

)(
m

x

)
×Hm−x(y − x(k1 − 1) − m, m, k1 − 2) for k1 > 1, k2 = 1,(

y − 1

x − 1

)(
n − y − 1

x − 1

)
for k1 = k2 = 1,

where m1 = min{y − x(k1 − 1), n − y − x(k2 − 1)}.
Proof. Part (a) of the lemma is apparent. To prove part (b), we note that a typical element

of BNn;k1,k2
(x, y) is a sequence of n binary trials that starts with an F and ends with an S. Such

a sequence is considered as an arrangement of patterns of type A, B, or C (we consider only
urns with two cells), as defined in the proof of Theorem 2.1. The proof is completed along the
lines of the proof of Theorem 2.1.
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Theorem 2.3. The PMF of Nc
n;k1,k2

defined on a sequence of exchangeable binary RVs X1, X2,

. . . , Xn ordered on a circle is given by

P(Nc
n;k1,k2

= x) =
y2∑

y=y1

pn(y)

r1∑
j1=1

r2∑
j2=1

(j1 + j2)|BNn−j1−j2;k1,k2
(x − IA((j1, j2)), y − j1)|

+ n

n−1∑
y=1

pn(y)[IA((y, n − y))δx,1 + IAc((y, n − y))δx,0]

+ [pn(0) + pn(n)]δx,0,

where y1 = max{k1x, 1}, y2 = min{n − k2x, n − 2}, r1 = min{n − 3, y − 1}, r2 = min{n −
2 − j1, n − y − 1}, and A = {(j1, j2) : (j1, j2) ≥ (k1, k2)} with IA(x) = 1 if x ∈ A and 0
otherwise.

Proof. Let x = 0, 1, . . . , �n/(k1 + k2)�. First we note that every element of the appropriate
sample space is a circular arrangement of n Ss and F s. The sample space is considered as the
union of (a) the set of sequences including at least two patterns of type

FF . . . F︸ ︷︷ ︸
≥1

SS . . . S︸ ︷︷ ︸
≥1

;

(b) the set of sequences including only one such pattern; and (c) the set of sequences with no
such patterns. Then, we define the following events. For j1 = 1, . . . , r1, j2 = 1, . . . , r2, and
i = n − j1 − j2 + 1, . . . , n,

Aj1,j2,i =
{
Xi

i+j1∏
j=i+1

(1 − Xj)

i+j1+j2∏
j=i+j1+1

Xj(1 − Xi+j1+j2+1) = 1

}
;

for i = 1, . . . , n,

Cy,i =
{i+y−1∏

j=i

(1 − Xj)

i+n−1∏
j=i+y

Xj = 1

}
,

and D = {∏n
j=1 Xj = 1} and E = {∏n

j=1(1 − Xj) = 1}. (Here we have used the convention
that Xn+i ≡ Xi .)

Readily,

(Nc
n;k1,k2

= x, Yn = y) =
r1⋃

j1=1

r2⋃
j2=1

n⋃
i=n−j1−j2+1

[(Nc
n;k1,k2

= x, Yn = y) ∩ Aj1,j2,i]

∪
[
(Nc

n;k1,k2
= x, Yn = y) ∩

( n⋃
i=1

Cy,i

)]
∪ [(Nc

n;k1,k2
= x, Yn = y) ∩ D]

∪ [(Nc
n;k1,k2

= x, Yn = y) ∩ E],
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from which we obtain

P(Nc
n;k1,k2

= x, Yn = y)

=
r1∑

j1=1

r2∑
j2=1

n∑
i=n−j1−j2+1

pn(y)|(Nc
n;k1,k2

= x, Yn = y) ∩ Aj1,j2,i |

+
n∑

i=1

pn(y)|(Nc
n;k1,k2

= x, Yn = y) ∩ Cy,i | + pn(0)|(Nc
n;k1,k2

= x, Yn = y) ∩ D)|

+ pn(n)|(Nc
n;k1,k2

= x, Yn = y) ∩ E|.

Fix j1, j2, and i. Readily,

|(Nc
n;k1,k2

= x, Yn = y) ∩ Aj1,j2,i | = |BNn−j1−j2;k1,k2
(x − IA((j1, j2)), y − j1)|,

|(Nc
n;k1,k2

= x, Yn = y) ∩ Cy,i | = δx,1IA((y, n − y)) + δx,0IAc((y, n − y)),

|(Nc
n;k1,k2

= x, Yn = y) ∩ D| = δx,0δy,0, and |(Nc
n;k1,k2

= x, Yn = y) ∩ E| = δx,0δy,n.

Summing with respect to y, the result follows directly.

Remark 2.2. For Bernoulli trials with a common success probability p (0 < p = 1 − q < 1),
pn(y) reduces to

pn(y) = pn−yqy.

Therefore, its usage in Theorems 2.1, 2.2, and 2.3 provides the PMFs of the corresponding RVs
for such trials.

Next we replace the assumption of exchangeability with that of independence. Let Nn;k1,k2

be an RV denoting the number of F -S strings of length at least k1 + k2 in a sequence of n

Poisson trials Xi, i = 1, 2, . . . , n, with P(Xi = 1) = pi = 1 − qi = 1 − P(Xi = 0), ordered
on a line. For such sequences we establish the following theorem.

Theorem 2.4. The PMF of the RV Nn;k1,k2 satisfies the recursive scheme P(Nn;k1,k2 = 0) = 1
and P(Nn;k1,k2 = x) = 0, x �= 0, for n < k1 + k2; P(Nn;k1,k2 = x) = 0 for x < 0 or
x > �n/(k1 + k2)�;

P(Nn+1;k1,k2 = x) = P(Nn;k1,k2 = x)

+ β[P(Nn+1−k1−k2;k1,k2 = x − 1) − P(Nn+1−k1−k2;k1,k2 = x)], (2.3)

for x = 0, 1, . . . , �n/(k1 + k2)�, n ≥ k1 + k2, where β = (
∏n−k2+1

i=n−k1−k2+2 qi)(
∏n+1

i=n−k2+2 pi).

Proof. Obviously, for x < 0 or x > �n/(k1 + k2)� and n < k1 + k2, the theorem holds. For
n ≥ k1 + k2, following Huang and Tsai (1991), we first observe that, for r ≥ 1,

P(Nn+1;k1,k2 = r, Nn;k1,k2 = r − 1)

= P(Nn+1−k1−k2;k1,k2 = r − 1)

n−k2+1∏
i=n−k1−k2+2

P(Xi = 0)

n+1∏
i=n−k2+2

P(Xi = 1), (2.4)
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by the independence of the Xis. Then, for x ≥ 1, we have

P(Nn+1;k1,k2 = x) = P(Nn+1;k1,k2 = x, Nn;k1,k2 �= x) + P(Nn+1;k1,k2 = x, Nn;k1,k2 = x)

= P(Nn+1;k1,k2 = x, Nn;k1,k2 �= x) + P(Nn;k1,k2 = x)

− P(Nn+1;k1,k2 �= x, Nn;k1,k2 = x)

= P(Nn+1;k1,k2 = x, Nn;k1,k2 = x − 1) + P(Nn;k1,k2 = x)

− P(Nn+1;k1,k2 = x + 1, Nn;k1,k2 = x),

P(Nn+1;k1,k2 = 0) = P(Nn+1;k1,k2 = 0, Nn;k1,k2 = 0)

= P(Nn;k1,k2 = 0) − P(Nn+1;k1,k2 = 1, Nn;k1,k2 = 0).

Using (2.4), we obtain the result of the theorem.

Remark 2.3. For pi = p = 1 − q, that is, for Bernoulli trials, (2.3) reduces to a recursive
scheme of Huang and Tsai (1991).

Remark 2.4. Using the dual relationship (1.1) and Theorem 2.4, we can determine the PMF
of the waiting time Tr;k1,k2 defined on Poisson trials X1, X2, . . . through the relation

P(Tr;k1,k2 = n) =
r−1∑
x=0

[P(Nn−1;k1,k2 = x) − P(Nn;k1,k2 = x)], r ∈ S(n, k1, k2) − {0},

for n = r(k1 + k2), r(k1 + k2) + 1, . . . .

3. Means, variances, bounds, and approximations

In this section we first give a formal definition of the RVs Nn;k1,k2 and Nc
n;k1,k2

via suitable
sets of indicator RVs. This setup, holding for any binary sequence, is the main tool used to derive
exact means and variances of these RVs defined on exchangeable (Propositions 3.1 and 3.2) and
Poisson (Propositions 3.3 and 3.4) sequences, as well as to establish the asymptotic normality
of Nn;k1,k2 defined on Bernoulli sequences (Theorem 3.1). The expressions of the means and
variances are also used to obtain lower/upper bounds and approximations for the cumulative
distribution functions of Nn;k1,k2 , Tr;k1,k2 , and Nc

n;k1,k2
, which hold for both types of sequences.

Let Ij , j ∈ J , be indicator RVs defined on a binary sequence {Xi}ni=1 with J = {k1 +
k2, k1 + k2 + 1, . . . , n} or J = {1, 2, . . . , n} if the sequence is linearly or circularly ordered,
respectively. Again, let Xn;k1,k2 stand for either Nn;k1,k2 or Nc

n;k1,k2
. Then, for min(k1, k2) ≥ 1,

Xn;k1,k2 =
∑
j∈J

Ij with Ij =
( k2∏

i=1

Xj−i+1

)( k1∏
i=1

(1 − Xj−k2+1−i )

)
(3.1)

(using the conventions that X0 ≡ Xn and X−i ≡ Xn−i). Accordingly, we have

E(Xn;k1,k2) =
∑
j∈J

P(Ij = 1),

V (Xn;k1,k2) =
∑
j∈J

{P(Ij = 1) − {P(Ij = 1)}2}

+ 2
∑

j1<j2
j1,j2∈J

{P(Ij1 = 1, Ij2 = 1) − P(Ij1 = 1) P(Ij2 = 1)}.
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First we consider exchangeable trials. Readily, it holds that P(Ij = 1) = pk1+k2(k1) and
P(Ij1 = 1, Ij2 = 1) = 0 for any combination {j1, j2} possessing the property that there are
fewer than k1 + k2 − 1 points between j1 and j2, and P(Ij1 = 1, Ij2 = 1) = p2(k1+k2)(2k1) for
any combination {j1, j2} with the property that there are at least k1 + k2 − 1 points between j1
and j2 (j, j1, j2 ∈ J ).

Proposition 3.1. For n ≥ k1 + k2, the mean value E(Nn;k1,k2) and the variance V (Nn;k1,k2)

of Nn;k1,k2 are given by
E(Nn;k1,k2) = (n − k1 − k2 + 1)pk1+k2(k1),

V (Nn;k1,k2)

=

⎧⎪⎨
⎪⎩

(n − k1 − k2 + 1)pk1+k2(k1)[1 − (n − k1 − k2 + 1)pk1+k2(k1)] for n< 2(k1 + k2),

(n − k1 − k2 + 1)pk1+k2(k1)[1 − (n − k1 − k2 + 1)pk1+k2(k1)]
+ (n − 2k1 − 2k2 + 2)(n − 2k1 − 2k2 + 1)p2(k1+k2)(2k1) for n ≥ 2(k1 + k2).

Proof. For n < 2(k1+k2), it holds that, for every 2-combination {j1, j2} of the n−k1−k2+1
numbers of the index set J = {k1 + k2, . . . , n}, j2 − j1 < k1 + k2. For n ≥ 2(k1 + k2), the
number of 2-combinations {j1, j2} of the n − k1 − k2 + 1 numbers {k1 + k2, . . . , n} for which
it holds that j2 − j1 ≥ k1 + k2 equals(

n − k1 − k2 + 1 − (2 − 1)(k1 + k2 − 1)

2

)
=

(
n − 2(k1 + k2) + 2

2

)
(see Charalambides (2002, p. 99)), and the number for which it holds that j2 − j1 < k1 + k2
equals (

n − k1 − k2 + 1

2

)
−

(
n − 2(k1 + k2) + 2

2

)
.

Hence, on using the above expressions the results follow after some algebraic manipulations.

Proposition 3.2. For n ≥ k1 + k2, the mean value E(Nc
n;k1,k2

) and the variance V (Nc
n;k1,k2

)

of Nc
n;k1,k2

are given by
E(Nc

n;k1,k2
) = npk1+k2

(k1),

V (Nc
n;k1,k2

) =

⎧⎪⎨
⎪⎩

npk1+k2
(k1)(1 − npk1+k2

(k1)) for n < 2(k1 + k2),

npk1+k2
(k1)(1 − npk1+k2

(k1))

+n(n − 2(k1 + k2) + 1)p2(k1+k2)(2k1) for n ≥ 2(k1 + k2).

Proof. First, we observe that, for n < 2(k1 + k2), there are no 2-combinations {j1, j2} of
the n numbers of the index set {1, 2, . . . , n} possessing the property that between them there
are at least k1 + k2 − 1 numbers. For n ≥ 2(k1 + k2), there are

n

n − 2(k1 + k2 − 1)

(
n − 2(k1 + k2 − 1)

2

)
2-combinations {j1, j2} of the n numbers {1, 2, . . . , n}, displayed on a circle, with at least
k1 + k2 − 1 points between them and(

n

2

)
− n

n − 2(k1 + k2 − 1)

(
n − 2(k1 + k2 − 1)

2

)
with fewer than k1 + k2 − 1 points between them. The results follow after some algebraic
manipulations.
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Next we obtain exact formulae for the mean values and variances of the RVs Nn;k1,k2 and
Nc

n;k1,k2
defined on a sequence of independent binary trials (i.e. Poisson trials).

Proposition 3.3. For n ≥ k1 + k2, the mean value E(Nn;k1,k2) and the variance V (Nn;k1,k2)

of Nn;k1,k2 are given by

E(Nn;k1,k2) =
n∑

j=k1+k2

µj ,

V (Nn;k1,k2)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑
j=k1+k2

µj (1 − µj ) − 2
n−1∑

j=k1+k2

µj

n−j∑
i=1

µj+i for n < 2(k1 + k2),

n∑
j=k1+k2

µj (1 − µj ) − 2
n−k1−k2+1∑
j=k1+k2

µj

k1+k2−1∑
i=1

µj+i

− 2
n−1∑

j=n−k1−k2+2

µj

n−j∑
i=1

µj+i for n ≥ 2(k1 + k2),

where µj = ∏j
i=j−k2+1 pi

∏j−k2
i=j−k1−k2+1 qi, j = k1 + k2, k1 + k2 + 1, . . . , n.

Proof. We first note that, for j = k1 + k2, . . . , n, the RVs Ij are not (in general) identically
distributed and it holds that

P(Ij = 1) = P(Xj−k1−k2+1 = Xj−k1−k2+2 = · · · = Xj−k2 = 0,

Xj−k2+1 = Xj−k2+2 = · · · = Xj = 1) = µj ,

by the independence of the binary sequence. Next, because of the internal structure of the
RVs Ij1 and Ij2 , we observe that P(Ij1 = 1, Ij2 = 1) = 0 if 0 < j2 − j1 < k1 + k2, so that
cov(Ij1 , Ij2) = −µj1µj2 , whereas Ij1 and Ij2 are independent RVs for j2 − j1 ≥ k1 + k2. The
proposition follows.

Proposition 3.4. For n ≥ k1 + k2, the mean value E(Nc
n;k1,k2

) and the variance V (Nc
n;k1,k2

)

of Nc
n;k1,k2

are given by

E(Nc
n;k1,k2

) =
n∑

j=1

µj ,

V (Nc
n;k1,k2

) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n∑
j=1

µj (1 − µj ) − 2
n−1∑
j=1

µj

n−j∑
i=1

µj+i for n < 2(k1 + k2),

n∑
j=1

µj (1 − µj ) − 2
n∑

j=1

µj

k1+k2−1∑
i=1

µj+i for n ≥ 2(k1 + k2),

with µj = ∏j
i=j−k2+1 pi

∏j−k2
i=j−k1−k2+1 qi, j = 1, 2, . . . , n (using the conventions that p0 ≡

pn, p−i ≡ pn−i and µn+i = µi).

Proof. For n < 2(k1 + k2), j = 1, 2, . . . , n− 1 and i = 1, 2, . . . , n− j , we have P(Ij = 1,

Ij+i = 1) = 0, so that cov(Ij , Ij+i ) = −µjµj+i . Noting that, for n ≥ 2(k1 + k2),
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cov(Ij1 , Ij2) = 0 for every 2-combination {j1, j2} of the n numbers of the set {1, 2, . . . , n}
displayed on a circle possessing the property that between them there are at least k1 + k2 − 1
numbers, we obtain

∑
1≤j1<j2≤n cov(Ij1 , Ij2) = −∑n

i=1
∑k1+k2−1

j=1 µjµj+i . The proposition
follows.

For large n, calculating the probability

F(x) = P(Xn;k1,k2 < x), x ∈ S(n, k1, k2) − {0},
is often a hard task, because of the computational effort needed to calculate the required
recursions or the sums of the binomial coefficients involved. Therefore, the need for easily
computed bounds and approximations is apparent.

Let m = E(Xn;k1,k2) and v2 = V (Xn;k1,k2). Employing Markov’s inequality and the one-
sided Chebychev inequality, as well as Equations (34)–(36) and (38) of Makri and Psillakis
(2009a), we obtain the bounds

F(x) ≥ LMC(x) for x ≥ m, F(x) ≤ UC(x) for x < m + 1, (3.2)

where

LMC(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if x = m,

1 − m

x
if m < x ≤ m + v2/m,

1 − v2

v2 + (x − m)2 if x > m + v2/m,

and UC(x) = v2/[v2 + (1 + m − x)2]. For an x such that both bounds LMC and UC can be
used, we obtain the approximation

F̂ (x) = 1
2 (LMC(x) + UC(x)) (3.3)

of F(x), with an upper bound

B̂(x) = UC(x) − LMC(x)

2LMC(x)
, LMC(x) > 0, (3.4)

of the relative error between F(x) and F̂ (x), B(x) = |F(x) − F̂ (x)|/F (x) for F(x) > 0. We
note that the estimate B̂(x) of the relative error B(x) does not assume the knowledge of the exact
value of F(x). It depends only on the lower and upper bounds. Therefore, it gives an advantage
in cases for which the exact value is difficult to compute. Furthermore, (3.2)–(3.4) provide
lower/upper bounds and approximations of the tail probability of the waiting time Tr;k1,k2 too,
since P(Tr;k1,k2 > n) = P(Nn;k1,k2 < r) = F(r).

We recall that Bk1,k2(n, p) is a generalization of Bk(n, p), which is well approximated by
a Poisson distribution, as well as by a normal distribution (see, e.g. Balakrishnan and Koutras
(2002, pp. 174–176, 178–180)). It is expected that analogous approximations also hold for
Bk1,k2(n, p). This turns out to be true. As in the case of the ordinary Bernoulli distribution
B1(n, p), in these approaches two different setups might be used. In the first setup (Poisson
limit law (PLL)) the lengths k1 and k2 are assumed fixed, whereas the success probability p

depends on n and tends to 0 as n tends to ∞. In the second setup (normal limit law or central
limit theorem (CLT)) we suppose that not only k1 and k2 are fixed but also that p is fixed while
n (the number of trials) tends to ∞.
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Following the first setup, Huang and Tsai (1991), using a result of Kendall (1967), and
Vellaisamy (2004), using the Stein–Chen method (see, e.g. Arratia et al. (1989)), established a
PLL accompanied by an upper bound on the rate of convergence of this approximation. But,
to the author’s knowledge, there are no results on the asymptotic normality of Nn;k1,k2 with
min(k1, k2) ≥ 1. In the sequel, using the second setup, we establish a CLT for Nn;k1,k2 based
on a theorem of Hoeffding and Robbins (1948) for dependent stationary sequences of RVs.

Theorem 3.1. Let Nn;k1,k2 have a Bk1,k2(n, p) distribution with min(k1, k2) ≥ 1 and 0 < p =
1 − q < 1. Then, for fixed k1, k2 (k1 + k2 ≤ n),

Nn;k1,k2 − nµ

σ
√

n

d−→ Z ∼ N(0, 1) as n → ∞, (3.5)

where µ = qk1pk2 , σ 2 = µ{1−(2(k1+k2)−1)µ}, and ‘
d−→’denotes convergence in distribution.

Proof. In the proof all limits are taken as n → ∞. For j ∈ {1, 2, . . . , n − k1 − k2 + 1},
let Zj = I(k1+k2−1)+j , with the I s defined as in (3.1). Since the RVs Xi are independent and
identically distributed (i.i.d.) so that the RVs Zj are identically distributed, it follows that the
sequence of RVs Z1, Z2, . . . is stationary and also, by their definition, k1 + k2 − 1 dependent.
Then, noting that E(Z3

1) < ∞, the CLT of Hoeffding and Robbins (1948, Theorem 2) holds for

the RV Nn;k1,k2 = ∑n−k1−k2+1
j=1 Zj , with σ 2 = V (Z1) + 2

∑k1+k2
j=2 cov(Z1, Zj ) = qk1pk2 −

(qk1pk2)2 − 2(k1 + k2 − 1)(qk1pk2)2. That is,

Yn;k1,k2 = Nn;k1,k2 − E(Nn;k1,k2)

σ
√

n − k1 − k2 + 1
= Nn;k1,k2 − (n − k1 − k2 + 1)qk1pk2

σ
√

n − k1 − k2 + 1
d−→ Z ∼ N(0, 1),

or, equivalently,

Yn;k1,k2 = βn

[
Nn;k1,k2 − nqk1pk2

σ
√

n

]
+ γn

d−→ Z ∼ N(0, 1),

where

βn =
√

n

n − k1 − k2 + 1
and γn = (k1 + k2 − 1)qk1pk2

σ
√

n − k1 − k2 + 1
.

Then, since βn → 1 and γn/βn → 0, we obtain

Nn;k1,k2 − nµ

σ
√

n
= 1

βn

Yn;k1,k2 − γn

βn

d−→ Z ∼ N(0, 1).

Remark 3.1. A practical interpretation of (3.5) is that, for sufficiently large n, i.e. n � 1, and
z ∈ R, we have the approximation

P(Nn;k1,k2 ≤ z) � �

(
z − nµ

σ
√

n

)
,

where �(x) = (1/
√

2π)
∫ x

−∞ e−t2/2 dt, x ∈ R. Clearly, the cumulative distribution function
of Nn;k1,k2 defined on Bernoulli trials depends on the parameter vector (n, p, k1, k2) with
1 ≤ k1 ≤ n, 1 ≤ k2 ≤ n, k1 + k2 ≤ n, and 0 < p < 1. Following Makri and Psillakis (2009b),
we suggest that, in order for the distribution of Nn;k1,k2 to be well approximated by that of a
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normal RV with mean nµ and variance nσ 2, it has to be checked whether, for the parameter
vector (n, p, k1, k2), the conditions

µ − 3σ√
n

> 0 and µ + 3σ√
n

<
�n/(k1 + k2)�

n
(3.6)

are satisfied.

4. Applications and numerics

The knowledge of probabilities λi and pi is sufficient for someone to investigate the proba-
bilistic behavior of the RVs Nn;k1,k2 , Tr;k1,k2 , and Nc

n;k1,k2
on actual exchangeable and Poisson

sequences used in applied research. Next, some examples of such binary sequences are
considered. They are indicative of real situations and have recently appeared in numerous
fields of applications of run-related statistics. See, e.g. Demir and Eryilmaz (2008) and Makri
and Psillakis (2009a). For these sequences, we first present a summary of the involved concepts
to describe their internal structure. After that, we select some parametric configurations which
we use in numerical examples. The latter providing a sense of the involved numerics and an
insight into the formulae presented in Sections 2 and 3.

4.1. Pólya–Eggenberger urn model

An exchangeable sequence of special interest in applied probability is a sequence derived
according to a Pólya–Eggenberger sampling scheme (cf. Johnson and Kotz (1977, pp. 176–
178)). In this scheme a ball is drawn at random from an urn initially containing w white balls
and b black balls, its color is observed, and it is then returned to the urn along with s additional
balls of the same color as the ball drawn. Drawing a white ball is considered a success and
drawing a black ball is considered a failure. We denote this scheme as PE(w, b, s). It is clear
that n repetitions of the scheme derive an exchangeable binary sequence with

pn(y) =
∏n−y−1

j=0 (w + js)
∏y−1

j=0(b + js)∏n−1
j=0(w + b + js)

, 0 ≤ y ≤ n,

or, alternatively, with pn(y) given by (2.1) and

λi =
i−1∏
j=0

w + js

w + b + js
, i = 0, 1, . . . , n. (4.1)

The corresponding distributions of Nn;k1,k2 (Nc
n;k1,k2

) and Tr;k1,k2 are called Pólya (circular
Pólya) and inverse Pólya distributions of order (k1, k2), respectively, and they can be studied
using Theorems 2.1 to 2.3. For this particular exchangeable sequence, i.e. the PE(w, b, s)

scheme, alternative formulae for the PMFs of Nn;k1,k2 and Tr;k1,k2 were given in Sen et al.
(2006); see Remark 2.1.

For Bernoulli trials which correspond to a Pólya–Eggenberger sampling scheme with
replacements, i.e. s = 0, (4.1) gives λi = λi

1, i = 1, 2, . . . , n, and λ0 = 1 with λ1 =
w/(w + b) = p, where p, 0 < p < 1, is the common success probability of the trials. For
such trials, pn(y) reduces to pn−yqy, p+q = 1 (see also Remark 2.2), and the distributions of
Nn;k1,k2 and Tr;k1,k2 are called binomial and negative binomial of order (k1, k2), respectively.
Other particular values of s of special interest are s = −1, s = w = b, and s = 1. The
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respective distributions of Nn;k1,k2 are called hypergeometric, uniform, and beta binomial of
order (k1, k2), whereas those of Tr;k1,k2 are called negative hypergeometric, factorial, and beta
Pascal of order (k1, k2), respectively. However, the case in which s = −1 for the RV Tr;k1,k2

requires special attention because the sampling procedure might terminate without observing
r F -S strings of length k1 + k2 when the sampling is done without replacement. Its exact
distribution can be derived using similar arguments as in Makri et al. (2007a, p. 663), (2007b,
Proposition 4.5).

4.2. Record models

In this subsection we assume that {Yi}i≥1 is a sequence of i.i.d. RVs with continuous
distribution function F . For such sequences, we define record times Kj and record values
Vj as follows (cf. Nevzorov (2001, pp. 56–57)):

K1 = 1, Kj = min{i > Kj−1 : Yi > max(Y1, Y2, . . . , Yi−1)}, j = 2, 3, . . . ,

and Vj = YKj
, j = 1, 2, . . . ,

that is, Kj is the index (or the position) of the j th record, the value of which is Vj . By
convention, Y1 is a record (since K1 = 1).

Let Y
′
1, Y

′
2, . . . , Y

′
n be i.i.d. RVs with continuous distribution function G and independent of

{Yi}i≥1. If the j th record value Vj is chosen as a random threshold then the sequence associated
with this record threshold model (RTM) defined by

Xi =
{

1 if Y ′
i > Vj ,

0 otherwise,
i = 1, 2, . . . , n, j > 1, (4.2)

is exchangeable and, under the hypothesis H0 : F = G, it holds (see Demir and Eryilmaz
(2008)) that

pn(y) =
y∑

i=0

(−1)i
(

y

i

)
1

(n − y + i + 1)j
, j > 1, 0 ≤ y ≤ n. (4.3)

Next, again considering the sequence {Yi}i≥1, we define (cf. Nevzorov (2001, pp. 57–58))
the record indicator model (RIM) sequence by

X1 = 1 and Xi =
{

1 if Mi > Mi−1,

0 otherwise,
i = 2, 3, . . . , (4.4)

where
Mi = max(Y1, Y2, . . . , Yi), i = 1, 2, . . . .

That is, Xi = 1 if Yi is an upper record (or simply a record) and Xi = 0 otherwise. By
symmetry, lower records of {Yi}i≥1 are obtained by considering the (upper) records of the
sequence {−Yi}i≥1. Namely, they are Yis with Xi = 1.

For sequences like {Yi}i≥1, the record indicators Xi have two important properties. They
are independent RVs and

pi = P(Xi = 1) = 1 − P(Xi = 0) = 1/i, i = 1, 2, . . . . (4.5)

The sequences defined by (4.2) and (4.4) have been used as model underlined sequences of
run-related statistics, referring to several enumerative schemes, in the works of Eryilmaz and
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Tutuncu (2002), Chern and Hwang (2005), Demir and Eryilmaz (2008), and Makri and Psillakis
(2009a). Occurrences of F -S strings of length (at least) k1 + k2 defined on the sequences (4.2)
and (4.4) can be studied using Theorems 2.1, 2.2, and 2.4 with pn(y) and the pis given by (4.3)
and (4.5), respectively.

4.3. Numerical examples

In this section we clarify the theoretical results of Sections 2 and 3 by means of numerical
examples. In Example 4.1 we present some comparative numerics referring to probabilities,
means, and variances of the RVs Nn;k1,k2 and Nc

n;k1,k2
defined on several sequences. In

Examples 4.2 and 4.3 we study the RVs Nn;k1,k2 , Nc
n;k1,k2

, and Tr;k1,k2 defined on the particular
exchangeable and Poisson sequences discussed in Sections 4.1 and 4.2. Finally, in Example 4.4
we consider some asymptotic results for Nn;k1,k2 defined on Bernoulli sequences.

Example 4.1. (Numerical comparisons.) In this example we give in Table 1 numerics con-
cerning three model sequences of length n = 5 which belong to the various kinds of binary
sequences considered in the paper. They show a variety of possible configurations, by selecting
several values of k1 and k2, and shed some light on the similarities/discrepancies among the
corresponding probabilities, means, and variances of the RVs N5;k1,k2 and Nc

5;k1,k2
. The value

n = 5 was chosen to be small so that the required computations can also be carried out by hand.
The sequences used in the table are as follows.

Case I. A Bernoulli sequence with a common success probability p = 1
2 .

Case II. An exchangeable sequence with λi = 1/(i + 1), i = 1, 2, . . . , 5.

Case III. A sequence of Poisson trials with pi = 1/(i + 1), i = 1, 2, . . . , 5.

All the entries of Table 1 are exact values of probabilities, means, and variances, except the
probabilities for the circular subcase of case III, which are approximating values computed via
(3.2)–(3.4).

Example 4.2. (Pólya–Eggenberger urn model.) Let Nn;k1,k2 , Nc
n;k1,k2

, and Tr;k1,k2 be defined
on a binary sequence derived by a Pólya–Eggenberger sampling scheme. In Table 2 we present
the exact PMFs, means, and variances of Nn;k1,k2 and Nc

n;k1,k2
for n = 10, k1 = 2, k2 = 3,

w = b = 10, and some values of s of particular importance in the urn scheme PE(10, 10, s);

Table 1: Probabilities, means, and variances of N5;k1,k2 and Nc
5;k1,k2

.

Case k1 k2 E(N5;k1,k2 ) V (N5;k1,k2 ) P(N5;k1,k2 < 1) E(Nc
5;k1,k2

) V (Nc
5;k1,k2

) P(Nc
5;k1,k2

< 1)

I 1 1 1.0000 0.3750 0.1875 1.2500 0.3125 0.0625
1 2 0.3750 0.2344 0.6250 0.6250 0.2344 0.3750
2 2 0.1250 0.1094 0.8750 0.3125 0.2148 0.6875
2 3 0.0313 0.0303 0.9688 0.1563 0.1318 0.8438

II 1 2 0.2500 0.1875 0.7500 0.4167 0.2431 0.5833
2 2 0.0667 0.0622 0.9333 0.1667 0.1389 0.8333
2 3 0.0167 0.0164 0.9833 0.0833 0.0764 0.9167

III 1 2 0.1000 0.0900 0.9000 0.3056 0.2122 0.6944
2 2 0.0333 0.0322 0.9667 0.2292 0.1767 0.7708
2 3 0.0028 0.0028 0.9972 0.0625 0.0586 0.9375
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Table 2: PMFs, means, and variances of N10;2,3 and Nc
10;2,3 for a PE(10, 10, s) model.

s x P(N10;2,3 = x) E(N10;2,3) V (N10;2,3) P(Nc
10;2,3 = x) E(Nc

10;2,3) V (Nc
10;2,3)

−1 0 0.792 158 0.208 978 0.167 580 0.657 386 0.348 297 0.238 353
1 0.206 705 0.336 931
2 0.001 137 0.005 683

0 0 0.813 477 0.187 500 0.154 297 0.692 383 0.312 500 0.224 609
1 0.185 547 0.302 734
2 0.000 977 0.004 883

1 0 0.830 043 0.170 807 0.143 333 0.719 575 0.284 679 0.212 145
1 0.169 106 0.276 171
2 0.000 851 0.004 554

10 0 0.900 433 0.100 000 0.090 866 0.835 498 0.166 667 0.143 218
1 0.099 134 0.162 338
2 0.000 433 0.002 165

Table 3: Stopping times, cumulative sums, means, and variances of Tr;k1,k2 for a PE(w, b, s) model.

s w b k1 k2 r t
∑t

x=r(k1+k2) P(Tr;k1,k2 = x) E(Tr;k1,k2 ) V (Tr;,k1,k2 )

0 5 5 1 1 1 11 0.9941 3.92 3.49
2 17 0.9936 7.88 7.15
3 22 0.9916 11.79 10.62

1 2 1 25 0.9905 7.71 19.07
2 38 0.9904 15.58 40.25

2 2 1 59 0.9903 15.31 112.62
2 87 0.9900 30.99 238.28

2 3 1 125 0.9883 30.22 555.38
9 1 1 2 1 47 0.9909 11.83 71.59

1 5 5 1 1 1 15 0.9915 4.33 5.71
2 24 0.9912 8.72 12.70
3 32 0.9903 13.10 20.28

1 2 1 59 0.9902 9.46 60.20
2 2 1 103 0.9901 19.33 254.96
2 3 1 125 0.9328 32.32 685.55

9 1 1 1 1 125 0.9323 17.38 484.83
2 125 0.8677 26.56 633.89

1 2 1 125 0.9318 18.53 474.60
5 5 5 1 1 1 125 0.9840 8.80 177.98

2 125 0.9677 15.54 284.83
1 2 1 125 0.9086 14.93 382.07
2 2 1 125 0.8218 23.34 576.70

specifically, for s = −1, 0, 1, 10. In Table 3 we provide approximate mean values and variances
of Tr;k1,k2 for several PE(w, b, s) schemes with s ≥ 0 and for various values of k1, k2,
and r . We also include the used (stopping) time t and

∑t
x=r(k1+k2)

P(Tr;k1,k2 = x), where
t = min{125, min{n : ∑n

x=r(k1+k2)
P(Tr;k1,k2 = x) ≥ 0.99}}.
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Example 4.3. (Record model.) For an illustration of the exact PMFs, means, and variances
of Nn;k1,k2 defined on an exchangeable sequence derived according to an RTM, we provide
Table 4. In this table we selected the indicative values n = 5, 10; k1 = k2 = 1, k1 = 2, and
k2 = 3; and j = 2, 3, and 5. We observe that an increase in j (the order of the record used
as a threshold) leads to an increase in the probability P(Nn;k1,k2 = 0), as well as a decrease in
the mean value and the variance of Nn;k1,k2 . Table 5 provides exact waiting time probabilities
for the rth occurrence of an F -S string for several values of r , k1, and k2. The RV Tr;k1,k2 is
defined on an RIM sequence. The data of the table admit the following interpretation. Let, for
instance, r = 1 and k1 = k2 = 2. Then the fourth column of the table gives the probabilities for
the waiting time until two successive records following (at least) two successive values which
are not records appear for the first time. Furthermore, we note that the first entries of every
column of the table, i.e. P(Tr;k1,k2 = r(k1 + k2)), equal 0. This is because, since X1 = 1 (or
p1 = 1), it is impossible to have a (k1, k2) event in the remaining r(k1 +k2)−1 positions (after
the first one) of the used RIM sequence {Xi}i≥1.

Example 4.4. (Limiting distributions.) In order to illustrate the implementation of a normal
approximation of Nn;k1,k2 discussed in Remark 3.1, we present in Table 6 some indicative
numerics. The Poisson approximation of Nn;k1,k2 (see Huang and Tsai (1991)) as well as an
upper bound, dTV, of the total variation distance (see Vellaisamy (2004)) have also been used.
The exact distributions may be computed using Theorem 2.1 or Theorem 2.4. The entries
of Table 6 present some cases for which the root mean square error (RMSE) of the normal
approximation of Nn;k1,k2 is smaller than that of the corresponding Poisson approximation
for the same values of p, n, k1, and k2. Condition (3.6) is depicted as well. The numbers in
parentheses are the alternative values of p, k1, and k2 for which the same distribution of Nn;k1,k2

is derived. The RMSE between the exact f (x) = P(Nn;k1,k2 = x) and an approximate PMF,

Table 4: PMFs, means, and variances of Nn;1,1 and Nn;2,3 for an RTM.

n = 5 n = 10

x j = 2 j = 3 j = 2 j = 3 j = 5

P(Nn;1,1 = x)

0 0.522 778 0.689 509 0.308 718 0.511 312 0.814 137
1 0.398 889 0.269 130 0.287 736 0.260 997 0.137 822
2 0.078 333 0.041 361 0.265 330 0.160 061 0.038 562
3 0.121 525 0.060 088 0.008 660
4 0.016 425 0.007 427 0.000 808
5 0.000 266 0.000 115 0.000 011

E(Nn;1,1) 0.555 556 0.351 852 1.250 000 0.791 667 0.244 213
V (Nn;1,1) 0.403 580 0.310 774 1.149 722 0.937 005 0.323 571

P(Nn;2,3 = x)

0 0.989 722 0.995 745 0.938 580 0.974 557 0.997 214
1 0.010 278 0.004 255 0.061 173 0.025 388 0.002 781
2 0.000 247 0.000 085 0.000 005

E(Nn;2,3) 0.010 278 0.004 255 0.061 667 0.025 528 0.002 791
V (Nn;2.3) 0.010 172 0.004 237 0.058 357 0.025 045 0.002 794
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Table 5: Waiting time probabilities of the rth occurrence of a (k1, k2) event for an RIM.

x P(T1;1,1 = x) P(T1;1,2 = x) P(T1;2,2 = x) P(T1;2,3 = x) P(T2;1,1 = x)

2 0.000 000
3 0.166 667 0.000 000
4 0.166 667 0.041 667 0.000 000 0.000 000
5 0.125 000 0.033 333 0.016 667 0.000 000 0.025 000
6 0.088 889 0.025 000 0.016 667 0.002 778 0.044 444
7 0.064 484 0.018 254 0.014 286 0.002 381 0.051 587
8 0.048 512 0.013 765 0.011 905 0.001 786 0.051 190
9 0.037 751 0.010 714 0.009 755 0.001 323 0.047 704

10 0.030 203 0.008 573 0.008 056 0.000 992 0.043 377
11 0.024 712 0.007 014 0.006 734 0.000 755 0.039 113
12 0.020 593 0.005 845 0.005 700 0.000 586 0.035 217
13 0.017 425 0.004 946 0.004 881 0.000 463 0.031 764
14 0.014 936 0.004 239 0.004 225 0.000 372 0.028 737
15 0.012 944 0.003 674 0.003 691 0.000 302 0.026 093
16 0.011 326 0.003 215 0.003 251 0.000 249 0.023 783
17 0.009 994 0.002 837 0.002 885 0.000 208 0.021 758
18 0.008 883 0.002 521 0.002 577 0.000 175 0.019 979
19 0.007 948 0.002 256 0.002 315 0.000 149 0.018 408
20 0.007 153 0.002 030 0.002 092 0.000 127 0.017 016

Table 6: RMSE between exact and approximate distributions of Nn;k1,k2 for indicative values of n, p,
k1, and k2.

RMSE
p k1 k2 n (3.6)

Normal Poisson
dTV

0.8(0.2) 1(3) 3(1) 24 False 0.0539 0.0915 0.6829
25 True 0.0526 0.0907 0.6905

1(2) 2(1) 25 False 0.0284 0.0628 0.6477
26 True 0.0276 0.0623 0.6514

1(1) 1(1) 29 False 0.0100 0.0281 0.5007
30 True 0.0094 0.0270 0.5013

100 True 0.0021 0.0113 0.4968
1(2) 2(1) 100 True 0.0052 0.0235 0.6681
1(3) 3(1) 100 True 0.0101 0.0353 0.7525

0.5(0.5) 1(1) 1(1) 9 False 0.0569 0.1166 0.6802
10 True 0.0492 0.1060 0.7024

100 True 0.0033 0.0226 0.7700
1(2) 2(1) 100 True 0.0051 0.0226 0.6529

1(2,3) 3(2,1) 100 True 0.0070 0.0174 0.4666

f ∗(x), of Nn;k1,k2 was computed using

RMSE(n, p, k1, k2) =
{

1

1 + �n/(k1 + k2)�
�n/(k1+k2)�∑

x=0

[f (x) − f ∗(x)]2
}1/2

.
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