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Abstract
In pairwise randomized experiments, what if the outcomes of some units are missing? One solution is to

delete missing units (the unitwise deletion estimator, UDE). If attrition is nonignorable, however, the UDE is

biased. Instead, scholars might employ the pairwise deletion estimator (PDE), which deletes the pairmates

of missing units as well. This study proves that the PDE can be biased but more efficient than the UDE and,

surprisingly, the conventional variance estimator of the PDE is unbiased in a super-population. I also propose

a new variance estimator for the UDE and argue that it is easier to interpret the PDE as a causal effect than

the UDE. To conclude, I recommend the PDE rather than the UDE.

Keywords: local average treatment effect, matched-pair design, not missing at random, principal effect,
potential outcome

1 Introduction

In pairwise randomizedexperiments, researchers collect pairs of units,where the twounits in each

pair share the exact or similar values of matched-on variables, and randomly assign treatment

to one unit in each pair (Imbens and Rubin 2015, ch. 10). The difference-in-means of outcomes

between the treated and control groups estimates the average treatment effect (hereafter, ATE)

on the outcome without bias. This design is an efficient tool to enable pretreatment balance, in

particular when the number of units is small (Donner and Klar 2000, 32).

Nonetheless, a major problem of pairwise randomized experiments is attrition; the outcomes

of some units are sometimes missing (Donner and Klar 2000, 40; Glennerster and Takavarasha

2013, 159; Hayes and Moulton 2009, 72–74). Moreover, attrition might be nonignorable, that is, it

may be related to the value of an outcome (Allison 2002, 4–5). The typical solutions to attrition,

inverse probability weighting and (multiple) imputation techniques, do not work in this situation

(Allison 2002; Little and Rubin 2002). Accordingly, if analysts are not satisfied with bounds (Imai

and Jiang 2018), they will usually employ one of the following twomethods.

The first, but naive, approach to attrition is the unitwise deletion estimator (UDE). That is,

analysts delete only missing observations and apply the difference-in-means estimator to all

the remaining units to estimate the ATE (Glennerster and Takavarasha 2013, 159). It is, however,

well known that the UDE can be biased if attrition is nonignorable (e.g., Little and Rubin 2002,

41–44).

The second textbook tool to address attrition is the pairwise deletion estimator (PDE),

which deletes missing units as well as the other units in the same pairs and calculates the

difference-in-means by using units in the remaining pairs only (Donner and Klar 2000, 40; Imai,
King, and Nall 2009, 44). The PDE protects the balance of matched-on variables, but it is not

sufficient to retain the distribution of treatment effects across units and thus guarantee unbiased

estimation of the ATE. Rather, as Dunning (2011) andGerber andGreen (2012)warn, the PDE can be

biased. Scholars may also suspect that since the PDE discards more units, it will be less efficient

than the UDE (Hayes and Moulton 2009, 73–74).
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Even thoughboth theUDEand thePDEcanbebiased,we shoulduseoneof themgivennoother

option. Previous studies donot examine thebias and variance of these estimators in this situation.

This paper takes the design of pairwise randomization seriously, derives the properties of the two

estimators and their variance estimators, and recommends the PDE rather than the UDE. Proof

of the propositions, detailed comments on them, and an application example are available in the

Supplementary Material.

2 Finite Sample

2.1 Setting
Suppose that there are N (≥ 2) pairs and each pair is composed of two units. LetYi j , Ri j , and Xij

denote the realized outcome, realized response, and treatment status, respectively, for unit i of
pair jwhere i = 1,2 and j = 1,2, . . . ,N . Ri j is equal to one (zero) whenYi j is observed (missing).Xij

is equal to one (zero) when unit i of pair j is assigned to the treated (control) group. Since this is a
pairwise randomized experiment, for every pair j, eitherX1j = 1,X2j = 0 orX1j = 0,X2j = 1 holds.

I make the stable unit treatment value assumption (Imbens and Rubin 2015).Yi j (1) and Ri j (1)

denote the potential outcome and response for unit i of pair j if treatment is assigned to the unit
(Xij = 1), respectively. Ri j (1) is equal to one (zero) whenYi j =Yi j (1) is observed (missing) in the

case of treatment.Yi j (0) and Ri j (0) are defined similarly for the case of control.

The main estimand in this section, the finite sample ATE, is denoted by τ ≡ E {Yi j (1)−Yi j (0)} ≡
1
2N

∑N
j=1

∑2
i=1{Yi j (1)−Yi j (0)}. The full sample estimator is denoted by τ̂F ≡ E (Yi j | Xij = 1)−E (Yi j |

Xij = 0). This estimator is not available in the case of attrition. Rather, analysis of τ̂F provides

reference benchmarks against which this study compares the properties of the UDE and PDE.1 The

UDE is denotedby τ̂U ≡ E (Yi j | Xij = 1,Ri j = 1)−E (Yi j | Xij = 0,Ri j = 1). Obviously, it canbedefined

only when Nt ≡
∑N

j=1

∑2
i=1Xij Ri j ≥ 1 and Nc ≡

∑N
j=1

∑2
i=1(1−Xij )Ri j ≥ 1. The PDE is denoted by

τ̂P ≡ E (Yi j | Xij = 1,R1j = R2j = 1)− E (Yi j | Xij = 0,R1j = R2j = 1). It can be defined only when

Ntc ≡
∑N

j=1R1j R2j ≥ 1.

In order to clarify the properties of estimators in the propositions below, for x = 0,1, this study

denotes the between-pair and within-pair deviations of potential outcome by βi j (x ) ≡ {Y1j (x )+

Y2j (x )}/2−E {Yi ′j ′(x )} andωi j (x ) ≡Yi j (x )− {Y1j (x )+Y2j (x )}/2.

This study assumes pairwise randomization of treatment assignment. That is, each X1j is

ignorable and independent, and Pr(X1j = 1) = 1/2. In addition, the following three assumptions

of potential responses are optional; I will invoke one of them in each of the propositions below.

“FS” stands for the “finite sample.” First, I specify the assumption under which no outcomes are

missing and thus τ̂F is available.

ASSUMPTION 1 (No Attrition: FS) �i , j ,Ri j (1) = Ri j (0) = 1.

Second, we assume a perfect match in the sense that the potential responses are the same

between theunits in every pair. For instance, in the cases of (monozygotic) twins and littermates of

the same sex, matched-on variables (e.g., [part of] DNA) may completely explain the missingness

pattern. Under this assumption, Nt and Nc are constant regardless of treatment assignment, and

the properties of τ̂U can be expressed simply enough to understand its essence.

ASSUMPTION 2 (Unitwise Matched Attrition: FS) �j ,R1j (1) = R2j (1),R1j (0) = R2j (0).

Finally, we consider the assumption under which Ntc is constant regardless of treatment assign-

ment, when the properties of τ̂P can be presented concisely. This assumption holds if (but not

1 Imai (2008) and Imbens and Rubin (2015, ch. 10) have already established the properties of τ̂F except for Propositions 3 (1)
and 3* (1).
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only if) either (or both) of the following two scenarios is true in every pair j. The first scenario
is when attrition is unitwise matched (R1j (1) = R2j (1),R1j (0) = R2j (0)). (Therefore, Assumption 2

always leads to Assumption 3 but not vice versa.) The second scenario is when each unit is either

an “always-reporter” (Ri j (1) = Ri j (0) = 1) or a “never-reporter” (Ri j (1) = Ri j (0) = 0) (Gerber and

Green 2012, 225). For instance, in the cases of blind tests, subliminal stimuli, and administrative

records, it is likely that Ri j (1) = Ri j (0).

ASSUMPTION 3 (Pairwise Matched Attrition: FS) �j ,R1j (1)R2j (0) = R1j (0)R2j (1).

2.2 Bias
In this section, the operator �(·) takes expectation over the random assignment of the treatment.

Now, I present the bias of each ATE estimator.

PROPOSITION 1 (Bias of ATE Estimators: FS)

(1) Under Assumption 1, �(τ̂F )−τ = 0.

(2) Under Assumption 3 and Ntc ≥ 1, �(τ̂P )− τ = E {βi j (1)− βi j (0) | R1j (1) = R2j (1) = R1j (0) =

R2j (0) = 1}.

(3) Under Assumption 2 andNt ,Nc ≥ 1,�(τ̂U )−τ = E {βi j (1) | Ri j (1) = 1}−E {βi j (0) | Ri j (0) = 1}.

A few remarks are in order. First, unless we assume ignorable attrition, not only τ̂U but also

τ̂P are biased for τ . Second, τ̂P has a causal interpretation under a weaker assumption than τ̂U .

UnderAssumption3andNtc ≥ 1, I defineakindof local average treatmenteffect (LATE)of “always-

reporting pairs” by τP ≡ E {Yi j (1)−Yi j (0) | R1j (1) = R2j (1) = R1j (0) = R2j (0) = 1}.2 This is a causal

effect because it is aprincipal effect (Frangakis andRubin 2002)where the correspondingprincipal

stratum is a set of such pairs thatR1j (1)= R2j (1)= R1j (0)= R2j (0)= 1. It follows that τ̂P is unbiased

for τP : �(τ̂P ) − τP = 0. This argument may correctly remind readers of instrumental variable

estimation for noncompliance cases. By contrast, even under Assumption 2 and Nt ,Nc ≥ 1, it is

difficult to interpret τ̂U as a causal effect unless Ri j (1) = Ri j (0) for all i and j, in which case τ̂U is
reduced to τ̂P .

2.3 Variance
In this section, Var(·) and Cov(·, ·) denote the finite sample variance and covariance, respectively,

and the operator �2(·) takes variance over the random assignment of the treatment. Here are the

variances of the three ATE estimators.

PROPOSITION 2 (Variance of ATE Estimators: FS)

(1) Under Assumption 1,

�2(τ̂F ) =
1

N
[Var{ωi j (1)}+Var{ωi j (0)}+2Cov{ωi j (1),ωi j (0)}] .

(2) Under Assumption 3 and Ntc ≥ 1,

�2(τ̂P ) =
1

Ntc
[Var{ωi j (1) | R1j (1) = R2j (1) = R1j (0) = R2j (0) = 1}

+Var{ωi j (0) | R1j (1) = R2j (1) = R1j (0) = R2j (0) = 1}

+2Cov{ωi j (1),ωi j (0) | R1j (1) = R2j (1) = R1j (0) = R2j (0) = 1}] .

2 Imai and Jiang (2018) calls it “the average treatment effect for always-observed pairs.” They derive bounds of τ̂P without
making Assumption 3 and propose a sensitivity analysis. Their study complements the present paper.
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(3) Under Assumption 2 andNt ,Nc ≥ 1,

�2(τ̂U ) =
1

Nt
Var{ωi j (1) | Ri j (1) = 1}+

1

Nc
Var{ωi j (0) | Ri j (0) = 1}

+
2Ntc

Nt Nc
Cov{ωi j (1),ωi j (0) | R1j (1) = R2j (1) = R1j (0) = R2j (0) = 1}.

It is worth while mentioning that even though the number of units used for estimation is not

smaller for τ̂U than for τ̂P (i.e., Nt ,Nc ≥ Ntc ), τ̂U can be less efficient than τ̂P (i.e., �
2(τ̂U ) > �2(τ̂P ))

if Var{ωi j (x ) | R1j (x ) = R2j (x ) = 1,R1j (1−x ) = R2j (1−x ) = 0} is sufficiently larger than Var{ωi j (x ) |

R1j (1) = R2j (1) = R1j (0) = R2j (0) = 1} for x = 0,1.

2.4 Variance Estimator
How should we estimate the variances of these three ATE estimators? For certain situations, some

scholars advocate “breaking the matches” (Lynn and McCulloch 1992), namely, analyzing data

from pairwise randomized experiments as if they are completely randomized experiments. Thus,

I begin with the Neyman variance estimator. Suppose that Assumption 1 holds. For x = 0,1, if

Xij = x , a natural estimator ofωi j (x ) is ω̂i j (x ) ≡Yi j −E (Yi j | Xij = x ). Accordingly, wemay estimate

Var{ωi j (x )} in the first and second terms of the equation in Proposition 2 (1) by

N

N −1
Var{ω̂i j (x ) | Xij = x } =

N

N −1
Var(Yi j | Xij = x ).

The third term of the equation in Proposition 2 (1) “is generally impossible to estimate empirically

because we never observe bothYi j (1) andYi j (0) for the same unit” (Imbens and Rubin 2015, 92).

Thus, if we dismiss the third term, we derive the Neyman variance estimator of τ̂F as

�̂Neyman(τ̂F ) ≡
1

N −1
{Var(Yi j | Xij = 1)+Var(Yi j | Xij = 0)}.

Similarly, without Assumption 1, if Ntc ≥ 2 or Nt ,Nc ≥ 2, we can derive the Neyman variance

estimators of τ̂P or τ̂U as

�̂Neyman(τ̂P ) ≡
1

Ntc −1
{Var(Yi j | Xij = 1,R1j = R2j = 1)+Var(Yi j | Xij = 0,R1j = R2j = 1)}

�̂Neyman(τ̂U ) ≡
1

Nt −1
Var(Yi j | Xij = 1,Ri j = 1)+

1

Nc −1
Var(Yi j | Xij = 0,Ri j = 1),

respectively.

Nonetheless, researchers do not have to give up estimating the third terms in the equations

in Proposition 2. A merit of pairwise randomized experiments is that even if X1j = 1,R2j = 1,

analystsmay estimateω1j (0) by ω̂1j (0) ≡ −ω̂2j (0) becauseω1j (0) = −ω2j (0). This finding is themost

important contributionof this study. Therefore,whenNtc ≥ 2, wemayestimateCov{ωi j (1),ωi j (0) |

R1j (1) = R2j (1) = R1j (0) = R2j (0) = 1} in the third terms by

Ntc

Ntc −1
Cov{ω̂i j (1), ω̂i j (0) | R1j = R2j = 1} = −

Ntc

Ntc −1
Cov(Yt j ,Ycj | R1j = R2j = 1),
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where Yt j =
∑2

i=1XijYi j and Ycj =
∑2

i=1(1 − Xij )Yi j . Accordingly, when Ntc ≥ 2, I propose the

adjusted Neyman variance estimators as

�̂Adj-Neyman(τ̂F ) ≡
1

N −1
{Var(Yi j | Xij = 1)+Var(Yi j | Xij = 0)−2Cov(Yt j ,Ycj )}

=
1

N −1
Var(Yt j −Ycj )

�̂Adj-Neyman(τ̂P ) ≡
1

Ntc −1
{Var(Yi j | Xij = 1,R1j = R2j = 1)+Var(Yi j | Xij = 0,R1j = R2j = 1)

−2Cov(Yt j ,Ycj | R1j = R2j = 1)}

=
1

Ntc −1
Var(Yt j −Ycj | R1j = R2j = 1)

�̂Adj-Neyman(τ̂U ) ≡
1

Nt −1
Var(Yi j | Xij = 1,Ri j = 1)+

1

Nc −1
Var(Yi j | Xij = 0,Ri j = 1)

−
2N 2

t c

Nt Nc (Ntc −1)
Cov(Yt j ,Ycj | R1j = R2j = 1).

It turns out that the adjusted Neyman variance estimator of τ̂F is reduced to what scholars

recommend (Gerber and Green 2012, 77; Imai 2008, 4861; Imbens and Rubin 2015, 227). This paper

extends it to τ̂P and, in particular, τ̂U . I now derive the properties of these variance estimators.

PROPOSITION 3 (Bias of the Neyman Variance Estimators: FS)

(1) Under Assumption 1,

�{�̂Neyman(τ̂F )} −�2(τ̂F ) =
1

N −1
[Var{βi j (1)}+Var{βi j (0)}] −

2

N
Cov{ωi j (1),ωi j (0)}.

(2) Under Assumption 3 and Ntc ≥ 2,

�{�̂Neyman(τ̂P )} −�2(τ̂P ) =
1

Ntc −1
[Var{βi j (1) | R1j (1) = R2j (1) = R1j (0) = R2j (0) = 1}

+Var{βi j (0) | R1j (1) = R2j (1) = R1j (0) = R2j (0) = 1}]

−
2

Ntc
Cov{ωi j (1),ωi j (0) | R1j (1) = R2j (1) = R1j (0) = R2j (0) = 1}.

(3) Under Assumption 2 andNt ,Nc ≥ 2,

�{�̂Neyman(τ̂U )} −�2(τ̂U ) =
1

Nt −1
Var{βi j (1) | Ri j (1) = 1}+

1

Nc −1
Var{βi j (0) | Ri j (0) = 1}

−
2Ntc

Nt Nc
Cov{ωi j (1),ωi j (0) | R1j (1) = R2j (1) = R1j (0) = R2j (0) = 1}.

PROPOSITION 4 (Bias of the Adjusted Neyman Variance Estimators: FS)

(1) Under Assumption 1,

�{�̂Adj-Neyman(τ̂F )} −�2(τ̂F ) =
1

N −1
Var{βi j (1)−βi j (0)} ≥ 0.
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(2) Under Assumption 3 andNtc ≥ 2,

�{�̂Adj-Neyman(τ̂P )} −�2(τ̂P )

=
1

Ntc −1
Var{βi j (1)−βi j (0) | R1j (1) = R2j (1) = R1j (0) = R2j (0) = 1} ≥ 0.

(3) Under Assumption 2 andNtc ≥ 2,

�{�̂Adj-Neyman(τ̂U )} −�2(τ̂U )

=
1

Nt −1
Var{βi j (1) | Ri j (1) = 1}+

1

Nc −1
Var{βi j (0) | Ri j (0) = 1}

−
2N 2

t c

Nt Nc (Ntc −1)
Cov{βi j (1),βi j (0) | R1j (1) = R2j (1) = R1j (0) = R2j (0) = 1}.

A merit of �̂Adj-Neyman(τ̂F ) and �̂Adj-Neyman(τ̂P ) is that they cannot have negative bias (and thus

they are conservative). By contrast, the other variance estimators can be downwardly biased.

3 Super-Population

3.1 Setting
Following Imai (2008) and Imbens and Rubin (2015, chs. 6 and 10, esp. pp. 109 and 229), this paper

supposes that the above N pairs of a finite sample are drawn from a super-population that is

composed of N ∗(> N ) pairs, with N ∗ large, but countable. I define super-population variables

and operators in the same way as the corresponding finite sample variables and operators, and

denote themby adding superscript * to each term. In particular, themain estimand of this section,

the super-population ATE, is denoted by τ∗ ≡ E ∗{Y ∗
i ∗j ∗ (1) −Y

∗
i ∗j ∗ (0)} ≡ 1

2N ∗

∑N ∗

j ∗=1

∑2
i ∗=1{Y

∗
i ∗j ∗ (1) −

Y ∗
i ∗j ∗ (0)}.

I assume random sampling of pairs. In addition, the following three assumptions of potential

responses are optional in the same spirit as the finite sample case. SP stands for the “super-

population.”

ASSUMPTION 1* (No Attrition: SP) �i ∗, j ∗,R ∗
i ∗j ∗ (1) = R ∗

i ∗j ∗ (0) = 1.

ASSUMPTION 2* (Unitwise Matched Attrition: SP) �j ∗,R ∗
1j ∗ (1) = R ∗

2j ∗ (1),R
∗
1j ∗ (0) = R ∗

2j ∗ (0).

ASSUMPTION 3* (Pairwise Matched Attrition: SP) �j ∗,R ∗
1j ∗ (1)R

∗
2j ∗ (0) = R ∗

1j ∗ (0)R
∗
2j ∗ (1).

Note that unlike the case of a finite sample, in the super-population perspective, Nt , Nc , and Ntc

are not constant across sampling of pairs even under Assumption 2* or 3*.

3.2 Bias
In this section, the operator �∗(·) takes expectation not only over the random assignment of the

treatment but also over the random sampling of the pairs. Define

β̄ ∗(x | r1, r0) ≡ E ∗{β ∗
i ∗j ∗ (x ) | R

∗
1j ∗ (1) = R ∗

2j ∗ (1) = r1,R
∗
1j ∗ (0) = R ∗

2j ∗ (0) = r0}.

The bias of each ATE estimator is as follows.

PROPOSITION 1* (Bias of ATE Estimators: SP)

(1) Under Assumption 1*, �∗(τ̂F )−τ∗ = 0.
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(2) Under Assumption 3*,

�∗(τ̂P | Ntc ≥ 1)−τ∗ = E ∗{β ∗
i ∗j ∗ (1)−β ∗

i ∗j ∗ (0) | R
∗
1j ∗ (1) = R ∗

2j ∗ (1) = R ∗
1j ∗ (0) = R ∗

2j ∗ (0) = 1}.

(3) Under Assumption 2*,

�∗(τ̂U | Nt ,Nc ≥ 1)−τ∗

=
{
�∗

(Ntc

Nt

���Nt ,Nc ≥ 1
)
β̄ ∗(1 | 1,1)+�∗

(Nt −Ntc

Nt

���Nt ,Nc ≥ 1
)
β̄ ∗(1 | 1,0)

}

−
{
�∗

(Ntc

Nc

���Nt ,Nc ≥ 1
)
β̄ ∗(0 | 1,1)+�∗

(Nc −Ntc

Nc

���Nt ,Nc ≥ 1
)
β̄ ∗(0 | 0,1)

}
.

As in the case of a finite sample, unless we assume ignorable attrition, not only τ̂U

but also τ̂P is biased for τ∗. It also holds that �∗(τ̂P ) − τ∗P = 0. Furthermore, note that

in general,

�∗(τ̂U | Nt ,Nc ≥ 1)−τ∗ � E ∗{β ∗
i ∗j ∗ (1) | R

∗
i ∗j ∗ (1) = 1} −E ∗{β ∗

i ∗j ∗ (0) | R
∗
i ∗j ∗ (0) = 1}

because

�∗
(Ntc

Nt

���Nt ,Nc ≥ 1
)
≥

N ∗
t c

N ∗
t

, �∗
(Ntc

Nc

���Nt ,Nc ≥ 1
)
≥

N ∗
t c

N ∗
c
.

3.3 Variance
In this section, Var∗(·) and Cov∗(·, ·) denote the super-population variance and covariance, respec-

tively, and the operators �2∗(·) and �∗(·, ·) take variance and covariance, respectively, not only

over the random assignment of the treatment but also over the random sampling of the pairs. In

addition, I assume that under Assumption 3*, either limN ∗→∞N ∗
t c =∞ or limN ∗→∞N ∗

t c < 2 holds.

I also assume that under Assumption 2*, the same conditions hold not only for N ∗
t c but also for

N ∗
t −N ∗

t c and N
∗
c −N ∗

t c .

Below, I derive the super-population variance of the three ATE estimators in the limit. Note that

I increase N ∗, not N.

PROPOSITION 2* (Variance of ATE Estimators: SP)

(1) Under Assumption 1*,

lim
N ∗→∞

�2∗(τ̂F ) =
1

N
[Var∗{β ∗

i ∗j ∗ (1)−β ∗
i ∗j ∗ (0)}+Var

∗{ω∗
i ∗j ∗ (1)+ω∗

i ∗j ∗ (0)}] .

(2) Under Assumption 3*,

lim
N ∗→∞

�2∗(τ̂P | Ntc ≥ 1)

= �∗
( 1

Ntc

���Ntc ≥ 1
)
[Var∗{β ∗

i ∗j ∗ (1)−β ∗
i ∗j ∗ (0) | R

∗
1j ∗ (1) = R ∗

2j ∗ (1) = R ∗
1j ∗ (0) = R ∗

2j ∗ (0) = 1}

+Var∗{ω∗
i ∗j ∗ (1)+ω∗

i ∗j ∗ (0) | R
∗
1j ∗ (1) = R ∗

2j ∗ (1) = R ∗
1j ∗ (0) = R ∗

2j ∗ (0) = 1}] .

(3) Under Assumption 2*,

lim
N ∗→∞

�2∗(τ̂U | Nt ,Nc ≥ 1)

=
( [
�∗

(Ntc

N 2
t

���Nt ,Nc ≥ 1
)
{β̃ 2∗(1 | 1,1)+ ω̃2∗(1 | 1,1)}
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+�∗
(Nt −Ntc

N 2
t

���Nt ,Nc ≥ 1
)
{β̃ 2∗(1 | 1,0)+ ω̃2∗(1 | 1,0)}

]

+
[
�∗

(Ntc

N 2
c

���Nt ,Nc ≥ 1
)
{β̃ 2∗(0 | 1,1)+ ω̃2∗(0 | 1,1)}

+�∗
(Nc −Ntc

N 2
c

���Nt ,Nc ≥ 1
)
{β̃ 2∗(0 | 0,1)+ ω̃2∗(0 | 0,1)}

]

−2�∗
( Ntc

Nt Nc

���Nt ,Nc ≥ 1
)
[Cov∗{β ∗

i ∗j ∗ (1),β
∗
i ∗j ∗ (0) | R

∗
1j ∗ (1) = R ∗

2j ∗ (1) = R ∗
1j ∗ (0) = R ∗

2j ∗ (0) = 1}

−Cov∗{ω∗
i ∗j ∗ (1),ω

∗
i ∗j ∗ (0) | R

∗
1j ∗ (1) = R ∗

2j ∗ (1) = R ∗
1j ∗ (0) = R ∗

2j ∗ (0) = 1}]
)

+
[
�2∗

(Ntc

Nt

���Nt ,Nc ≥ 1
)
{β̄ ∗(1 | 1,1)− β̄ ∗(1 | 1,0)}2

+�2∗
(Ntc

Nc

���Nt ,Nc ≥ 1
)
{β̄ ∗(0 | 1,1)− β̄ ∗(0 | 0,1)}2

−2�∗
(Ntc

Nt
,
Ntc

Nc

���Nt ,Nc ≥ 1
)
{β̄ ∗(1 | 1,1)− β̄ ∗(1 | 1,0)}{β̄ ∗(0 | 1,1)− β̄ ∗(0 | 0,1)}

]
,

where

β̃ 2∗(x | r1, r0) = Var
∗{β ∗

i ∗j ∗ (x ) | R
∗
1j ∗ (1) = R ∗

2j ∗ (1) = r1,R
∗
1j ∗ (0) = R ∗

2j ∗ (0) = r0}

ω̃2∗(x | r1, r0) = Var
∗{ω∗

i ∗j ∗ (x ) | R
∗
1j ∗ (1) = R ∗

2j ∗ (1) = r1,R
∗
1j ∗ (0) = R ∗

2j ∗ (0) = r0}.

Like the case of a finite sample, �2∗(τ̂U | Ntc ≥ 1) can be larger than �2∗(τ̂P | Ntc ≥ 1).

3.4 Variance Estimator
Finally, I show the super-population biases of the two variance estimators in the limit.

PROPOSITION 3* (Bias of the Neyman Variance Estimators: SP)

(1) Under Assumption 1*,

lim
N ∗→∞

[�∗{�̂Neyman(τ̂F )} −�2∗(τ̂F )] =
2

N
[Cov∗{β ∗

i ∗j ∗ (1),β
∗
i ∗j ∗ (0)} −Cov

∗{ω∗
i ∗j ∗ (1),ω

∗
i ∗j ∗ (0)}] .

(2) Under Assumption 3*,

lim
N ∗→∞

[�∗{�̂Neyman(τ̂P ) | Ntc ≥ 2} −�2∗(τ̂P | Ntc ≥ 2)]

= 2�∗
( 1

Ntc

���Ntc ≥ 2
)
[Cov∗{β ∗

i ∗j ∗ (1),β
∗
i ∗j ∗ (0) | R

∗
1j ∗ (1) = R ∗

2j ∗ (1) = R ∗
1j ∗ (0) = R ∗

2j ∗ (0) = 1}

−Cov∗{ω∗
i ∗j ∗ (1),ω

∗
i ∗j ∗ (0) | R

∗
1j ∗ (1) = R ∗

2j ∗ (1) = R ∗
1j ∗ (0) = R ∗

2j ∗ (0) = 1}] .

(3) Under Assumption 2*,

lim
N ∗→∞

[�∗{�̂Neyman(τ̂U ) | Nt ,Nc ≥ 2} −�2∗(τ̂U | Nt ,Nc ≥ 2)]

= 2�∗
( Ntc

Nt Nc

���Nt ,Nc ≥ 2
)
[Cov∗{β ∗

i ∗j ∗ (1),β
∗
i ∗j ∗ (0) | R

∗
1j ∗ (1) = R ∗

2j ∗ (1) = R ∗
1j ∗ (0) = R ∗

2j ∗ (0) = 1}

−Cov∗{ω∗
i ∗j ∗ (1),ω

∗
i ∗j ∗ (0) | R

∗
1j ∗ (1) = R ∗

2j ∗ (1) = R ∗
1j ∗ (0) = R ∗

2j ∗ (0) = 1}]

+
[
�∗

{Ntc (Nt −Ntc )

N 2
t (Nt −1)

���Nt ,Nc ≥ 2
}
−�2∗

(Ntc

Nt

���Nt ,Nc ≥ 2
)]
{β̄ ∗(1 | 1,1)− β̄ ∗(1 | 1,0)}2
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+
[
�∗

{Ntc (Nc −Ntc )

N 2
c (Nc −1)

���Nt ,Nc ≥ 2
}
−�2∗

(Ntc

Nc

���Nt ,Nc ≥ 2
)]
{β̄ ∗(0 | 1,1)− β̄ ∗(0 | 0,1)}2

+2�∗
(Ntc

Nt
,
Ntc

Nc

���Nt ,Nc ≥ 2
)
{β̄ ∗(1 | 1,1)− β̄ ∗(1 | 1,0)}{β̄ ∗(0 | 1,1)− β̄ ∗(0 | 0,1)}.

PROPOSITION 4* (Bias of the Adjusted Neyman Variance Estimators: SP)

(1) Under Assumption 1*,

lim
N ∗→∞

[�∗{�̂Adj-Neyman(τ̂F )} −�2∗(τ̂F )] = 0.

(2) Under Assumption 3*,

lim
N ∗→∞

[�∗{�̂Adj-Neyman(τ̂P ) | Ntc ≥ 2} −�2∗(τ̂P | Ntc ≥ 2)] = 0.

(3) Under Assumption 2*,

lim
N ∗→∞

[�∗{�̂Adj-Neyman(τ̂U ) | Ntc ≥ 2} −�2∗(τ̂U | Ntc ≥ 2)]

=
[
�∗

{Ntc (Nt −Ntc )

N 2
t (Nt −1)

���Ntc ≥ 2
}
−�2∗

(Ntc

Nt

���Ntc ≥ 2
)]
{β̄ ∗(1 | 1,1)− β̄ ∗(1 | 1,0)}2

+
[
�∗

{Ntc (Nc −Ntc )

N 2
c (Nc −1)

���Ntc ≥ 2
}
−�2∗

(Ntc

Nc

���Ntc ≥ 2
)]
{β̄ ∗(0 | 1,1)− β̄ ∗(0 | 0,1)}2

+2�∗
(Ntc

Nt
,
Ntc

Nc

���Ntc ≥ 2
)
{β̄ ∗(1 | 1,1)− β̄ ∗(1 | 1,0)}{β̄ ∗(0 | 1,1)− β̄ ∗(0 | 0,1)}.

Proposition 4* (2) is new to my knowledge and surprising. Even if we do not assume ignorable

attrition, the adjusted Neyman variance estimator is unbiased for the super-population variance

of the PDE. Here is an intuitive explanation: If we regard always-reporting pairs as an alternative

super-population and apply Proposition 4* (1) to it, we obtain Proposition 4* (2). In a nutshell,

�̂Adj-Neyman(τ̂P ) corresponds to the design of pairwise randomization. On the other hand, the bias

directions of the other variance estimators are unknown.

4 Conclusion

Nonignorable attrition in pairwise randomized experiments has attracted less attention than it

should. Thispaper shows that theUDEand thePDEarebiased (Propositions 1 and 1*). Nonetheless,

a practical advice of this paper is simple: use the PDE rather than the UDE. The reasons are

summarized as follows:

1. The PDE can be regarded as a kind of local average treatment effect for always-reporting

pairs under a milder assumption than the UDE.

2. As compared with the UDE, the PDE is not necessarily less efficient. (Propositions 2 and 2*)

3. The adjusted Neyman variance estimator for the PDE is conservative in a finite sample and

unbiased in a super-population, which is not the case for the UDE. (Propositions 4 and 4*)

Finally, the Neyman variance estimator can have either positive or negative bias for both ATE

estimators (Propositions 3 and 3*) and thus is not recommended.
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