# A CHARACTERIZATION OF BLOCK-GRAPHS 

Frank Harary<br>(received January 10, 1962)

The purpose of this note is to characterize 'block-graphs", a collection of graphs defined by a construction involving certain subgraphs called "blocks". A related operation on a graph leads to the study of "cut-point-graphs". The precise relationship between these two operations is made explicit. In order that this characterization be self-contained, we include the necessary definitions.

1. Introduction. A graph $G$ is defined as a finite nonempty set V of elements called points together with a given collection $X$ of unordered pairs of distinct points. Each element of $X$ is called a line of the graph. If line $X$ consists of points $v_{1}$ and $v_{2}$, then $v_{1}$ and $v_{2}$ are incident with $x$ and are adjacent to each other. Two graphs $G$ and $H$ are isomorphic, written $G=H$, if there is a 1-1 correspondence between their sets of points which preserves adjacency. A subgraph of $G$ consists of subsets of $V$ and $X$ which themselves form a graph. The subgraph of $G$ generated by a set $S$ of points contains $S$ and all lines of $G$ joining two points of $S$. If $G$ is a graph and $v$ is any point of $G$, then the graph $G-v$ obtained from $G$ by removing point $v$ is the maximal subgraph not containing $v$. Thus $G-v$ is generated by $V-\{v\}$. A path of $G$ is an alternating sequence of distinct points and lines of the form $v_{1}, x_{1}, v_{2}, x_{2}, v_{3}, \ldots, v_{n}$ such that each line $X_{i}$ is incident with $v_{i}$ and $v_{i+1}$. This path is said to join $v_{1}$ and $v_{n}$ A graph is connected if there is a path joining every pair of points. A component of $G$ is a maximal connected subgraph. A cut point of a connected graph

Canad. Math. Bull. vol. 6, no. 1, Janua ry 1963.
$G$ is a point $v$ such that $G-v$ is disconnected. For any graph $G, v$ is called a cut point of $G$ if $v$ is a cut point of its component. A graph is called a block if it has more than one point, is connected, and has no cut points. A block of a graph $G$ is a maximal subgraph of $G$ which is itself a block.

The block-graph $\mathrm{B}(\mathrm{G})$ of a given graph G is that graph whose points are the blocks $B_{1}, B_{2}, \ldots, B_{N}$ of $G$ and whose lines are determined by taking two points $B_{i}$ and $B_{j}$ as adjacent if and only if they contain a cut point of $G$ in common. A graph is called a block-graph if it is the block-graph of some graph.

In a previous note [1], we have derived a formala for the number $N$ of blocks of a given connected graph $G$ in terms of the number $r$ of cut points and the number $k_{i}$ of components in the subgraph obtained on removing the $i^{\prime}$ th cut point of $G$ :

$$
\begin{equation*}
N=1-r+\sum_{i=1}^{r} k_{i} . \tag{1}
\end{equation*}
$$

There is another graph which can be constructed from a given graph, which is related to its block-graph. The cut-point-graph $C(G)$ of a given graph $G$ is that graph whose points are the cut points $v_{1}, v_{2}, \cdots, v_{r}$ of $G$, in which two points are adjacent if and only if they both lie in a common block. A graph is called a cut-point-graph if it is the cut-point-graph of some graph.

Let $B^{2}(G)=B(B(G))$; thus $B^{2}(G)$ is the block-graph of $B(G)$. Similarly, we define $B^{n}(G)$ for any positive integer $n$. A complete graph is one in which every pair of distinct points are adjacent. Let $K_{p}$ be the complete graph of $p$ points. Note that in particular $K_{1}$ is the graph with one point and no• lines. We define $B\left(K_{1}\right)$ as empty. If $G$ is a block then $B(G)=K_{1}$ and we define $C(G)$ to be empty.

A cycle of a graph is the union of two paths joining two distinct points $u$ and $v$ which intersect only at $u$ and $v$. The length of a path or cycle is the number of lines in it. An end point of $G$ is incident with exactly one line, called an end line. The following two theorems may be found in the book by Konig [2] and are based on results of Whitney [3] and Whyburn [4].

THEOREM A. For any graph $G$ with more than two points, the following statements are equivalent:
(1) $G$ is connected and has no cut points (definition of a biock).
(2) Every two distinct points of $G$ lie on a cycle.
(3) Every two distinct lines of $G$ lie on a cycle.
(4) For any three distinct points of G, there exists a path joining every pair of them which contains the third.

THEOREM B. The intersection of any two distinct blocks of a graph consists of at most one point.

Hence every line of $G$ is in exactly one block and any point lying in two distinct blocks of $G$ is a cut point.

## 2. Characterization.

THEOREM 1. If H is a block-graph, then every block of $H$ is complete.

Proof. By hypothesis, there exists a graph $G$ such that $H=B(G)$. Assume $H$ has a block $H_{1}$ which is not complete. Then there are two points $u_{1}$ and $u_{2}$ in $H_{1}$ which are not adjacent. By Theorem $A, u_{1}$ and $u_{2}$ lie on a cycle of $H_{1}$ Since $u_{1}$ and $u_{2}$ are not adjacent, they lie in a cycle $z$ of $\mathrm{H}_{1}$ of length at least 4. This leads to a contradiction since in $G, u_{1}$ and $u_{2}$ cannot then correspond to blocks. For the union of the blocks of $G$ corresponding to the points of $H_{1}$
lying on the cycle $z$ is itself connected and has no cut points, contradicting the maximality property of $u_{1}$ (and of $u_{2}$ ) as coming from a block of $G$.

COROLLARY 1a. To each point $v$ of $G$, there corresponds a block of $B(G)$ which is complete and whose number of points equals the number of blocks of $G$ containing $v$.

Proof. Let $v$ be a cut point of $G$ and Let $B_{1}, B_{2}, \ldots$, $B_{n}$ be all the blocks of $G$ which contain $v$. Then in $B(G)$ the corresponding $n$ points generate a complete subgraph $K_{n}$. This complete subgraph is a block of $B(G)$ for it is connected and has no cut points, being complete, and it is maximal by the same reasoning as in the proof of Theorem 1.

COROLLARY 1 b . To each block $\mathrm{H}_{\mathrm{i}}$ of the block-graph $H=B(G)$, there corresponds a cut point $v_{i}$ of $G$.

Proof. Let $H_{i}$ be a block of $H=B(G)$. By Theorem 1, $H_{i}$ is complete. Let $H_{i}$ have as its points in $H$ the blocks $B_{1}, B_{2}, \ldots, B_{n}$ of $G$. Since $H_{i}$ is a complete subgraph of $H$, every pair of these blocks contains a common cut point of $G$. Let $v_{i}$ be the point of $G$ such that $\left\{v_{i}\right\}=B_{1} \cap B_{2}$. Assume that $\left\{v_{j}\right\}=B_{2} \cap B_{3}, \quad v_{j} \neq v_{i}$. Then in $G, B_{1} \cup B_{2} \cup B_{3}$ is connected and has no cut point, contrary to the maximality of each of the distinct blocks $B_{1}, B_{2}, B_{3}$ of $G$. By mathematical induction, the same point $v_{i}$ is contained in all $n$ blocks $B_{k}$. Hence $v_{i}$ is the cut point of $G$ corresponding to block $H_{i}$ of $H$.

THEOREM 2. If every block of $H$ is complete, then $H$ is a block-graph.

Proof. Let $H$ be a given graph in which every block is complete. Form its block-graph $\mathrm{B}(\mathrm{H})$. Now construct a graph $G$ by starting with the graph $B(H)$ and adding to each point $H_{i}$
of $B(H)$ a number of end lines equal to the number of points of the block $H_{i}$ which are not cut points of $H$. Then it is readily seen that $B(G)$ is isomorphic with $H$.

The construction of this proof is illustrated in Figure 1, in which the end lines of $G$ are indicated by dashes.

H :

$B(H)$ :


Figure 1

The proof of Theorem 2 has the following consequence.
COROLLARY 2a. For any connected graph $G, \quad B^{2}(G)=C(G)$.
To prove Corollary 2a, note that there is a one-to-one correspondence between the blocks of $B(G)$ and the cut points of $G$ such that two cut points of $G$ lie on a common block if and only if the corresponding two blocks of $B(G)$ contain a common cut point of $B(G)$.

COROLLARY 2b. The operations of forming the blockgraph and the cut-point-graph of a given graph commute:

$$
B(C(G))=C(B(G))=B^{3}(G) .
$$

Combining Theorems 1 and 2, we obtain the following.

Characterization. A graph is a block-graph if and only if all its blocks a re complete.

THEOREM 3. The set of all cut-point-graphs coincides with the set of all block-graphs. In other words, every cut-point-graph is a block-graph, and conversely.

Proof. It is easy to verify the direct part of this theorem. For by Corollary $2 a$, the cut-point-graph $C(G)$ is the blockgraph of $\mathrm{B}(\mathrm{G})$, and hence is itself a block-graph.

To prove the converse, we need to show that every blockgraph is a cut-point-graph. Let $H$ be a given block-graph. By definition $H=B(G)$ for some graph $G$. But the construction of the proof of Theorem 2 shows that the graph $G$ itself has every block complete. Therefore $G$ is also a block-graph by the characterization. Thus $H$ is the block graph of a blockgraph. Hence by Corollary $2 \mathrm{a}, \mathrm{H}$ is a cut-point-graph.

## REFERENCES

1. F. Harary, An elementary theorem on graphs. Amer. Math. Monthly 66 (1959) 405-407.
2. D. Konig, Theorie der endlichen und unendlichen Graphen. Leipzig, 1936; reprinted New York, 1950.
3. H. Whitney, Non-sepa rable and planar graphs. Trans. Amer. Math. Soc. 34(1932) 339-362.
4. G.T. Whyburn, Cyclicly connected continuous curves. Proc. Natl. Acad. Sci. U. S. A. 13(1927) 31-38.
