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Abstract

We give a self-contained proof of the O’Nan-Scott Theorem for finite primitive permutation
groups.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 B 05.

Introduction

The classification of finite simple groups has led to the solution of many prob-
lems in the theory of finite permutation groups. An important starting point
in such applications is the reduction theorem for primitive permutation groups
first stated by O’Nan and Scott (see [9]). The version particularly useful in this
context is that given in Theorem 4.1 of [2]. Unfortunately a case was omitted
in the statements in [2, 9] (namely, the case leading to our groups of type 1Il(c)
in Section 1 below). A corrected and expanded version of the theorem appears
in the long papers [1] and [3]. Our aim here is to update and develop further
the material in Section 4 of [2]. We give a self-contained proof of the theorem
(stated in Section 2), which extends [2, Theorem 4.1], and which we have found
to be in the form most useful for application to permutation groups (see [6] and
[8] for example). Most of the ideas of the proof we owe to [1] and [2].
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NOTATION. For groups A, B we denote by A.B an extension of A by B (not
necessarily split). If G, H are permutation groups on {1, A respectively, we say
that G is permutation equivalent to H if there is a bijection :{}] — A and an
isomorphism ¥: G — H such that (wg)p = (wp)(gy) for all g € G, w € ().
Notice that if 2 and A are identified via the bijection ¢, then G and H consist
of the same set of permutations on Q.

1. Classes of finite primitive permutation groups

Before stating our theorem we describe various classes of primitive permuta-
tion groups. For more details of these, see [5].

In what follows, X will be a primitive permutation group on a finite set {1 of
size n, and ¢ a point in (). Let B be the socle of X, that is, the product of all
minimal normal subgroups of X. Then B = T* with k > 1, where T is a simple

group.

I. Affine groups. Here T = Z, for some prime p, and B is the unique minimal
normal subgroup of X and is regular on () of degree n = p*. The set {1 can be
identified with B = Z,’,‘ so that X is a subgroup of the affine group AGL(k,p)
with B the translation group and X, = X N GL(k, p) irreducible on B.

II. Almost simple groups. Here k = 1, T is a nonabelian simple group and
T <X <AutT. Also T, # 1.

III. In this case B = T* with k > 2 and T a nonabelian simple group. We
distinguish three types:

III(a). Simple diagonal action. Define
W = {(a1,...,ak).m | a; € AutT, m € Sk, a; = a; modInnT for all ¢, 5},

where 7 € Si just permutes the components a; naturally. With the obvious
multiplication, W is a group with socle B = T*, and W = B.(OutT x Sk), a
(not necessarily split) extension of B by OutT x Sx. We define an action of W
on {1 by setting

«={(a,...,a).7|a € AntT, € Sk}.

Thus W, = AutT x Sg, B, =T and n = |T|*1.

For 1 < 7 < k let T; be the subgroup of B consisting of the k-tuples with
1 in all but the ith component, so that T; = T and B = T} X --- X T},. Put
T ={T,...,Tx}, so that W acts on T. We say that the subgroup X of W is
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of type I1I(a) if B < X and, letting P be the permutation group X7, one of the
following holds:

(i) P is primitive on T,

(i) k=2and P=1.

We have X, < AutT x P, and X < B.(OutT x P). Moreover, in case (i) B is
the unique minimal normal subgroup of X, and in case (ii) X has two minimal
normal subgroups T and T3, both regular on ().

III(b). Product action. Let H be a primitive permutation group on a set T',
of type II or I1I(a). For I > 1, let W = HwrS;, and take W to act on 2 =TI"
in its natural product action. Then for vy € I and & = (v,...,7) € {1 we have
Wo = Hywr S, and n = IT|*. If K is the socle of H then the socle B of W is
K' and B, = (K,)' #1.

Now W acts naturally on the [ factors in K, and we say that the subgroup
X of W is of type III{b) if B < X and X acts transitively on these ! factors.

Finally, one of the following holds:

(i) Hisof type II, K = T, k = | and B is the unique minimal normal subgroup
of X,

(ii) H is of type III(a), K = T*/* and X and H both have m minimal nor-
mal subgroups, where m < 2; if m = 2 then each of the two minimal normal
subgroups of X is regular on 2.

II(c). Twisted wreath action. Here X is a twisted wreath product T twr,, P,
defined as follows. (The original construction is due to B. H. Neumann [7]; here
we follow [10, page 269].) Let P be a transitive permutation group on {1,...,k}
and let ¢ be the stabilizer P;. We suppose that there is a homomorphism
©: @ — Aut T such that Im ¢ contains Inn7". Define

B={f:P—T|f(pg) = f(p)*?Q forallpe P, g € Q}.

Then B is a group under pointwise multiplication, and B = T*. Let P act on
B by
fP(z) = f(pz) forp,z€P.

We define X = T twr,, P to be the semidirect product of B by P with this action,
and define an action of X on () by setting X, = P. We then have n = |T|*, and
B is the unique minimal normal subgroup of X and acts regularly on €.

We say that the group X is of type III(c) if it is primitive on 2. (Note that the
primitivity of X in the above construction depends on some quite complicated
conditions on P which we do not investigate here.)

REMARKS. 1. The classes I,. .., ITI(c) are pairwise disjoint; this is clear from
the differing structures and actions of the socles B on ().
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2. Although III(b) is the only case where X is described as a subgroup of a
group with a product action, some of the groups of other types are subgroups of
a wreath product S, wr S, with product action on ? (and n =ab,a > 1,5 > 1);
these are

(i) groups of type I where X,, is imprimitive as a linear group, b divides k and
a = pt/®,

(ii) groups of type III(c), with @ = |T| and b = k; in this case X is contained
in the wreath product H wr Sg, where H = T x T is of type III(a); note that
here the socle of H wr Sy, is isomorphic to B x B.

3. Although groups of type III(c) are the only groups described as twisted
wreath products, various primitive groups of types I, III(a) or III(b) may also
be nontrivial twisted wreath products as abstract groups. The distinguishing
feature of III(c) is the existence of a unique nonabelian regular normal subgroup.

4. A full discussion of the permutation isomorphism classes of type III(a)
groups is contained in [4].

2. The theorem and its proof

THEOREM. Any finite primitive permutation group i3 permutation equivalent
to one of the types 1, 11, II(a), ITI(b) and I1I(c) described in Section 1.

PROOF. Let G be a primitive permutation group on a finite set {1 of size n,
let a € ), and let M = soc G, the socle of G.

Let J be a minimal normal subgroup of G. Then J is transitive on {). The
centralizer Cg(J) is also a normal subgroup of G. If Cg(J) # 1 then Cg(J) is
transitive on {2, whence J and Cg(J) are both regular on ); and J and Cg(J)
are equal if and only if J is abelian. Here J and Cg(J) are minimal normal
subgroups of G and there are no further minimal normal subgroups as such
subgroups would centralize J. Moreover J and Cg(J) are isomorphic as they
are right and left regular representations of the same group. If on the other hand
Cg(J) =1 then J is the unique minimal normal subgroup of G. Thus in either
case M = JCg(J) =Ty X --- X T with k > 1 and T; ~ T for each 7, where T is
a simple group.

If M is abelian then G is of type I, so assume that M is nonabelian. If k =1
then G is of type II; the fact that M, # 1 here will be shown at the end of the
proof. Assume then that k > 2. In this case G permutes the set {T3,...,Tk}
and since G, is maximal in G,

(1) M, is a maximal proper G,-invariant subgroup of M.

For 1 <1 < k let p; be the projection of M onto T;.
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Case 1. First suppose that p;(M,) = T; for some 7. Then it follows from (1)
that pj(M,) =T forall j = 1,...,k and so M,, is a direct product Dy x--- X D,
of full diagonal subgroups D; of subproducts nje 1, T; where the I; partition
{1,...,k}.

Choose notation so that Iy = {1,...,m} (so m > 2). By (1) G, is transitive
on {Dy,...,D;} and hence each D; involves precisely m of the factors T}, so k =
Im. Let P be the permutation group induced by G on the set T = {T,...,Tk}-

Assume first that [ = 1. If P preserved a nontrivial partition of T then the
subgroup Y of all elements of M constant on each block of the partition would
be G,-invariant with M, <Y < M, contradicting (1). Thus P leaves invariant
no nontrivial partition of T, and so either P is primitiveon T,or P=1, k=2
and G has two minimal normal subgroups. In either case we show that G is of
type II{a) as follows. First we claim that up to permutation equivalence we can
identify M with (InnT)* so that

Mo =Dy = {(i,...,i)i € lnnT}.

For let M = (InnT)* and let D = {(4,...,%)} € InnT} < M. Let E be another
diagonal subgroup of M; thus

E={(\*",...,i#",i)li e lon T}

for some @y,...,pk~1 € AutT. Define ¢: (M : D) — (M : E) (where (M : L)
denotes the set of right cosets of a subgroup L in M), and 9 € Aut M by
©:D(iy,...,tk-1,1) — EG,. .. 3841, 1),
P: (‘il, .. .,ik) — (’ifl,...,if:;l,ik),
where 7; € InnT for 1 < 7 < k. Then for w € (M : D) and m € M, we have
(wm)p = (wp)(my). Thus the actions of M on (M : D) and on (M : E) are
permutation equivalent, as claimed. Now the full normalizer of M in Sym(2) is
M.(Out T x Sk), and hence G is permutation equivalent to a subgroup of W%,
where W is as described in III(a).

Nowlet !> 1andset K =Ty x--- x T, and N = Ng(K). It follows from
(1) that D, is a maximal N,-invariant subgroup of K. For L < N denote by L*
the group of automorphisms of K induced by L by conjugation, so that L* =
LCg(K)/Cg(K). Since N contains M, we see that N is transitive on {2 and so
N =MN,. Hence N* = K*N,. Let Y be a maximal subgroup of N containing
N,C¢(K). Then Y N K is an N,-invariant subgroup of K containing D;, and
by maximality of D; wehave YNK = D;. ThusYNM =Dy xTppy1 X -+ - X T.
AlsoY = (YNM)N, sothat Y* = DiNs = N7, and hence Y = N,C¢(K), that
is, NoCg(K) is a maximal subgroup of N. Set H = N* and let T' be the coset
space (H : N3). Then H has socle K* ~ K and H is a primitive permutation
group on T of type IlI(a). Also (2] = |T'.
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We now claim that G is permutation equivalent to a subgroup of H wrS;
in its natural product action on I', hence to a group of type III(b)(ii) (the
transitivity of G on the ! factors in K! follows from primitivity). To see this,
let R = {g1,-..,q} be a right transversal for N, in G, and for N in G, such
that DY = D, for 1 < i < l. Write K; = K% (1 <1 <), so that G permutes
the set {Ky,...,K;}. For g € G, write ¢ = nyg with g € R and ny € N.
Writing elements of H wr S; in the form (hy,..., k)7 with h; € H, 7 € S; and
7w permuting the components h; naturally, we define a map p:G — Hwr S; by

p:gr(ai,...,a0)t (9 €G),

where 7 is the permutation induced by g on {Kj,..., K}, for 1 <{ <[ we have
a; = ¢ig(5:9) !, and a} denotes the automorphism of K induced by conjugation
by a;. Then p is a monomorphism; moreover, since g; € G, for all 7, we have
Gop < N} wr 8, the point stabilizer in the natural action of H wr.S; on Tt. Since
I} = |T}, identification of G with its image Gp gives the required embedding of
G in Hwr S;, acting naturally on I'*. This proves our claim.

Case 2. Now suppose that R; = p;(M,) is a proper subgroup of T; for each
i = 1,...,k. Since each R; is an Ng(T;)-invariant subgroup of T;, it follows
from (1) that G, is transitive on {T41,...,Tk} and hence fori =1,--- |k, R; is
the image of R; under an isomorphism 77 — T;. Since R; X -+ X Ry is G4-
invariant we have M, = Ry X --- X Rg. Also R; must be a maximal Ng_(T})-
invariant proper subgroup of Tj. Set N = Ng(T}) and for L < N denote by
L* the group of automorphisms of 73 induced by L by conjugation, so that
L* = LCg(T1)/Cq(T1). Since N contains the transitive subgroup M, we have
N = MN,. Hence N* =T} N,.

Case 2(a). Suppose that T < N}. Thus N* =Ty N} = N}. If Ry # 1 then
Ty = (R]*) < (RT"V™) = (RY*) < Ga

which is not so. Hence R; = 1 and so My = 1. Define ¢: N, — AutTj to
be the natural homomorphism (that is, for n € N, and t € Ty, p(n):t — t*),
so that kerp = Cg(T1) N G4 and Imp = N contains InnTy = Ty. Write
Z = ¢~ 1(InnTy). Also let Y be the kernel of the action of G on {Tx,...,Tk}.

We show first that Y = M. Now Y, ~ Y, M/M is isomorphic to a subgroup of
(Out T1)* and hence is soluble by the Schreier “Conjecture”. Also Z/C ~ Ty is
simple, where we write C = ker . Since Y,C and Z are both normal subgroups
of N, we therefore have [Z/C,Y,C/C] = 1in N,/C. Thus Y, < C, that is,
Y, centralizes T;. Similarly Y, centralizes T; for all 7 and hence Y, = 1. Thus
Y=M.

Set P = G, and Q = N, so that P acts faithfully and transitively on
{T1,...,Tx} and G = MP. Abusing notation slightly, take P to act on I =
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{1,...,k} by TP =T, (¢ € I, p € P). We show finally that there is an isomor-
phism of G onto the twisted wreath product T} twr,,(PT) (defined in Section 1)
which maps M onto the base group B and G, = P onto the top group P!, so
that G is of type III(c). For 1 <4 < k choose ¢; € P such that T;j* = T (so
that {¢1,...,ck} is a transversal for @ in P). Now each m € M is of the form
m= Hle a; with a; € T; and hence a* € T} for 1 < ¢ < k. We define a map ¢
from G into Ty twr, P by
9:mu — du

for m = [Ja; € M and u € P, where ¥,,: P — T is the map given by 9,,(ciq) =
a;*" for 1 < ¢ < k and ¢ € Q. Clearly 9,, belongs to the base group B of
Ty twry, P!, and ¥ is 1-1 and hence bijective. To see that ¥ is a homomorphism
we need to show that

Ime = (I)* form =Ha¢ EM,uclP.

Write b = 9,,. By the definition of * in Section 1, b%(c;q) = b(uc;q), which
equals b(c;y,-1yiq) where y; = ci_ul_,uc,- € Q. Since b € B, this equals b(c;,-1)¥,
and therefore

b*(ciq) = a; 9.
But this is clearly the same as 9p,«(c;q), and hence ¥,,u = (9,,)*, as required.
Thus ¥ is an isomorphism, and since 9(M) = B and ¥(G4) = P it follows that

G is of type III(c).

Case 2(b). Thus we may assume that TT £ N3. If Y is a maximal subgroup of
N containing Ny Ce (T1) then YNT; is an N,-invariant subgroup of Ty containing
R;. By the maximality of B; and since Y # N we have Y NT; = R;. Thus
YNM=R; xTy x---xTg. AlsoY = (Y N M)N, so that Y* = RiN: = N,
and hence Y = N,C;(Th), that is, NoCq;(T}) is a maximal subgroup of N. Let
H = N* and let T be the coset space (H : N}). Then H has socle Ty ~T; and
H is primitive on T. Also [T'| = |T : Ri| and so |Q] = |T|*. A calculation along
the lines of the case I > 1 of Case 1 shows that G is permutation equivalent to
a subgroup of H wr Sy, in its product action on T'*. Then G is of type III(b)(i);
for this it remains to show that M, # 1. This will follow from the corresponding
assertion in the simple socle case II.

Thus suppose that TG < AutT and T, = 1. Then G, is soluble by the
Schreier “Conjecture”. Let  be a minimal normal subgroup of G,. Then Q is
an elementary abelian g-group for some prime q. Now Cr(Q) = 1, since both T
and Cg(Q) are normalized by G,, and G, is maximal in G. It follows that ¢
does not divide |T'|. Hence @ normalizes a Sylow 2-subgroup S of T. We assert
that S is the unique such Sylow 2-subgroup. For suppose that @ normalizes S,
where S§f = S and £ € T. Then Q and Q* are Sylow g-subgroups of N7g(S), so
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Q = Q®Y for some y € N1 (S). We have [Q,zy] < QNT =1,s0 zy € Cr(Q) = 1.
Hence z € Nz (S) and so S; = S, as asserted. Thus G, = Ng(Q) < Ng(S) and
80 Go < Go8 < G, contradicting the maximality of G,,.

This completes the proof of the theorem.
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