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Dedicated to Professor Masanori Kishi on his sixtieth birthday

Consider an end £2 in the sense of Heins (cf. Heins [3]): £ is a relatively non-
compact subregion of an open Riemann surface such that the relative boundary 02
consists of finitely many analytic Jordan closed curves, there exist no non-
constant bounded harmonic functions with vanishing boundary values on 08 and
£2 has a single ideal boundary component. A deunsity P = P(2)dxdy (z = x + iy)
is a 2-form on £ U 02 with nonnegative locally Hoélder continuous coefficient
P(2). Denote by #,(£2) the class of nonnegative solutions of the equation

(1) Liu=A4u—Pu=0 (e d*xdu— uP=0)

on {2 with vanishing boundary values on 082. The P-harmonic dimension of £ (or
the elliptic dimension of P on £ (cf. e.g. Nakai [8))), dim #,(£) in notation, is de-
fined to be the ‘dimension’ of the half module %,(£2). The P-harmonic dimension
dim #,(£2) for the particular P = 0 is called simply the harmonic dimension of Q
(cf. Heins [3]).

We are particularly interested in the following result by Heins [3]:

TueoreM A. Let {A,} be a sequence of mutually disjoint annuli in Q satisfying
that A, separates A, from the ideal boundary of 8 for every n. Suppose that the sum
of moduli of A, diverges. Then the harmonic dimension of £ is one.

A density P is said to be finite if fdexdy < oo, The above theorem has
[

been generalized for finite densities P by Nakai [8] and Kawamura [4] as follows:

THEOREM B. Let P be finite on 2 and {A,} be the same as in Theorem A. Then
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the P-harmonic dimension of £ is one.
The following is another generalization of Theorem A (cf. Segawa [9]):

TueoreM C.  Let {A,} be a sequence of mutually disjoint sets in Q2 such that each
A, consists of at most N mutually disjoint annuli for a positive integer N and ‘A,,,
separates A,, from the ideal boundary of £ for every n. Suppose that the sum of moduli
of A, diverges. Then the harmonic dimension of £2 is at most N.

The main purpose of this paper is to unify Theorems B and C to a form in-
cluding both Theorems B and C as special cases. The main theorem is as follows:

MaiN THEOREM. Let P be finite on 2 and {A,} be the same as in Theorem C.
Then the P-harmonic dimension of 2 is at most N.

We shall prove a bit more in Theorem 6. In Section 1, we prove a duality re-
lation for P-harmonic dimensions (cf. Theorem 2), which plays a fundamental role
for the proof of Theorem 6.

§1. Duality relation

1.1. A relatively noncompact subregion £ of an open Riemann surface is re-
ferred to as a general end if the relative boundary 002 of £ consists of a finitely
many disjoint analytic Jordan closed curves. In this section we assume that £ is a
general end. We denote by S the ideal boundary of £2. Without loss of generality,
we may assume that there exist an open Riemann surface R and its exhaustion
{R,),., with 2 =R — R,. Let e,(,n) be the solution of the equation (1) on £ N R,
= R, — R, with boundary values 1 on 02 and O on @R,. Since {e;"} is increas-
ing and dominated by the constant function 1, the limit e, = lim,_,, e}(,") exists.
Note that e, is the solution of (1) on £ with boundary values 1 on 942 and ‘O on
the ideal boundary B’. The function e, is referred to as the P-unit on £ for P
(cf. Nakai [7]). Obviously e, does not depend on a choice of {R,},_, We consider
the associated operator I:P with L, which is introduced by Nakai (cf. [7], [8]):

(2) Lou= Au—+ 2V (ogey)  Vu

where ep is the P-unit on £2. Denote by Bp(£2) the class of bounded solutions of
the equation
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(3) Lu=0
on £ with continuous boundary values on 0£2. Note that 1 € B,(£). To begin
with we show the following

LEMMA 1. Suppose that u belongs to Bp(82). Then u satisfies the following ine-
qualities:

min #(p) < inf u(p) < sup u(p) < max u(p).
pean pen pen bedn

Proof. We have only to show the last inequality since — # also belongs to
B,(2). By adding a constant we may assume # = 0. Set M = max,,, #(p). Let v,
be the solution of (1) on £ N R, with boundary values # on 0f2 and 0 on OR,.
Since {v,} is increasing and v, < Me, (n = 1,2,...), v = lim,__, v, exists and is
a solution of (1). It is clear that v/e¢, < M on £. Thus we complete the proof if we
show that u = v/e,, or uep, = v.

Note that Lp(u#ep) = 0 and 0 < v < uep on £. There exists a constant C > 0
such that 0 < # < C, ie. 0 < uep < Cep. Let w, be the solution of (1) on £ N R,

with boundary values 0 on 02 and e, on dR,. Then w, = e, — ¢, . By the mini-

o . . ) .
mum principle, 0 < ue, — v < Cw, on 2 N R,. Since lim,__ e,” = e, lim,_, w,

= 0 and therefore ue, = v. O
1.2. Let Bo(£) be the subspace of B,(£2) which consists of functions with
the limit O at 3:
Bp(Q) = {u € B,(Q) :iirr; u(p) = 0.
Next consider the quotient space
B,(2) = B,(Q) /Bp(2)

and denote by dim B,(2) the dimension of the linear space B,(£). Our first
achievement of this paper is the following duality relation for #,(§2) and
Bo(£) (cf. Segawa [9]):

THEOREM 2. If either Pp(8) or Bp(2) is of finite dimension, then the
P-harmonic dimension dim P,(2) coincides with dim B,(£2):

dim ?,(2) = dim B,(2).

The proof of the above theorem is given in no.1.4. By the definition of
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Bp(2) and the fact 1 € B,(2), dim B,(L2) =1 is equivalent that lim,_, u(p)
exists for every u in Bp(£). Therefore Theorem 2 implies the following, which
was originally obtained by Hayashi [3] (cf. Nakai [7]):

COROLLARY 3. The P-harmonic dimension dim P,(2) is one if and only if there
exists lim,_ g u(p) for every u in Bp(R).
1.3. Consider the linear space & generated by #,(£), i.e.
&= 1{h, — hy: h,, h, € P,(D)},

and the bilinear functional

(u,h)'-’(u,h>=—f

2]

oh
ukdh = J;Qu%ds

defined on Bp(£2) X & where 0/0n is the inner normal derivative. Let g,(-, p) be
the Green’s function of (1) on £ N R, with pole at p for each n € N, the set of
positive integers. Note that g,(-, p) converges to the Green’s function g(-, p) of
(1) on £ with pole at p uniformly on each compact subset in 2 U 9£. Set

Q=1{he ) : <, »=1.

We maintain

LEMMA 4. Ifu € Bp(Q), then

lim sup #(p) = sup $u, @
-8

and

lim inf #(p) = inf {u, @

-8B

wheve <u, Q@ = u, b : h € Q}.
Proof. We first show that

(4) u@e,(p) = — if ukdg(-,p) (p €

2T Jiq

for every # € Bp(£2). Suppose that p € 2 N R,. Let u, be the solution of (3) on
2 N R, with boundary values % on 082 and O on OR,. By Lemma 1, %, converges
to # uniformly on each compact subset in £ U 0£2. Observe that u,e, is the solu-
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tion of (1) on £ N R, with boundary values # on 082 and 0 on O0R,. Hence the

Green's formula yields that u,(p)ep(p) = — (1/27) f u* dg,(-, p). By letting
P

n— % we have (4).
Take an arbitrary cluster value @ of # at 8 and a sequence {p,} with lim,_, p,
= f and lim,_. #(p,) = a. Applying (4) to 1 € Bp(£), we see that e,(p,) =

— (1/27) £gu*dg(‘,ﬁn), ie.

- fm *d ome,py)

From this it follows that a suitable subsequence of {(1/27) g(-, p,)/ex(p,)}
converges to a function G, which belongs to @, uniformly on each compact subset
of £ U 08. By (4) we also have

_ _ g(, by
w(p) = fagu*d———ZEeP(pn).

Therefore we conclude that

ie. a € {u, @, which implies

inf <u, > < liminf #(p) < limsup #(p) < sup <{u, Q.
8

-8 -
Next we show that
(5) lim inf #(p) < inf <u, Q> < sup {u, Q> < lim sup u(p).
P8 p—8

Suppose that # € Q and u € By(2). Let h,,, be the solution of (1) on R, — R,
(m > n) with boundary values % on OR, and 0 on OR,. The Green's formula
yields that
{u, by = — f ukdh= — f Upepkdh = f U epkdh — h¥d(u,ep)
an o2 ORy,
= f U ep*dh — h,,*d(u,ep)
oR,,

and
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[ werkdn,, = by xdGu,e) = [ ek dh,, = by *dG,e) =0
Ry, Ry

where u,, is defined at the beginning of the proof. Therefore, by letting m — o,
we have

(6) lu, b = f uep*d(h — h,)
Ry,
where h, = lim,,__ #,,. Applying (6) to # = 1, we also have
*d(h — h,) = =— | %dh=1.
@ fa ekl —h) = <L) fa xdn=1

Hence (6) and (7) imply that

inf #(p) <inf<u, @ < sup {u, @ < sup u(p).

pESR, pedRr,

Thus (5) follows from the above.
The proof is herewith complete. O

1.4. Proof of Theorem 2. By definition, the dimension dim & of the linear
space & coincides with dim &,(£2).
Consider the &-kernel (Bp(£2)-kernel resp.)
K, = N {u € B,(Q) : <u, » = 0}

hef

K,= N0 {h€ §:<u, B =0} resp.)

uEBp(2)

of the bilinear functional (%, k) = <u, h). By virtue of Lemma 4, it is easily seen
that K, = Bp(£), and hence B,(2) = B,(2)/K,. Since {u|,o:u € B.(Q)} =
C(09), it follows from & € K, that 0h/0n = 0 on 0£. Combining this with the
fact £ = 0 on 082, we have K, = {0} (cf. e.g. Miranda [6]). Therefore we can con-
sider B,(2) = Bo(2)/K, (8§ = /K, resp.) to be a subspace of & (Bo(2)* resp.)
where we denote by X* the conjugate space of a linear space X. In particular we
have

dim B,(2) < dim &*
and
dim & < dim B,(Q)*.

Hence we have

https://doi.org/10.1017/50027763000004670 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000004670

P-HARMONIC DIMENSIONS ON ENDS 137

dim 8,(2) = dim § = dim 2,(2),

since linear spaces of finite dimension are isomorphic to their conjugate spaces. []

§2. Proof of Main Theorem

2.1. In this section, we give a proof of Main Theorem in terms of extremal
length.

Hereafter we assume that £ is a parabolic end: i.e. there exist no non-constant
bounded harmonic functions on £ with vanishing boundary values on d£. The fol-
lowing was proved by Nakai [8] essentially:

ProposiTION 5. If 2 is parabolic and P is finite on 82, then every bounded solu-
tion of (3) on 2 has finite Dirichlet integral on 2 — R,.

For the proof we refer to Nakai [8] and Kawamura [4].

2.2. We denote by A(I") the extremal length of a curve family I" in £. For
the definition and details of extremal length we refer to e.g. Ahlfors and Sario [1].
For every positive integer #, let I, () be the totality of 1-cycles 7 in £ such that
7 consists of at most # closed curves and separates 0f2 from the ideal boundary .
The following is the main achievement of this paper (cf. Shiga [10]):

THEOREM 6. Suppose that P is finite on Q. If the extremal length A(I'y(2)) is
zevo for an N € N, then the P-harmonic dimension dim P,(£2) is at most N.

Proof. Set IN=T(Q) and [,=1,Q) —T, ,(Dxn=23,--). Since
I,(Q) = UY_ T, there exists a v € N such that v < N and A(I}) = 0. We shall
show that dim #,(£2) is at most v. Take arbitrary v + 1 functions #," " *,%,,; in
B.(2). By virtue of Theorem 2, we have only to show that a nonzero linear com-
bination ¢,u, + *** + ¢, 8,,, Of %y, *,u,,, belongs to Bp(£).

Consider the ‘density’ o on £2 such that

v+1
p|d2|= E:l'VqudZI OI].Q—R1

0 on 2 N R,.

By Schwarz’ inequality and Proposition 5, we have
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2 v+1
(8) ffp drdy < (v+1) 2 Dy_p (u) < oo,
2 i=1

where Dg_g, (u) = [ fg _|Vu,Pdudy. Set IT'=1{r€ L7 N R, =) By

means of A(I) =0, we have AI)") =0 for every m € N (cf. Kusunoki [5]).
Therefore, because of (8), we can find a sequence {r,} in I, such that 7,

converges to the ideal boundary B and limnﬁmf o|dz| = 0. In particular, we
™
obtain

) lim [ V] 1dz] =0 G=1,--, »+1D.
n—oo Y,

By definition, every 7, consists of exactly v closed curves 7,;,""", Tm-
Accordingly (9) implies that there exist a subsequence {7, } of {r,} and vectors
v,=(a,, ", a,) ER (=1, v+ 1) such that
(10) im max | u;(p) —a,;| =0 (G =1,"-).

k—oo peynk,-
Evidently we can find (¢, - +,¢,,,) € R — {0, - - -,0)} such that 227} ¢v, =
(0,-+-,0). Therefore, (10) yields that

v+1
11 lim max | X c;u;(p) | = 0.
k—eo pET,, =1

Since each 7, separates 082 from the ideal boundary B, it follows from Lemma 1
and (11) that lim,_, Z’:: c;u; = 0. This completes the proof. OJ

2.3. Proof of Main Theorem. Main Theorem is easily verified from Theorem 6
as follows. Assume that {4,} is the same as in Theorem C. Set A, = U’ A,
where A,;'s are mutually disjoint annuli and v(n) < N. Let A, be the totality of
1-cycles 7 in A, such that y = U;(:l) T.; Where each 7,; is a closed curve in A,
and separates two boundary components of A, Set I'= U,_, A,. Note that I' C
Iy, (). By virtue of Theorem 6, we have only to show that A(I") = 0.

It is well-known that A(A,) = 27/mod A,, where mod 4, is the modulus of
A, (cf. Ahlfors and Sario [1]). Since A,’s are mutually disjoint, we see A(") ™" =
2o A(A)7" Hence, from the assumption 2..,modA, = o it follows that
AN =0. ]
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