Diffuse muscle pain with quetiapine

We report the case of a 28-year-old female out-patient with bipolar disorder, whose symptomatology was well-controlled with lithium carbonate 1200 mg (orally) (0.9 mEq/l plasma levels) and risperidone 1-2 mg (orally) daily. The patient had been treated for several years in our department and the course of her illness was well-known; it showed that only lithium was both effective and well-tolerated (topiramate was not effective and carbamazepine caused a rash) and only in coadministration with low doses of risperidone.

However, the use of risperidone caused a large increase in prolactin levels (above with low doses of risperidone. with low doses of risperidone.

Both effective and well-tolerated (topiramate was not effective and carbamazepine caused a rash) and only in coadministration with low doses of risperidone.

Hence, quetiapine was added, taking care to monitor the patient's prolactin levels. The patient soon experienced a subjective increment in the intensity of her diffuse muscle pain and rigidity due to rhabdomyolysis, which was according to the wishes of the patient. Six months passed and the patient was still free from symptoms.

To our knowledge, this is the first report of this kind of adverse effect related to quetiapine. Various other antipsychotics, including haloperidol and olanzapine, are reported to cause muscle pain and rigidity because of rhabdomyolysis, but the current case had no laboratory or clinical findings related to rhabdomyolysis.

Declaration of interest

K.N.F. has participated in field trials sponsored by Eli Lilly & Co. and by Astra-Zeneca.

K. N. Fountoulakis, A. Iacovides, St. G. Kaprinis, G. St. Kaprinis
Smyrnis Street, 55132 Aretsou Thessaloniki, Greece

Adjunctive fluvoxamine with clozapine

We read with interest the article by Williams et al (2002). The authors summarise treatment options for patients resistant to clozapine monotherapy. However, in the section on combining antidepressants with clozapine, several issues deserve more attention. The authors disagree with utilisation of adjunctive antidepressants to reduce the cost of clozapine treatment. In our recent study (Lu et al., 2000), addition of 50 mg/day fluvoxamine to low-dose (100 mg/day) clozapine could raise the mean plasma clozapine level to over 400 ng/ml to achieve suitable therapeutic ranges. Therefore, concomitant fluvoxamine can reduce clozapine doses and, consequently, costs (Armstrong & Cozza, 2001).

Interestingly, this pharmacokinetic interaction is more pronounced in patients with high cytochrome P450 1A2 activity and at low clozapine plasma concentrations (Olesen & Linnet, 2000). This phenomenon could therefore be used to narrow down the wide interindividual variation in blood clozapine concentrations. Several open trials also demonstrated that coadministration of fluvoxamine could augment clozapine efficacy and curtail plasma norclozapine:clozapine ratios (Wetzel et al., 1998; Lu et al., 2000). Norclozapine has been suggested to be more toxic than its parent compound. Although addition of fluvoxamine to low-dose clozapine was well-tolerated in our pilot study (Lu et al., 2000), further studies are warranted to substantiate its safety and efficacy.

Olanzapine-induced tardive dyskinesia

Tardive dyskinesia is a serious and common motor side-effect of treatment with traditional neuroleptics, with an unknown pathophysiological basis. It affects 20-30% of patients on long-term neuroleptic therapy, with elderly patients being at higher risk (American Psychiatric Association, 1994).

Olanzapine is an atypical antipsychotic agent with a reported lack of propensity to cause tardive dyskinesia (Beasley et al., 1999). Recently, it has been suggested that olanzapine can improve tardive dyskinesia in some patients (Littrell et al., 1998; Jaffe & Simpson, 1999). Other authors, however, have shown that the prolonged use of olanzapine can instead be associated with tardive dyskinesia/dystonia (Ananth & Kenan, 1999; Dunayevich & Strakowski, 1999). Here we report the case of a patient who experienced tardive dyskinesia after only few months of treatment with olanzapine.

A 62-year-old housewife with an unremarkable past medical history, sought out-patient treatment in June 2000 for anxiety, insomnia, difficulty thinking and concentrating, and frequent episodes of aggressive behaviour. She was evaluated by neurologists, and was submitted to routine biochemical investigations (unremarkable), a computerised tomography scan (normal), and the Mini-Mental State Examination (24/30). Olanzapine (10 mg/ day) was started and this was the sole medication continued thereafter. The patient soon experienced a subjective improvement. Three to four months later she noticed slight involuntary movements of the tongue and jaw. Despite these symptoms, she continued taking olanzapine until it was eventually stopped 1.5 years later (December 2001).

She was admitted to our hospital in March 2002. On examination, she displayed marked and distressing involuntary movements of the tongue and jaw. This was associated with a subclinical psychosomatic syndrome, which was characterised by neurovegetative symptoms such as concentrating, and frequent episodes of anxiety, insomnia, difficulty thinking and other neurovegetative symptoms.

Declaration of interest

None. Funding was received from the National Science Council and the National Health Research Institutes, Taiwan.

M. L. Lu
Department of Psychiatry, Taipei Medical University–Wan Fang Hospital, Taipei, Taiwan

H. Y. Lane
Department of Psychiatry, China Medical College Hospital, No. 2, Yuh-Der Road, Taichung 404, Taiwan

Downloaded from https://www.cambridge.org/core. 29 Apr 2022 at 03:27:26, subject to the Cambridge Core terms of use.