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When an object is accelerated in a fluid, a primary vortex is formed through the roll-up
of a shear layer. This primary vortex does not grow indefinitely and will reach a limiting
size and strength. Additional vorticity beyond the critical limit will end up in a trailing
shear layer and accumulate into secondary vortices. The secondary vortices are typically
considerably smaller than the primary vortex. In this paper, we focus on the formation,
shedding and trajectory of secondary vortices generated by a rotating rectangular plate in
a quiescent fluid using time-resolved particle image velocimetry. The Reynolds number Re
based on the maximum rotational velocity of the plate and the distance between the centre
of rotation and the tip of the plate is varied from 840 to 11 150. At low Re, the shear layer
is a continuous uninterrupted layer of vorticity that rolls up into a single coherent primary
vortex. At Re = 1955, the shear layer becomes unstable and secondary vortices emerge
and subsequently move away from the tip of the plate. For Re > 4000, secondary vortices
are discretely released from the plate tip and are not generated from the stretching of an
unstable shear layer. First, we demonstrate that the roll-up of the shear layer, the trajectory
of the primary vortex and the path of secondary vortices can be predicted by a modified
Kaden spiral for the entire Re range considered. Second, the timing of the secondary vortex
shedding is analysed using the swirling strength criterion. The separation time of each
secondary vortex is identified as a local maximum in the temporal evolution of the average
swirling strength close to the plate tip. The time interval between the release of successive
secondary vortices is not constant during the rotation but increases the more vortices have
been shed. The shedding time interval also increases with decreasing Reynolds number.
The increased time interval under both conditions is due to a reduced circulation feeding
rate.
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1. Introduction

The life of vortices around bluff bodies often begins with a shear layer (Jeon & Gharib
2004; Fernando & Rival 2016; Fernando et al. 2017; Rosi & Rival 2017; Corkery, Babinsky
& Graham 2019). When a bluff body moves relative to a fluid flow, a thin layer of fluid
emerges at the edge of the body where non-zero shear flow gradients are present. This
shear layer is characterised by increased values of the flow vorticity. In the wake of the
body, the shear layer rolls-up and the shear layer vorticity accumulates into a coherent
vortex. The interplay between the free stream or body’s velocity and the induced velocity
of the growing coherent vortex cause the shear layer to become curved. This curvature
changes continuously in time. The roll-up of a semi-infinite shear layer or vortex sheet
was first described by Kaden (1931), who derived the following self-similar equation to
describe the shear layer shape at any point in time t

r = K(t/θ)2/3, (1.1)

where K is a dimensional constant, and r and θ are the radial and angular coordinates
along the spiral with r = 0, θ → ∞ at the spiral centre, r → ∞, θ → 0 at the opposite
end of the semi-sheet at infinity. The exponent 2/3 is retrieved from dimensional analysis
and the obtained curve is a spiral with tight inner turns. The initial strength of the flat sheet
increases monotonically with increasing distance away from the tip of the body. For t > 0,
the spiral has an infinite number of turns leading to a singularity of the velocity and the
sheet strength decreases to zero for θ → ∞ in the spiral centre. The maximum value of
the sheet strength is now located somewhere along the sheet (Saffman 1995). In reality,
viscosity will remove any singularity at the spiral centre and yield the development of a
viscous core (Moore, Saffman & Stewartson 1973).

At the early stages of the roll-up, Kaden’s spiral is tight with a low local radius of
curvature. It accurately represents the initial evolution of the shear layer. At later stages,
the radius of curvature increases due to the viscous interactions within the shear layer and
between the shear layer and the coherent primary vortex that grows due to the continuous
accumulation of vorticity at the centre of the spiral. The distortions can be investigated by
modelling the inner portion of the spiral as a single point vortex located at the centre
(Moore 1974). The entire shear layer roll-up can also be predicted by a point-vortex
representation of an initially straight vortex sheet (Krasny 1987; DeVoria & Mohseni
2018). The degree of the elliptical distortions depends on the shape of the object. They
are almost negligible for flat plates and become more pronounced when the edge has a
non-zero wedge angle (Pullin 1978).

The accumulation of the vorticity in the coherent vortex in the spiral centre does not
continue indefinitely. There is a physical limit to the size and the amount of circulation the
primary vortex can collect (Gharib, Rambod & Shariff 1998; Mohseni & Gharib 1998; Gao
& Yu 2010; de Guyon & Mulleners 2021). When the primary vortex is about to pinch-off,
a trailing pressure maximum is observed along the shear layer (Lawson & Dawson 2013).
The shear layer region between the tip and the trailing pressure maximum has an adverse
pressure gradient. The remaining portion of the shear layer is characterised by a positive
pressure gradient. The two regions of the shear layer are now separated and the vorticity
associated with the adverse pressure gradient cannot be entrained into the vortex core.
The trailing pressure maximum travels downstream together with the primary vortex,
causing the subsequent pinch-off of the primary vortex (Schlueter-Kuck & Dabiri 2016).
Additional vorticity will not be entrained by the primary vortex after pinch-off and instead
can accumulate into smaller secondary vortices within the trailing shear layer similar to a
Kelvin–Helmholtz instability (Dabiri 2009). The increases in shear layer curvature during
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Shedding of secondary vortices along a modified Kaden spiral

the initial stages of the vortex formation momentarily stops when the end of the primary
vortex growth is reached (Sattari et al. 2012). Secondary vortices occur first between the
primary vortex and the tip at locations where the sheet strength according to Kaden is
maximal (Moore 1974; Koumoutsakos & Shiels 1996).

The emergence of secondary vortices seems to occur only if the Reynolds number is
above a critical threshold. The value of this critical Reynolds number varies for different
object geometries and boundary conditions. Critical values in a range from Re = 1000
to 3000 were observed in a cylinder wake by Wu et al. (1996). The lower limit was
slightly higher for Bloor (1964), who did not detect any instabilities for Re < 1300. The
spanwise and end configurations strongly affect the shear layer breaking behind a cylinder.
Parallel and oblique vortex shedding are obtained by changing the inclination of end plates
(Prasad & Williamson 1997). The shear layer manifests instabilities at Re = 1200 for
parallel shedding and at Re = 2600 for oblique shedding. The critical Reynolds number
for an accelerated sharp edged plate lies in a higher range. Pullin & Perry (1980) and
Williamson (1996) started to visually observed secondary vortices along the shear layer
for Re = 4268. This value was later confirmed by Luchini & Tognaccini (2002), who
numerically observed the occurrence of secondary vortices in a range from Re = 4500
to 5000.

For Reynolds numbers above the critical value, series of secondary vortices appear in
the trailing shear layer with a seemingly constant distance between them. The typical shear
layer frequency in the wakes of cylinders is much higher than the frequency of the von
Kármán vortex street. A consensus about the exact relationship between the frequency
of the primary vortex shedding fK and the secondary of shear layer vortices fSL has not
yet been found. Bloor (1964) observed that the ratio between the characteristic frequencies
varies with Reynolds number according to fK/fSL = Re1/2. However, there is no consensus
about the exponent value of the proposed relationship. Prasad & Williamson (1997)
indicated that an exponent value of 0.67 works for Re up to 105 and Wei & Smith (1986)
found 0.87 in the range from Re = 1200 to 11 000. No clear relationships are established
in the situation of an isolated primary vortex. Based on the flow visualisation around a
submerged flat plate, Grift et al. (2019) determined the shedding frequency of secondary
vortices to lie in the range from 13 to 20 Hz, for different values of acceleration, velocity
and immersion depth. This range corresponds to a Strouhal number around 0.2, according
to the plate geometry and kinematics used by the authors. The secondary vortex shedding
frequency behind a vertical flat plate increases with increasing acceleration of the flat
plate according to Rosi & Rival (2017). It is crucial to define a scaling parameter, such as
the Strouhal frequency for the cylinder case, that allows for a more universal relationship
between the shedding frequency or formation time of primary and secondary vortices as a
function of the Reynolds number.

Secondary vortices also have a practical relevance for a broad range of applications.
They can create additional lift on delta wings at high angles of attack (Gad-el-Hak &
Blackwelder 1985), cause vortex induced oscillations of solid structures that lead to fatigue
damage (Shiraishi & Matsumoto 1983) and lead to increased drag and noise for wing
tip vortices (Birch et al. 2003). A precise prediction of secondary vortices can improve
aerodynamic performance and reduce vortex induced vibrations and noise.

Here, we present an experimental study of secondary vortices generated by a rotating
flat plate in a quiescent fluid. The experimental set-up is discussed in detail in the
following section and is similar to the configurations used by David et al. (2018), Corkery
et al. (2019) and Carr, DeVoria & Ringuette (2015). The plate is rotated with a constant
rotational velocity which is varied across different experiments. The rotation of the plate
generates a start up or a primary vortex. As the plate keeps rotating, the primary vortex

917 A44-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

25
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.259


D. Francescangeli and K. Mulleners

separates and smaller secondary vortices are observed. First, we determine the critical
Reynolds number above which secondary vortices are observed in the shear layer behind
the tip of the rotating plate. Second, we describe the path of secondary vortices and model
their path using a modified Kaden spiral. Finally, we estimate the timing of the secondary
vortex shedding process and analyse the effect of the Reynolds number on the timing.

2. Experimental methods

The first series of measurements is conducted with a rectangular flat glass plate, with
length l = 8 cm, width or span s = 16 cm and thickness t = 2 mm that is rotated about
180◦ in a water tank around its centre spanwise axis. The distance between the centre of
rotation and the tip of the plate is referred to as the chord length c here. The length of
the plate is reduced to l = 4 cm and the rotation point is shifted to the edge of the plate
for the second set of measurements. The chord length or distance between the rotational
point and the tip of the plate is preserved for both sets of experiments. For the first set
of experiments, vortices are formed symmetrically behind both ends of the plate. For the
second set of experiments, vortices are formed only on one end of the plate. This allows
us to study the influence of the rotation point and detect potential interferences caused by
symmetric vortex release on both tips when the rotation point is at mid-length. A third
set of measurements with a longer plate with length l = 12 cm and the rotation point at
mid-length, yielding a chord length of c = 6 cm, was conducted to provide insight into
the influence of the chord length on the vortex formation. The glass plate is stiff enough
to not bend due to the interaction with water and its transparency prevents shadow regions
when performing particle image velocimetry (PIV). The experiments are conducted in an
octagonal tank with an outer diameter of 0.75 m filled with water (figure 1a).

The rotation mechanism is fastened to an outer aluminium frame such that the mid span
of the plate is in the centre of the tank to limit wall interference effects. The kinematic input
is given by a servo motor (Maxon RE 35) connected to a stainless steel shaft and transferred
to the flat plate through a 1:1 conical coupling. A 1:19 gearbox is mounted on the motor
to ensure high torque, speed and acceleration. The rotational angle, speed and acceleration
are controlled via a Galil DMC-40 motion controller, which allows for accurate control
of arbitrary motion profiles. The rotation programme is a trapezoidal rotational velocity
profile with a fixed rotational amplitude of 180◦ (figure 1b).

To ensure a continuous acceleration profile, the corners of the velocity trapezoid are
smoothed. The maximum rotational speed Ωmax is varied from 30 to 400◦/s. This leads to
a Reynolds number Re = (Ωmaxc2)/ν ranging from 840 to 11 150. Here, ν is the kinematic
viscosity of the water and the chord c is defined as the distance between the rotation point
and the tip of the plate. The rotational acceleration Ω̇ is fixed at 6000◦/s2.

The PIV images are recorded in the cross-sectional plane at the model mid span. A
high-power pulsed light-emitting diode (LED Pulsed System, ILA 5150 GmbH) is used to
create a light sheet in the measurement plane. The applicability of high-power LED for PIV
has been demonstrated previously by Willert et al. (2010) and Krishna, Green & Mulleners
(2018). Time-resolved PIV images are recorded with a Photron FASTCAM SA-X2 high
speed camera. The camera is equipped with a 35 mm Canon lens and the camera is aligned
carefully such that the optical axis of the lens is aligned with the rotational axis of the
plate and is perpendicular to the light sheet (figure 1a). The frame rate and the exposure
time are varied, depending on the dynamics of the motion. A frame rate and exposure
time of 250 Hz and 1 ms are selected for a rotational speed of 30◦/s. These values are
2000 Hz and 0.5 ms for the highest tested speeds. The frame rate is high enough to
capture the dynamics of the motion and the LED is set to continuous mode. The camera
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Figure 1. (a) Schematic of the experimental set-up and the rotation mechanism. (b) Trapezoidal velocity
profile as a function of the angular position. The grey shaded regions indicate the portion of the motion during
which the plate is accelerated.

resolution is 1024 px × 1024 px, which corresponds to a field of view of 20 cm × 20 cm.
The raw data are processed by the commercial software PIVview (PIVTEC GmbH, ILA
5150 GmbH) using a correlation model based on minimum squared differences and a
multi-pass interrogation algorithm with three iterations. The final interrogation window
size is 32 px × 32 px with an overlap of 68 %. A third-order B-spline interpolation method
for sub-pixel image shifting is performed on all passes. The resulting physical resolution
is 1 mm or 0.025c.

3. Results

3.1. Modelling the shear layer roll-up
At Re = 840, the plate rotation gives rise to the formation of a primary vortex (figure 2).
The vorticity fields at different angular positions are shown in the plate’s frame of
reference. The primary vortex is the only coherent structure that can be observed and
it is connected to the plate tip through a continuous shear layer. No signs of instabilities
are observed in the shear layer as the plate continues the rotation. The shear layer remains
connected to the primary vortex and rolls-up around its core. As a consequence, the shear
layer roll-ups into a spiral that continuously grows in time.

To trace the spiralling topology of the shear layer in the individual snapshots, we
start by fitting the Kaden spiral (1.1) to the experimental data. At every time instant,
the Kaden parameter K is determined such that the spiral passes through the plate’s
edge when the spiral centre is shifted to the instantaneous location of the primary vortex
core. The location of the primary vortex core was retrieved using the dimensionless and
Galilean invariant scalar function Γ2 defined by Graftieaux, Michard & Grosjean (2001).
The resulting Kaden spirals are presented in figure 3 atop three instantaneous vorticity
snapshots after a rotation of α = 105◦ for increasing values of the Reynolds number:
Re = 840, 1955, 8380. The dashed lines in figure 3 indicate the plate tip trajectory since
the start of the motion, the markers indicate the centre location of the primary vortex and
the solid lines are the fitted Kaden spirals. For all three Reynolds numbers, the centre
of the primary vortex is located on the plate tip trajectory and the fitted spirals match
the rolling up shear layer well based on visual inspection. The vorticity concentration
along the shear layer evolves with increasing Reynolds number from a continuous band of
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Figure 2. Vorticity fields for different angular positions (a) α = 50◦, (b) α = 86◦ and (c) α = 122◦ for
Re = 840. The dashed line represents the plate tip trajectory.
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Figure 3. Fit of the Kaden spiral (black solid curve) atop of instantaneous vorticity fields at α = 105◦ for (a)
Re = 840, (b) Re = 1955 and (c) Re = 8380. The marker ∗ indicates the top right edge of the plate and the
point where the spiral ends, + indicates the centre of the primary vortex and the point where the spiral begins.
The spiral is only plotted for θ ranging from θtip to 4π. The dashed line represents the plate tip trajectory.

vorticity at Re = 840 (figure 3a) to an alignment of vorticity lumped into discrete vortices
at Re = 8380 (figure 3c). At the intermediate Reynolds number Re = 1955, the shear
layer is undulating and some localised concentrations of high vorticity can be identified
along it (figure 3b). These are signs of an unstable shear layer. When we further increase
the Reynolds number to 8380, the shear layer instability becomes more prominent. The
primary vortex is no longer connected to the plate tip and the shear layer is broken into
a series of distinct individual structures that we refer to as secondary vortices (figure 3c).
The fit of Kaden’s spiral still describes well the unstable shear layer evolution and goes
through the secondary vortices for the entire range of Reynolds numbers considered here.

So far, we have merely fitted (1.1) to our experimental data at every time instant, treating
Kaden’s constant K as a fitting parameter. We observe that the main topology of the roll
up is well captured by the Kaden spiral, but we have not yet gained any insight into
the temporal evolution of the roll up or the motion of the primary vortex. If our shear
layer would follow the time evolution predicted by Kaden’s spiral, the obtained values
for K should be constant for all time instants. Based on the results presented in figure 4,
we conclude that K is not a constant value for our data but increases linearly in time
for all Reynolds numbers. The rate of increase of K with dimensional time decreases
with increasing Re (figure 4a), but all curves collapse when presented in terms of the
angular position of the plate (figure 4b). The angular position of the plate serves as the
dimensionless time variable. It corresponds to the ratio between the travelled arc length
l = Ωtc and the chord length and represents a convective time scale. The chord length
refers to the length between the centre of rotation and the tip of the plate.
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Figure 4. The K parameter of Kaden’s equation as a function of (a) time and (b) angular position of the plate
for all the tested Reynolds numbers.

Based on these results, we propose here a modified version of the Kaden spiral to
describe and predict the temporal evolution of the shear layer roll-up

r = ηα
(α

θ

)2/3
, (3.1)

where r and θ are again the radial and angular coordinates of the spiral with respect to the
spiral centre or primary vortex centre, α is the angular position of the plate and ηα replaces
the dimensional constant K in Kaden’s formulation (1.1). The value of η is constant
for all Re and is empirically determined based on the ensemble of experimental data to
η = 1.02 × 10−2. The original solution of the Kaden spiral was derived for an unbound
semi-infinite vortex sheet that starts out as a straight vortex sheet (Kaden 1931). The open
end of the sheet rolls up into a vortex with the centre at (r, θ) = (0, ∞) and the other
side of the vortex sheet is at infinity (r, θ) = (∞, 0). For our experimental conditions, the
vortex sheet length is finite and its length increases in time. The open end rolls up into
a primary vortex. The bound end of the vortex sheet is attached to the tip of the rotating
plate and only the portion of the modified Kaden spiral for θ ∈ [θtip, ∞] corresponds to our
finite shear layer. Here, θtip decreases in time and indicates the bound end that is connected
to the plate tip. The value of θtip is determined at every time step based solely on the
observation that the primary vortex moves along a path that matches the plate tip trajectory
as indicated in figure 2 by the dashed line. Based on this purely geometric constraint, we
also directly obtain the radial spiral coordinate where the modified Kaden spiral meets the
plate tip, indicated by rtip, and the angular location of the primary vortex with respect to the
plate, denoted by β. The detailed derivation of θtip, rtip, and β is provided in Appendix A.
With this additional information, we can now write the spatial coordinates of the spiral in
the plate’s frame of reference as

xspiral = r sin θ + c cos β (3.2)

yspiral = −r cos θ + c sin β, (3.3)

with θ and β defined as indicated in figure 3. This modified version of the Kaden spiral
is now a fully predictive model of the shear layer roll-up and the position of the primary
vortex core with a single empirical constant η.

3.2. Validation of the model
The ability of our modified Kaden spiral to describe the roll-up of the shear layer is visually
compared to the negative finite time Lyapunov exponent (nFTLE) fields corresponding to
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Figure 5. Model of the shear layer roll-up (solid curve) on top of nFTLE fields at α = 105◦ for (a) Re = 840,
(b) Re = 1955 and (c) Re = 8380. The spiral is only plotted for θ ranging from θ tip to 4π.

the vorticity fields presented in figure 3(a–c). The FTLE is a local measure of Lagrangian
stretching of evolving fluid particle trajectories (Haller 2001, 2015). The maximising ridges
of the negative FTLE field indicate regions along which nearby fluid particles are attracted
such as the boundaries of coherent structures. The FTLE ridges provide insight into the
location and growth of vortices and the flow topology (Green, Rowley & Haller 2007;
Rockwood, Huang & Green 2018).

At Re = 840, the shear layer is continuous and the attracting nFTLE ridges appear
as a continuous spiral. The shape and the roll-up of the spiral is well described by
our predictive model (figure 5a). At Re = 1955, we are in a transitional regime where
the shear layer is wavy and unstable (figure 3b). This observation is confirmed by the
FTLE ridges, where the attracting nFTLE ridge oscillates around our predicted spiral. The
deviations become larger where the spiral rolls-up (figure 5b). Finally, at Re = 8380, the
shear layer is no longer visible in the vorticity field snapshot and we observe discrete
secondary vortices instead (figure 3c). The wavelength of the nFTLE ridge fluctuations
has decrease with the increase of the Reynolds number towards the discrete shedding
regime. The spiral computed with (3.1) represents the middle line along which the FTLE
ridge oscillates (figure 5c). We can distinguish four lobes on the outside of the predicted
spiral that surround the four secondary vortices in figure 3(c). With increasing value
of the Reynolds number, we can distinguish three regimes: a first regime (Re < 1500)
which is characterised by a stable shear layer, a transitional regime (1500 < Re < 4000)
which is characterised by first signs of instability and a discrete vortex shedding regime
(Re > 4000) where vorticity is only observed in isolated patches. For the three Re regimes
observed, the modified Kaden spiral is able to predict the roll-up of the shear layer and the
path of the secondary vortices for the entire rotation of the plate.

To further quantitatively validate our modified Kaden spiral model, we compare the
measured angular locations of the primary vortex as a function of the convective time α

with the predicted model results in figure 6 for different Re. The angular position β of
the primary vortex increases with α. The relationship between β and α is close to, but
not entirely linear. The trajectory of the primary vortex is completely independent of the
Reynolds number and is accurately predicted by the modified Kaden spiral. The trajectory
is also not influenced by the total length of the plate. The measured data presented in
figure 6(a) include results from the plates with the rotational location at the mid-length and
from the plates with the rotational location at one end of the plate. The distance between
the rotational point and the tip is the same in both cases. From the perspective of vortex
formation and shear layer roll-up, a plate with a length of 4 cm that rotates around one
end is equivalent to a 8 cm long plate rotating around its centre location. The presence of a
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Figure 6. Variation of the angular location of the primary vortex (β) with convective time indicated by the
plate’s rotation angle (α) for (a) rotations around the mid-length and rotations around the edge, both with
c = 4 cm; and (b) rotation around the mid-length with c = 6 cm.

flipped and mirrored vortex system and shear layer topology on the other side of the longer
plate has no influence on the roll-up or on the trajectory of the primary vortex for the plate
geometries and Reynolds numbers tested here.

The influence of the distance between the rotational point and the plate tip, referred
to as the chord length here, is analysed by considering a plate with length 12 cm and
chord length 6 cm. For rotational motions with the longer plate, we observe the same
shear layer topology for the same Re-regimes described before. The modified Kaden spiral
predictions still provide an excellent prediction of the shear layer roll-up and the trajectory
of the primary vortex in figure 6(b). The angular velocity in terms of dβ/dα is slightly
increased for the higher chord length plates and a higher value of η = 1.59 × 10−2 was
used for the modified Kaden spiral predictions of the larger chord length wing. For the two
different chord lengths, the ratio η/c = 0.260 ± 0.005. To take into account the influence
of the chord length in our modified Kaden spiral model, we replace the empirical constant
η in (3.1) with η′c to obtain

r = η′cα
(α

θ

)2/3
, (3.4)

where η′ = 0.260 for all data presented in this paper.

3.3. Timing of the secondary vortex shedding
In the next part, we focus our attention on the successive shedding of secondary vortices.
The first step is to determine if these secondary vortices are generated from the stretching
of an initially unstable shear layer or if they are discretely released after the separation of
the primary vortex. Figure 7 shows the flow topology at different plate angular positions
for Re = 8380. Between α = 0◦ and α = 30◦ the primary vortex centre is close to the
plate tip and no secondary vortices are observed. At α = 30◦, the primary vortex has
moved away from the tip along the circular tip trajectory and a first secondary vortex
forms (figure 7a). The first secondary vortex drifts towards the primary vortex core and
they merge as a consequence of their mutual interaction (figure 7b). The formation and
shedding of successive secondary vortices is repeated along the entire motion. Each vortex
is independently formed and subsequently released from the plate tip. In this situation, the
shear layer appears as a cloud of vorticity close to the plate tip from which vortices are
discretely detached. Once the secondary vortices shed, they move away and are located
along the modified time-varying Kaden spiral (figure 7c–e). Vortices closer to the primary
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Figure 7. Temporal evolution of secondary vortices at different angular positions (a) α = 30.0◦,
(b) α = 55.7◦, (c) α = 83.0◦, (d) α = 110.5◦, (e) α = 137.7◦ and ( f ) α = 160.0◦ for Re = 8380. The black
curve is the modified Kaden spiral, whose centre and end are the primary vortex centre (+) and the right top
plate edge (∗). The spiral is only plotted for θ ranging from θ tip to 4π. The dashed line represents the plate tip
trajectory.

vortex deviate slightly from the predicted spiralling curve only when the plate rotation is
about to finish (figure 7f ).

The second step is to compute the timing of secondary vortices. If we consider the
vorticity field, the constant presence of the cloud of vorticity close to the tip hampers the
identification of the separation time. To estimate the timing of shedding of the individual
vortices we use the swirling strength criterion by Zhou et al. (1999). A vortex is considered
a connected region where the value of the swirling strength λci is positive. The swirling
strength criteria allows us to distinguish more reliably whether a region of high vorticity
concentration indicates the presence of a secondary vortex or whether it is due to a strong
shear flow (see figure 8a,b). To determine the timing of release of subsequent secondary
vortices, we calculate and analysed the evolution of the local average swirling strength,
denoted by λ̄tip, in a small rectangular region close to the tip of the plate. As we are
purely interested in the counterclockwise rotating structure here, we only count the positive
swirling strength in regions where the vorticity is positive. The location of the probing
region is indicated in figure 8(a,b) and an example of the resulting temporal evolution
of the local average tip swirling strength for Re = 8380 is presented in figure 8(c). The
temporal evolution of λ̄tip has a global maximum and first peak at α = 32.6◦ which is
followed by six clearly distinguishable smaller peaks. The initial peak corresponds to the
shedding of the primary vortex, and the subsequent smaller peaks mark the shedding
of individual secondary vortices. The average swirling strength systematically drops to
zero in between the individual peaks, further supporting the conclusion that the secondary
vortices are discretely released from the tip of the plate. The timing of the local maxima
of λ̄tip is used to further analyse the shedding timing of the secondary vortices. This
strategy to determine the timing of secondary vortex shedding is simple yet robust and
allows for a systematic and automated extraction of the timings for all measurements.
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Figure 8. Snapshot of the (a) vorticity field and (b) the swirling strength at α = 115◦ for Re = 8380. The black
rectangle corresponds to the region in which λ̄tip is computed. (c) Evolution of λ̄tip as a function of the angular
position of the plate. The dotted lines mark the local maxima in the average tip swirling strength. The timing
of the local maxima are related to the separation angle of subsequent secondary vortices.

The results depend slightly on the location and size of the probing region which were
carefully selected based on a sensitivity analysis (Appendix B).

Results of the timing extraction strategy for Re = 840 and Re = 1955 are summarised
in figure 9. For the lowest Reynolds number Re = 840, we have a continuous stable shear
layer and the associated snapshot of the swirling strength at α = 100◦ in figure 9(a) shows
a single isolated coherent structure and no sign of secondary vortices. This is confirmed
by the time evolution of λ̄tip (figure 9a) that exhibits a single peak at α = 31.9◦. No other
peaks are observed afterwards confirming that the shear layer is a continuous layer of fluid
without the presence of any instabilities for this Reynolds number. For the intermediate
Reynolds number Re = 1955, the shear layer topology appeared to be undulating with
some localised concentrations of high vorticity along it (figure 3b). The temporal evolution
of the average tip swirling strength reveals the shedding of two secondary coherent
structures formed after the primary vortex (figure 9b). These two structures are formed
and released from the tip and they are not formed afterwards due to the stretching of the
shear layer which does not become clear based solely on the vorticity flow topology.

The experiments are repeated five times at each Reynolds number. The separation
time and angle of successive secondary vortices are computed and analysed for all
experiments with Re > 4000 corresponding to the discrete shedding regime. The timing of
the secondary vortex shedding versus the number corresponding to the order of successive
shedding is presented in figure 10. In general, the time interval between successive vortices
increases the more secondary vortices have been released and the time interval decreases
with increasing Reynolds number, yielding a larger total number of secondary vortices at
the end of the 180◦ plate rotation. If we hypothesise that the strength of the secondary
vortices remains approximately constant, which is confirmed by the experimental data,
then the increase in time interval should be due to a decrease in the circulation feeding
rate by the shear layer. This feeding rate is related to the shear rate of at the tip of the plate
and can be estimated by

dΓ

dt
∝ v2

out − v2
in

2
≈ (Ωc)2 − v2

in(t)
2

, (3.5)

where vout refers to the velocity at the outer side of the shear layer, which equals the tip
velocity Ωc and vin refers to the velocity at the inner side of the shear layer. The velocity
at the inner side vin is close to zero during the initial part of the rotation as the plate rotates
in a quiescent fluid and increases due to the accumulation of vortex induced velocity
components along the direction of the plate’s motion. The feeding rate thus decreases
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Figure 9. Snapshots of the (a,d) vorticity field and (b,e) swirling strength at α = 100◦ and (c, f ) evolution of
λ̄tip as a function of the angular position of the plate. The first row corresponds to Re = 840 at which the shear
layer appears continuous. The second row is for Re = 1955 at which the shear layer shows signs of instability.
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Figure 10. Delay between the successive shedding of secondary vortices in terms of (a) dimensional time and
(b) convective time or angular distance between secondary vortices as of the shedding order n. The solid lines
are the fit of the angular distance between vortices and n. (c) Coefficient 	α as a function of the maximum
rotational speed of the plate.

when the rotational velocity and the Reynolds number decrease and when the induced
velocity due to an increased number of released vortices. This explains the general trends
observed in figure 10(a,b).

To quantify the evolution of the shedding timing of the secondary vortices, we fit the
measured values in figure 10(b) with a power law in the form

α(n) = α0(1 + 	α)n, (3.6)

where α0 and 	α are fitting constants and n counts the number of secondary vortices. This
power law is suitable to represent the timing dynamics for all Reynolds numbers as all fits
have a value of the coefficient of determination R2 above 99 %. The fitting parameter 	α

indicates the relative increase in α between the convective timing of successive secondary
vortices, i.e. αn+1/αn = 1 + 	α. A higher value of 	α indicates a larger delay between
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successive vortices and a lower total number of vortices shed at the end of the motion.
The evolution of 	α as a function of the maximum rotational speed is presented in
figure 10(c). The results confirm the general decrease in the time delay between the
release of subsequent vortices for increased rotational velocity of the plate which yields an
increased feeding rate according to (3.6).

4. Conclusion

The roll-up of a shear layer behind a rotating plate in a quiescent fluid is experimentally
studied for different rotational velocities or Reynolds numbers. Particular focus was
directed towards the formation, trajectory, and timing of secondary vortices.

Based on the time-resolved PIV, we identified three Reynolds number regimes based
on the stability of the shear layer. For Re < 1500, a stable shear layer in the form of a
continuous band of vorticity is observed that rolls up into a single coherent primary vortex.
For Re > 4000, the shear layer is unstable and secondary vortices are discretely released
from the plate’s tip during the rotation. In the intermediate regime for 1500 < Re < 4000,
first signs of instability appear. The shear layer is still a continuous band of vorticity but
it shape is wavier and localised concentrations of higher vorticity emerge. In all three
regimes, the centre of the primary vortex is located on the plate tip trajectory and the
shear layer topology matches a spiral shape similar to the roll up of a free shear layer.
A modified version of the Kaden spiral is proposed to describe and predict the temporal
evolution of the shear layer roll up. The key modification is the replacement of the constant
dimensional Kaden constant K by a factor η′cα that increases linearly with the rotational
angle of the plate and takes into account the effect of the chord length. A single value of
η′ has been empirically determined for all experimental conditions presented in this paper.
The proposed modified Kaden spiral model describes the spatio-temporal evolution of the
shear layer and accurately predicts the trajectory of the centre of the primary vortex for all
Reynolds numbers and different plate dimensions.

The timing of secondary vortices shedding for Reynolds numbers in the discrete
shedding regimes is determined using the swirling strength criterion. The swirling strength
fields confirm that secondary vortices form directly at the tip of the plate and not further
downstream due to the stretching of the shear layer. The separation time of each secondary
vortex is identified as a local maximum in the temporal evolution of the average swirling
strength close to the plate tip.

The time interval between the release of successive vortices is not constant during the
rotation but increases the more secondary vortices have been released. The shedding time
interval also increases with decreasing Reynolds number, yielding a lower total number of
secondary vortices at the end of the 180◦ plate rotation for lower Re. The increased time
interval under both conditions is due to a reduced circulation feeding rate.

Declaration of interests. The authors report no conflict of interest.
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Appendix A. Derivation of the modified Kaden spiral

The modified version of the Kaden spiral we propose takes into account the temporal
increase in the distance between the primary vortex and the tip of the plate where the
bound end of the vortex sheet is fixed. The angular coordinate along the spiral that marks
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Figure 11. Definition of the radial and angular spiral coordinates and its orientation with respect to the
plate’s frame of reference. The trigonometric relationships (A1) and (A2) are obtained in the shaded triangles.

the bound end of the vortex sheet is denoted by θtip. The value of θtip is determined at every
time step based solely on the observation that the primary vortex moves along a path that
matches the plate tip trajectory. Based on this purely geometric constraint, we also directly
obtain the radial spiral coordinate where the modified Kaden spiral meets the plate tip,
indicated by rtip, and the angular location of the primary vortex with respect to the plate,
denoted by β. Their detailed derivation is given here.

We consider the flow situation after the plate has rotated for a given α in the plates
frame of reference in figure 11. The plate tips trajectory is indicated by the dashed line.
The primary vortex is located on that circular trajectory. Its angular position with respect
to the plate’s centre of rotation and tip is indicated by β.

Consider that we have shifted the modified spiral defined by (3.4) such that the spiral
centre (r = 0, θ → ∞) is located in the centre of the primary vortex. The radial and
angular location of the plate tip in the spiral coordinates are given by (rtip, θtip) as indicated
in figure 11. For a given spiral form, there is only one solution for β that allows the spiral
to go through the plate tip. This solution can be found by ensuring that the trigonometric
relationships for the two triangles outlined in figure 11(b) are met

β = 2 arcsin(rtip cos θtip/2c) (A1)

β = arcsin(rtip cos θtip/c). (A2)

The distance between the primary vortex centre and the tip of the plate, rtip, is determined
through the modified Kaden spiral (3.4), for θ = θtip. In this way, (A1) and (A2) are only
functions of θtip, which is computed by equalising the two relationships. For β > π/2, we
need to use

β = π − arcsin(rtip cos θtip/c) (A3)

instead of (A2). Once θtip is retrieved, we substitute it into (A1) to obtain the angular
position β of the primary vortex. From the value of β, we compute the Cartesian
coordinates of the primary vortex centre, which corresponds to the centre of our predicted
spiral model. The full spiral is finally obtained for every plate angular position α, using
(3.2) with θ ∈ [θtip, ∞].
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Appendix B. Sensitivity analysis of the location and size of the average tip swirling
strength probing region

The local average swirling strength λ̄tip reaches a local maximum value when most of the
vortex fills the selected rectangular region. If the position and dimension of the rectangular
region is not properly set, the identification of the separation time through local peaks
loses accuracy. We perform a sensitivity analysis of the best position and dimension of the
rectangular region. The first thing to set is the centre of the rectangle. We observed that
when the core centre of a secondary vortex is approximately 1 cm above the plate tip, the
following secondary vortex starts growing. Since the trajectory of each secondary vortex is
predicted by the modified Kaden spiral (3.4), we decide to place the centre of the rectangle
along the spiral, 1 cm above the tip. The area of the rectangle has to be big enough to fully
include the vortex but it does not have to include the swirling strength associated with
the plate and to the other secondary vortices. For the plate chord c = 4 cm, a rectangle
base of 0.25c is sufficiently large to include the radial dimension of the secondary vortex,
excluding the swirling strength of the plate. A height of 0.15c allows to have one secondary
vortex at a time in the selected rectangle.
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