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HALF-TURNS AND INFINITE CHAINS OF 
CLIFFORD CONFIGURATIONS 

J. F. RIGBY 

1. Introduction. In a recent paper [7] Longuet-Higgins and Parry 
prove that, given a general Clifford configuration of degree 5 (abbreviated 
to CL5), Co say, there exist points P and Q such that the inverses of P 
in the circles of Co form the points of another CL5 Ci, whilst the inverses 
of Q in the circles of Ci are the points of Co; also the inverses of Q in the 
circles of Co form the points of a CL5 C_i, whilst the inverses of P in 
the circles of C_i are the points of Co. This leads to an infinité chain 
. . . , C_2, C_i, Co, Ci, C2, . . . of CL5s, each connected to the next by 
means of the same two points P and Q, called the poles of the chain. 

Longuet-Higgins and Parry start with a CL5 K and construct (using 
theorems of de Longchamps, Steiner, Kantor and Bath) an infinite chain 
as just described in which the pole P is one of the points of K. They show 
later that any CL5 is contained in some infinite chain of this type. In the 
present paper we show how to construct an infinite chain starting from 
Co, without reference to K; moreover C0 can be a Clifford configuration 
of any degree n, subject to a certain restriction on the configuration when 
n ^ 6. We also prove the existence of half-turns (Môbius involutions), 
with P and Q as mates, that map the various links of the chain to them­
selves or to other links. These half-turns provide alternative, and perhaps 
simpler, proofs of the existence of the chains and of their properties (some 
new properties, and some already proved in [7]). The basic tool in the 
construction is the notion of a pair of conjugate pentads [7] and the 
associated half-turn [8], described here in Section 3. 

Theorems about opposite poles of a Chn are proved in Section 6, from 
which infinite chains and their properties are derived in Section 7. 
Numerical identities connecting three constants associated with a chain 
are derived in Section 8, and the converse of an earlier result about 
CL6s is proved in Section 9. 

I am grateful to the referee for suggesting some extra notation, for 
providing an alternative proof of Theorem 7.3, and for asking questions 
that resulted in the writing of Sections 10 and 11. 

2. Half-turns and involutions. Let a, b be orthogonal circles meeting 
a,tA,B. The product of the inversions in a and b is the half-turn (or Môbius 
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involution) a with poles A and B. If we take B at infinity, we have the 
familiar half-turn of Euclidean geometry, the product of reflections in 
the perpendicular lines a and b ; this shows that a is determined by A and 
B only, and is independent of the choice of the orthogonal circles a and b. 

If Pa = Q, then P, Q are mates with respect to a. U P 9e Q, then P, Q 
are concylic with A, B, and P, Q harmonically separate A, B. We can take 
a = ABPQ; now take P to be at infinity, and we have Fig. 1: a is the 
product of the reflection in a line through Q and the inversion in a circle 
with centre Q. 

FIGURE 1 

LEMMA 2.1 (a) Let a, /3, y be half-turns with a common pair of distinct 
mates P, Q. Then a/3y is a half-turn with mates P, Q. 

(b) Let a, 0, y be half-turns with a common pole A. Then a/3y is a half-
turn with A as one pole. 

Proof. If we take P at infinity in (a), the result is obvious. In (b) take A 
at infinity; then a/3, the product of two Euclidean half-turns, is a transla­
tion, and af3y is a Euclidean half-turn. 

LEMMA 2.2. If P 9e R, S and Q 9e R, S, there exists a unique half-turn 
with P, Q as mates and R, S as mates. 

Proofs of the case when P, Q, R, S are all distinct can be found in [5, 
p. 232] or [8, p. 522] ; the other cases are easily dealt with. 

Let Aot Ai, A2, A3 be distinct points. Let X be a point not lying on the 
circumcircle of any three of the four points, and let the circles XAoAif 

XAjAk meet again at Xt (where i, j , k is any permutation of 1, 2, 3). Let 
r,. denote the mapping defined by Xrt = Xt. It can be shown that n , r2, T3 

are mutually commutative involutory mappings, and that rjTk is the 
half-turn with mates A0, At and Ajf Ak. We call TiT2r3 the involution 
AoAiA2As; it depends only on the four points, and not on the particular 
order of the points. If ^40, Ait A2, Az are concyclic, this involution is just 
the inversion in A^A\A2AZ. If they are not concyclic, take one of the 
points, A§ say, at infinity; then the involution maps any point to its 
isogonal conjugate with respect to the triangle AxA2Az [3, p. 113]. Hence 
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the image of X in the involution AQAiA2As is called the generalized 
isogonal conjugate of X with respect to^40, A1} A2, A*. 

These results are not difficult to prove (the fact that TjTk is a half-
turn is an immediate consequence of Collings's theorem [8, Theorem 5]). 
The previous paragraph is based on [1, p. 57], where various references 
are given, but I have not found any single convenient reference giving all 
the proofs. 

3. Conjugate pentads. Let A, B, C, D, E be distinct points, no four 
concyclic. Let Af be the mate of A in the involution BCDE, and define 
Bf, C , D', E' similarly. We then have two pentads of points. In [6, 
Theorem (U) p. 209, and p. 212] it is shown that A, A' are mates in the 
involution B'C'D'E', etc., and that any two points of either pentad are 
inverse points in the circle through the opposite triad (e.g. A and B are 
inverse points in the circle C'D'E'). In [8, p. 527] I showed that there 
exists a half-turn mapping A, B, C, D, E to A'} B', C, D', E'. Such 
pentads are called conjugate pentads; we denote them by the symbol 

(A B C D E\ 
\A' B' C D' E') ' 

4. Clifford configurations. A Clifford configuration of degree n, ab­
breviated to CLn, consists of 2n~l points A, Aijt Aijkh . . . and 2n~l 

circles cu cijk> . . . , where the suffixes run through all (unordered) combi­
nations of 1, 2, . . . , n; a point lies on a circle if its suffix is obtained by 
either removing one symbol from, or adjoining one symbol to, the suffix 
of the circle (e.g. in a CL5 the circle Cm contains the points A\i, A13, ̂ 23, 
A1234, ^1235) ; the suffix of A is the empty set, so A lies on Ci, . . . , cn. Any 
n circles in general position through a point A determine a unique CLn 
(see for instance [4, p. 90]). 

The notation can also be reversed, so that the circles are labelled c, ctj, 
cijki, . . . and the points A if A ijk, . . . , but c and the points A h . . . , An 

lying on it do not determine the configuration uniquely. 
This notation obscures the fact that a CLn is transitive on points and 

lines; it is a self-dual (2n_1
w) configuration. 

We obtain an alternative notation by writing, for instance, Cnoio (with 
l 's in the 1st, 2nd and 4th places) for ci24 in a CL5, and A01010 for ^424 
etc. Then any permutation of the suffix symbols, followed by the replace­
ment of 0 by 1 and vice versa in one or more (or in none) of the suffix-
places, together with the interchange of the letters A and c if necessary, 
gives an automorphism or duality of the CLn, and all n\2n automorphisms 
and dualities can be obtained in this way. 

Both the above notations are sometimes cumbersome; we shall denote 
the points of a CLn by A, B, C, . . . when this seems preferable. 

Circles or points whose suffixes (in the first notation) are complemen-
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tary are opposite (e.g. in a CL5 A i2 is opposite toc345). Thus every point or 
circle has an opposite point or circle respectively when n is even, and 
every point has an opposite circle when n is odd. 

5. Inverses in concurrent circles. Let ch . . . , cn be circles all con­
current at a point A, no three meeting at any other point. Under what 
circumstances will there exist a point P, distinct from A, whose inverses 
in Ci, . . . , cn are concyclic? When n = 3, every point P ^ A trivially 
satisfies this condition. When n > 3 we invert A to infinity, so that cif 

. . . , cn become lines, no three concurrent. As is pointed out in [7, p. 553], 
the reflections of P in cu . . . , cn are concyclic if and only if the feet of the 
perpendiculars from P to Ci, . . . , cn are concyclic; this occurs if and only 
if P is a focus of a conic touching c\, . . . , cn, and the feet of the perpen­
diculars then lie on the auxiliary circle of the conic. 

Thus when n = 4 there is a single infinity of positions for P. When 
n = 5 there are in general two positions for P: the two foci of the unique 
conic touching cit . . . , c-a. When w ^ 6 there will in general be no point P 
satisfying the condition, but if cu . . . , cn touch a conic there will in general 
be two positions for P. 

When n ^ 5 there will be just one position for P if and only if the conic 
is a circle or a parabola, but the second possibility cannot occur if Ci, . . . , 
cn are lines of a CLw. For if d, . . . , cn touch a parabola with focus P , 
the circles £123, £121, . . . (being circumcircles of triangles touching the 
parabola) all pass through P ; so P = ^1234 = ^1235 = . . . and the CLn 
is degenerate. 

6. The poles of a CLn. Let C be a CLw, and P any point. The in­
verses of P in the circles of C will in general be 2n~1 distinct points. If the 
inverses of P in concurrent circles of C are always concyclic, then the 
2»~i inverses of P and the circles on which they lie form another CLw, C 
say. We say then that P is a pole of C, and that C is the transform of C by 
P ; we write C = Cp . 

We shall denote the inverse of P in c\ by A\ , where X denotes a subset 
of {1, 2, . . . , n}, and shall write c\p = A\. If the circles c\, cM, . . . are 
concurrent in Av, where X, /z, . . . , v are subsets of {1, 2, . . . , n\f we shall 
denote the circle containing A\, AJ, . . . by c/ , and shall write Av

p = cj. 
At the risk of obscuring the distinction between circles and points, we 

can use the symbol (X) to denote c\ or A\ (depending on the number of 
elements in X), and (X)' to denote A\ or c\. If X denotes the complement 
of X in the set {1, 2, . . . , n\, then (X) and (X) are opposite elements of C. 
If (X) 6 C then (X)' is the opposite element of C'. Note that when n is odd 
and (X) is a point of C, then (X)' is also a point, the opposite point of G. 

THEOREM 6.1. Let A be a point of a CLn C, and cu . . . , cn the circles of 
C through A; let Pbea point whose inverses in C\, . . . , cn are concyclic. Then 
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(i) P is a pole of C; 
(ii) writing Cp = C and (X)p = (X)', there exists a point Q such that 

(\)'Q = (x) f0r all subsets X, so that G'Q = C; 
(iii) if n is odd there exists a half-turn with mates P , Q mapping each point 

of C to the opposite point of C, and if n is even there exists a half-turn with 
mates P, Q mapping the points and circles of C to their opposite points and 
circles (inC); 

(iv) Q is also a pole of C (as well as being a pole of C); 
(v) ( C T = C. 

We shall call Q the opposite pole of P with respect toC\ (v) states that P 
is the opposite pole of Q with respect to C. 

COROLLARY (of Theorem 6.1 and Section 5). A CL4 has a single infinity 
of poles; a CL5 has in general two poles, but in special cases only one. There 
exist Chns with poles for n ^ 6; such CLris have in general two poles, but 
in special cases only one. 

Proof of Theorem 6.1. (a) n = 3. A CL3 is a trivial configuration, 
consisting of four non-concyclic points A, B, C, D and the four circles 
a = BCD, b = CD A, c = DAB, d = ABC; parts (i) and (iv) are trivial. 

Let A', B', C, D' be the inverses of P in a, b, c, d, and let <2* be the 
mate of P in the involution ABCD; we then have the conjugate pentads 

(A B C D Q*\ 
\A' Bf C D' P ) ' 

so, as we remarked in Section 3, A, B, C, D are the inverses of Q* in 
B'CD', . . . , and there exists a half-turn mapping A to A', . . . , and (J* 
to P. Thus Q, the opposite pole of P, is Q*, the mate of P in the involution 
ABCD; hence the opposite pole of Q is its mate, namely P . Thus the case 
n = 3 is simply a restatement of results in Section 3. 

(b) n = 4. Label the points and circles of a CL4 as in Fig. 2, denote 
the inverses of P in a, b, . . . by A', B', . . . , and assume that D', C, B', 
Hr are concyclic (in the figure P is at infinity). Consider the CL3 (ABCD) 
and its transform (ABCD)P = (A'B'C'D'). We have seen that there 
exists Q whose inverses in B'CD', A'C'D', . . . are A, B, . . . . Consider 
similarly the CL3 (ABEF) and its transform (ABEF)P = (G'H'C'D'); 
there exists a point R whose inverses in H'CD', G'C'Df, . . . are A, B, 
. . . . Now the circles B'CD', H'CD' coincide by assumption. Hence 
R = Q. Hence B and Q are inverses in the circles A'C'D' and G'CD'\ 
these last two circles must therefore coincide, i.e., A', C, D', G' are con-
cyclic. Proceeding step by step in this way we obtain all the sets of con-
cyclic points needed for the existence of C and we have thus proved (i) 
and (ii). 
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FIGURE 2 

From (a) there exist a half-turn a mapping A, B, C, D, P to A\ Bf, C, 
D\ Q and a half-turn 0 mapping A, B, E, F, P to G', H', C, D', Q. 
Let 7 be the half-turn mapping E, P to P, Q. Then 0 = «07 is a half-turn 
(by Lemma 2.1) mapping C, Z>, P to F, E, Q; note that P, E are opposite 
to C, D respectively in the CL4. 

Similarly there exist a half-turn </> mapping C, B, P to F, G, Q and a 
half-turn ^ mapping C, ^4, P to P, H, Q. By Lemma 2.2 6 = 4> = ^, so 
0 maps ^ , P , C, P>, P to # , G, P, E, Q. Thus we have proved (iii). (Note. 
This part of the proof will be generalized later forn = 6 etc., but a differ­
ent proof can be given when n — 4 only: I proved in [8, Theorem 3] that 
there exists a half-turn Br mapping A, B, C, D to H, G, P, E, and we have 
B' = 6 by Lemma 2.2.) 

Since 6 maps C to itself, it clearly maps a pole of C to a pole of G. 
Hence Q = P6 is a pole of C, which proves (iv). Also the opposite pole of 
PB is Qd, which proves (v). 

(c) n = 5. In (b) we combined two CL3s to prove (i) and (ii) when 
n = 4. In a similar way we now combine two CL4s to prove (i) and (ii) 
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when n = 5. In fact part of the proof can be made slightly easier when 
n = 5 (and when n > 5). 

We observe that if Q is the opposite pole of P with respect to C then 
it is also the opposite pole of P with respect to every Clifford configura­
tion of smaller degree contained in C. From (in) applied to the CL4 
determined by Ci, c2, c3,

 c^ there exists a half-turn a with mates P , Q 
mapping A, Auto ^1234, -4 34. From (iii) applied to the CL3 (41234, ^34, 
A1345, ^2345), there exists a half-turn ($ with mates P, Q mapping ^1234, 
A 34 to Azvo'y -4i2345/. Let 7 be the unique half-turn with mates P , Q inter­
changing ^345', ^4i2345/. Then afiy is a half-turn with mates P , Q mapping 
A, A12 to their opposite points ^412345/, A 345' in C . By applying this method 
to various pairs of points of C and using the uniqueness of a half-turn 
with two given pairs of mates, we prove (iii). 

From (iv) applied to the CL4s determined by Ci, c9, £3, C\ and C\, c2, £3, 
£5, we see that the inverses of Q in Ci, c2, £3, c\, c-0 are concyclic, so Q is a 
pole of C by (i). 

The opposite pole of Q with respect to C is the same as its opposite pole 
with respect to any CL4 contained in C, namely P . 

(d) We build up the proof for larger values of n by induction. 

We have seen as a corollary of Theorem 6.1 that a general CL5, and 
certain CLw's when n > 5, have two poles, P and P' say. From Theorem 
6.1 (iv), the opposite pole of P is either P itself or P ' . We now show that 
the first possibility cannot occur when P and P' are distinct. 

THEOREM 6.2. Suppose that the CLn C (w ^ 5) has two distinct poles 
P and P'. Then P and P' are opposite poles. 

Proof. Let Ci, . . . , c„ be the circles through the point A of C. Take P at 
infinity; then Ai\ . . . , An

r are the centres of Ci, . . . , cn, and they lie on 
the circle c' : Ap = c''. Suppose the opposite pole of P is P itself. Then 
c'p = A j i.e., A is the centre of c'. Thus ^4^4/ = . . . = A A n' and the circles 
C\, . . . , cn have equal radii. Invert with respect to A : C\, . . . , cn become 
lines Ci*, . . . , cw* equidistant from A, so the unique conic touching 
Ci*, . . . , cn* is a circle. Thus from Section 5 we see that C has only one 
pole, a contradiction. Hence the opposite pole of P is P'. 

If we construct C by starting with circles Ci, . . . , cn of equal radii 
passing through A, then we can take P at infinity. The same method of 
proof shows that P is its own pole and that all the circles of C and C ; have 
equal radii [2; see also 7, p. 556]. 

THEOREM 6.3 Let cu . . . , cn be the circles through a point A of a CLn C 
with opposite poles P and Q. Then 

(i) C can be embedded in a CLm with opposite poles P and Q, for any 
m > n,and 
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(ii) if we invert A to infinity, C\ . . . , cn become lines touching a conic 
with foci P and Q. 

Proof, (i) The inverses of P in cx, . . . , cn are concyclic. Draw further 
circles cn+i, . . . , cm through A such that the inverses of P in cif . . . , cm 

are concyclic. Then C\, . . . , cm determine a unique CLra with pole P. 
Let <2* be the opposite pole of the Chm. Then P, <2* are opposite poles of 
C also, so that Q* = Q. 

(ii) When n ^ 5 this follows immediately from the discussion in Section 
5 and Theorem 6.2. When n = 3 or 4, we know that P is the focus of a 
conic touching Ci, . . . , cn\ to show that Q is the other focus of the same 
conic, embed the CLn in a CL5. 

7. Infinite chains of CLw's. We now modify the notation of Theorem 
6.1 and write C = C0, C = C p = d , CQ = C_i. Since P and Q are 
opposite poles of Ci and of C_i, let us write Cip = C2, C_iQ = C_2 and 
define inductively C r+i = Cr

p, C_(r+D = C-r
Q\ then C r and C_r have 

P, Q as opposite poles, as is easily proved by induction, so C r
p = C r + i 

and Cr
Q — Cr_i for both positive and negative values of r. This is the 

infinite chain of CLTZ'S derived in [7] for n = 5. If P = Q there are only 
two distinct links in the chain, and we have the situation described in the 
paragraph before Theorem 6.3. 

We may extend the present notation and denote the typical element of 
C r by (X) r, in such a way that (X) r

p = (X) r+i and (X) r
Q = (X) r_i. We shall 

say that ( \ ) r and (\)s are corresponding elements of C r and C„ whilst 
(X)r and (X)s are opposite elements, thus extending our previous use of the 
word "opposite". 

Next we investigate how the various links in a chain are connected by 
half-turns. A transformation that maps elements of C r to the correspond­
ing elements of Cs maps C r to Cs directly; a transformation that maps 
elements of C r to the opposite elements of Cs maps C r to C., in reverse, or 
reverses Gr if r = s. 

THEOREM 7.1. Suppose n is odd. Let a and 13 denote the half-turns with 
mates P , Q mapping Co to Ci and Co to C_i respectively, both in reverse. 
Then for r = . . . , — 1 , 0 , 1 , . . . 

(a) Cr/3a = C r + 2 directly, 
(b) Gr(al3)ra = Cr+i in reverse. 

Proof, (a) C_i/fo = Ci directly, so the result is true for r = — 1. 
Suppose it is true for r = k; then 13a maps C* to CA;+2 directly, and maps P 
to itself; hence pa maps Ck

p to CA;+2P directly, i.e., C^+i fia = CA;+3 directly; 
hence the result is true for r = k + 1. The result now follows by induction 
for all r ^ - 1 . 

Similarly, using Q instead of P , we prove by induction that C_sa/3 = 
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C_(s+2) for 5 = — 1, 0, 1, 2, . . . , which is equivalent to Crfia = Cr+2 for 

negative values of r. 

(b) T h e result is t rue for r = 0. Suppose it is t rue for r = k\ then 
Ck(afi)ka = Cfc+i in reverse; hence 

C*+i(ai8)*+1a = Gk(afi)ka(afi)k^a = Ckfia = Ck+2 

in reverse; hence the result is t rue for r = k + 1. The result now follows 
by induction for positive values of r. When r — — s (s positive) we have 
(afi)ra = (fia)s~1fi1 and we use a similar inductive proof on 5. 

T H E O R E M 7.2. Suppose n is even. Let a and fi denote the half-turns with 
mates P, Q reversing C0 and C-\ respectively. Then for r = . . . , — 1 , 0 , 1 , . . . 

(a) Crfia = C r + 2 directly; 
(b) (afi)Ta reverses C r . 

Proof, (a) Since a reverses Co and maps Q to P, it follows t h a t a maps 
Co*3 to Cop in reverse, i.e., a maps C_i to Ci in reverse. Hence C_i/3a = Ci 
directly. Since 0a maps P and Q to themselves, we now proceed by induc­
tion as in the proof of Theorem 7.1(a) . 

(b) T h e result is t rue for r = 0. Suppose it is t rue for r = k; then 
(a/3)ka reverses C* and maps P to Q\ hence it maps Ck

p to Ck
Q in reverse, 

i.e., Ck+i(aP)ka = C/;_r, hence 

C*+i(aj8)*+1a = Cfc-ijSa = C /c+1; 

hence the result is t rue for r = k + 1. T h e result now follows by induction 
for positive values of r. When r — —s(s positive) we have 

(aP)ra = (0a)*-lP, 

and we use a similar inductive proof on 5. 

I t is proved in [7, Section 8] tha t , when P is a t infinity, there is a 
dilation (or homothety) with centre Q mapping C r to C r + 2 directly; the 
proof is valid for all n ^ 3. W e have now shown t h a t this dilation is 
independent of r and is equal to fia. Here is an al ternat ive proof of the 
existence of the dilation. 

T H E O R E M 7.3. When P is at infinity, fia is a dilation with centre Q. 

Proof. When P is a t infinity, fia is a dilative rotat ion (a dilation with 
centre Q followed by a rotat ion about Q) ; this follows from the remarks 
preceding Lemma 2.1. Let (X)0 be any circle of Co. Then the points 
(X)op = (X)i and (\)0

Q = (X)_i are corresponding points of Ci and C_i; 
P and (X)i are inverse with respect to (X)0, and so are Q and (X)_i. Hence 
Pi (Mi> QJ (M- i l i e °n a circle orthogonal to (X)0. Hence Q, (X)i, (X)_i are 
collinear when P is a t infinity. Now fia maps (X)_i to (X)i, and (X)_i is 
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any point of C_i. Hence the angle of rotation in fia is either 0° or 180°; 
hence fia is a dilation with positive or negative constant. 

It is also proved in [7, Section 8] that, when P is at infinity, all the 
circles in all the links of a chain subtend the same angle (real or imaginary) 
at Q. Here is another proof of this result interpreted as a result in inver-
sive (rather than Euclidean) geometry. Suppose the circle c subtends an 
angle 2X at Q, and write M = \ir — X. Let the circle through P and Q 
orthogonal to c (i.e., the line joining Q to the centre of c) meet c at F and 
G. Then the cross-ratio (PQ, FG) has the value tan2 \\x or cot2 \\x. We call 
this the cross-ratio {PQ, c) or (QP, c) ; it is an inversive invariant, and has 
two values which are inverses of each other. Thus the result at the begin­
ning of this paragraph is equivalent to: 

THEOREM 7.4. The cross-ratio {PQ, c) is the same for all circles c in the 
links of an infinite chain. 

Proof. Given an infinite chain of CL3s or CL4s with opposite poles P 
and Q, we can embed this in a CL5 with opposite poles P and Q (Theorem 
6.3); an infinite chain of Chns (n > 5) contains * 'overlapping" infinite 
chains of CL 5s. Hence we need only prove the result for n = 5. (Note. 
It may be thought preferable to prove the result first in the more basic 
situation when n = 3, as in [7, Section 8]; then other infinite chains con­
tain "overlapping" CL3s. However, the present proof comes naturally 
at this stage in the development. If P, Q are opposite poles of the CL3 
(ABCD), with P at infinity, then Q is the isotopic point of ABCD [9]). 

Consider any CL4 D contained in the CL5 Co, and let c, d be opposite 
circles in D. There exists a half-turn y with mates P, Q interchanging c 
and d. Since half-turns preserve cross-ratios, we have (PQ, c) = (QP, d). 
Now Co contains ten CL4s, and any two circles e, f in C0 are either 
opposite in some CL4 so that (PQ, e) = (QP,f), or there exists a circle 
g such that e, g are opposite in a CL4 and g, f are opposite in a CL4 so 
that (PQ, e) = (QP, g) = (PQ, f). Hence (PQ, c) is the same for all 
circles in Co. 

Now Coo: = Ci, and P, Q are mates in a. Hence (PQ, c) = (QP, cot) 
for all circles c in Co, so that (PQ, c) is the same for all circles in Co and 
Ci. The same is true for any two successive links in the chain, so the 
result is proved. 

8. Numerical identities. Let C0 be a link in a chain with opposite 
poles P and Q\ let A be any point of Co, and cx, . . . , cn the circles of C0 

through A. If we invert A to infinity, C\, . . . , cn become tangents to a 
conic with foci P, Q (Theorem 6.3). Let e denote the eccentricity of this 
conic. Let d denote the dilation factor of the dilation fia (when P is at 
infinity), and let k denote the common cross-ratio (PQ, c) where c is any 
circle of Co-
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THEOREM 8.1. 

d = 
(1 + k)2 

e = 
1 + k 
1 - k 

Proof. Let c be one of the circles through A ; invert A to infinity, so that 
c is a line, and let the reflections of P , Q in c be A', A" (Fig. 3). Then the 
circle PQA"Ar is orthogonal to c and meets c at F, G, say. Also A'', ^4" 
are the points of Ci, C_i corresponding to c in Co, so that A" fia = ^4'. 
Hence k = (PC, ^G) = CP*(?, Ooo), and d = (A'A", QP) as we see by 
inverting P to infinity; hence d = ( ^ M " , ÇP*). Write OP* = - 0 4 * = £, 
0 (2= - 0 . 4 " = g.Then 

k = p/q and d = (p + qYl^pq = (1 + fc)2/4£. 

The centre of the conic with foci P, Q touching c is C (Fig. 4) and 0, P 
lie on the auxiliary circle. Hence e = CP/CR = QP/QA'. Also 

(4'i4' , GP) = 4 *4£ 
By Ptolemy's theorem 

QP • A'A" = PA" • QA' - A'P • A"Q 

i.e., QP2 = (1 - dr^QA'*. Hence 

(1 - d~l)PA" • QA', 

-g£-<i-o 
so 

e = 
1 - k 
1 + k 

Figures 3 and 4 show the case e < 1, with P and Q on the same side of c. 
When e > 1, P and Q are on opposite sides of c, and k and d are both 
negative; certain signs have to be changed in the above proof, but the 
results are the same. 
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We saw in Section 5 that the case e = 1 cannot occur. 

COROLLARY 1. The eccentricity of the conic is independent of the point A 
used to define it. 

COROLLARY 2. When k = — 3 ± 2 \ /2 , we have e = y/2 and d = — 1. 
Thus the conic is a rectangular hyperbola, and fia is a half-turn. Hence the 
associated chain has only four distinct links. 

9. A converse result about CL6s. One of the results contained in 
Theorem 6.1 is: if a CL6 has poles, then there exists a half-turn reversing 
the CL6. We now prove the converse. 

THEOREM 9.1. If there exists a half-turn reversing a CL6, then the CL6 
has poles. 

Proof. We use the standard notation described in Section 4. The CL6 
contains a CL4 

(An A25 Ar» A4» \ , 
\ ^ 2 3 4 5 AuVo ^41245 A1235/ 

where four points in the same row, or any two points in the top row and 
the points not beneath them in the bottom row, are concyclic. By 
Theorem 6.1 (iii) there exists a half-turn (which preserves cross-ratios) 
mapping each point of this CL4 to the opposite point; hence 

(AnAïS, A^A^) = (^4 2345^4 1345, ^4 1245^4 123ô)-

By hypothesis there exists a half-turn mapping each point of the CL6 to 
to the opposite point, so 

(A 2345^4 1345, A 1245^4 i23ô) == (A \$A 26, A uA 46) . 

Hence 

( 1 ) ( ^ 1 5 ^ 2 5 , ^ 3 5 ^ 4 5 ) = ( ^ 1 6 ^ 2 6 , ^ 3 6 ^ 4 6 ) . 

Now take A to be at infinity, so that the circles cu • • • , c* become lines. 
Then (1) states that the cross-ratios of the points in which cu c2, c$, C\ 
cut c5 and c6 are equal. Hence Ci, . . . , c6 touch a conic. Hence by Section 5 
and Theorem 6.1 (i) the CL6 has poles. 

I do not know whether there is a corresponding result for CL2m's 
when m > 3. 

10. Half-turns associated with sub-configurations. Suppose n is 
even. Let C(n) be a CLn with opposite poles P and Q. Then there exists 
a half-turn a(n) that reverses C(n). Now C(n) contains sub-configura­
tions C(w), each with opposite poles P and Q, and each with an associated 
half-turn a(m) when m is even. (Different C(m)'s for the same value of m 
have different associated half-turns.) We shall show that there are many 
ways in which the half-turns of type a(m) can be multiplied together to 
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give a(n). Such products must contain an odd number of half-turns, since 
each half-turn interchanges P and Q. The situation when one or both of 
m and n is odd will also be discussed briefly. 

We first consider a method of writing down the points of any CLw 
contained in a CLn, then we consider the effect of the various half-turns 
on connected pairs of points, before investigating products of half-turns. 
It will frequently be much clearer if we illustrate a general situation by 
means of an example. 

Any CLm contained in a CLn (m < n\ here m and n can be odd or 
even) is completely determined by m of the circles through a point of 
the CLn. The CLn contains 2n~l points, and the CLm contains 2m~l 

points, so the number of CLm's contained in a CLn is 

(n)2n~1/2m~1 = \ n )2n~m 

\m) \m) 

Take n = 10, m = 4. Using the notation of Section 6, the points of a 
CLIO can be denoted by even subsets (i.e., subsets with an even number 
of elements) of the set of symbols {1,2, . . . , 8, 9, X]. Choose any four of 
these symbols, say 1, 2, 3, 4, and any fixed subset of the remaining 
symbols, say 579X .Then the subsets 

(579X) (12579Z) (13579Z) (14579Z) 
(1234579X) (34579X) (24579Z) (23579X) 

are the points of a CL4: we have adjoined to 579X all the even subsets of 
1234. We denote this CL4 by 56789X, since 6 and 8 are excluded from 
the fixed subset. If the fixed subset is odd, say 78X, then the points of 
the corresponding CL4, denoted by 56789X, are 

(178Z) (278Z) (378Z) (478Z) 

(23478Z) (13478Z) (12478X) (12378X). 

In the general case, we can choose m symbols out of n in ( I ways, and 
\rnj 

the fixed subset of the remaining symbols in 2n~m ways, giving 

CLra's. Thus all CLw's contained in a CLn are obtained in this way. 
A connected pair (of points) in a CLn is a pair of points of the CLw 

lying on twro circles of the CL n (no pair of points lies on just one circle, 
or on more than two circles) ; a connected pair and the two circles form 
a CL2, so connected pairs are typified by the two examples 

(579Z), (12579Z) and (178X), (278Z). 

For convenience we shall deal only with connected pairs of the second 
type, in which the two subsets differ in one symbol only. 

Within our CLIO, the connected pair (178Z), (278Z), which is de-
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noted by 3456789X, is contained in various CL6s, for instance in 

(2) 3456, 3567, 4789 and 578X. 

If the CLIO has opposite poles P and Q, all the CL6s have the same 
opposite poles, and the half-turn associated with a CL6 maps the con­
nected pair to the opposite connected pair in the CL6; in the four examples 
in (2) above, the pairs opposite to (178X), (278X) are 

(29), (19); (2479), (1479); (235678), (135678); 
(2346789X), (1346789X). 

The effect of the half-turn in each case is to interchange 1 and 2 and to 
"change" four of the remaining symbols (i.e., to remove p symbols and 
add q new symbols, where p + q = 4) ; starting with this particular con­
nected pair we cannot remove four symbols, but with other pairs we can 
clearly do this. It is easily seen that every a(6) has this type of effect on 
a connected pair. 

Similarly the effect of a half-turn of type a(m) (m even) on the pair 
(1 . . .), (2 . . .) is to interchange 1 and 2 and ''change" m — 2 of the 
remaining symbols. Conversely, if two connected pairs (of the second 
type) are obtained from each other in this way, then there is a half-turn 
of type a(m) mapping them to each other. 

THEOREM 10.1. Let C(n) be a CLn with opposite poles P and Q. If 
n — 4&, then a(n) can be expressed as the product of 2k — 1 half-turns 
of type a (4) ; if n = 4& + 2, then a(n) can be expressed as the product of 
2& + 1 half-turns of type a (4c). 

Proof. Here again, examples will illustrate the general situation. 
n = 8. The connected pair (18), (28) is mapped successively by three 

a(4) 's ,a i , a2, «3 say, to (23), (13); (1345), (2345); (234567), (134567). 
All the half-turns interchange P and Q, so 0:10:2̂ 3 is a half-turn (Lemma 
2.1) mapping (18), (28) to (234567), (134567). Now «(8) has the 
same effect on (18), (28). Hence by Lemma 2.2 aia2a^ = a(8). 

n = 10. The connected pair (IX), (2X) is mapped successively by 
five a(4)'s, alf . . . , ab say, to (24), (14); (13), (23); (2345), (1345) ; 
(134567), (234567); (23456789), (13456789). Again aia2 ... a5 is a half-
turn (by a corollary of Lemma 2.1) mapping (IX), (2X) to (23456789), 
(13456789), and a(10) has the same effect on (IX), (2X). Hence by 
Lemma 2.2 

0:10:2 . . . «5 = a ( 1 0 ) . 

THEOREM 10.2. Let C(n) be a CLn with opposite poles P and Q, n even. 
Then a(n) can be expressed as the product of three a(n — 2)'s. 

Proof. Take n = 10. Using three a(8)'s, we can successively map (IX), 
(2X) to (2456789X), (1456789X); (19), (29); (23456789), (13456789). 
Now proceed as in the proof of Theorem 10.1. 
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Associated with C(w) and its sub-configurations C(m) are the con­
figuration C(n)p = C(w)' and its sub-configurations C(m)p = C(m)'. 
When m or n is odd, the associated half-turn a(w) ora(w) maps C(w) or 
C(w) to C(ra)' or C(w)' in reverse. The previous analysis of the effects 
of half-turns is still valid, with suitable modifications. For instance, when 
n = 10 there exist two a(5)'s, <*i(5) and a2(5) say, and an a(4), mapping 
(IX), (2X) successively to (2345X)', (1345X)'; (1345678X), (2345678X) ; 
(23456789), (13456789), so that 

<*i(5)a2(5)a(4) = a(10). 

This discussion should be sufficient to indicate that many identities 
exist between products of a (m) 's. 

11. Successive l inks when n is even. When n is odd, successive links 
of an infinite chain are inversively isomorphic, since there is a half-turn 
mapping them to each other (Theorem 7.1). When n is even, alternate 
links are inversively isomorphic, since CrPa = Cr+2 (Theorem 7.2), but 
the example in figure 5 shows that successive links need not be isomorphic 
when n is even. The CL4 C has four pairs of opposite points A, A''; 
B, B'\ C, C"; A D'. The pole P is at infinity, and the points of C p (the 
centres of the circles of C) are W, W'\ X, X'; Y, F ' ; Z, Z'. Now A, A', 
B, B' are concyclic; so are C, C, Df D\ and the two circles are orthogonal. 
The only concyclic pairs of opposite points of C p are W, W, Z, Z' and 
X, X', Y, Y'\ these two circles are not orthogonal, so C and Cp are not 
inversively isomorphic. 

FIGURE 5 
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