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Postestimation Uncertainty in
Limited Dependent Variable Models

Michael C. Herron
Northwestern University

Many political science research articles that use limited dependent variable models re-
port estimated quantities, in particular, fitted probabilities, predicted probabilities, and
functions of such probabilities, without indicating that such estimates are subject to un-
certainty. This practice, along with the reporting of “percentage correctly predicted,” can
overstate the precision of reported results. In light of this, the present article describes
a variety of measures of uncertainty that authors can include alongside estimates gener-
ated by limited dependent variable models. It also proposes an alternative to “percentage
correctly predicted” and illustrates its calculations with congressional cosponsorship data
from Krehbiel (1995).

1 Introduction

It is the contention of this article that estimates from limited dependent variable models
should never be reported without some indication that they are subject to uncertainty. It is
common, however, for political science research articles that use limited dependent variable
models to report estimated quantities, in particular fitted probabilities, predicted probabil-
ities, and functions of such probabilities, without measures of uncertainty. Consequently,
these estimates appear to be more precise than they actually are. At best, model estimates re-
ported without measures of uncertainty leave readers agnostic over matters of interpretation;
at worst, such estimates overstate precision and can unintentionally mislead.

This article consists of two parts, each of which is motivated by the importance of mea-
sures of uncertainty insofar as they pertain to estimates produced by limited dependent
variable models. The first part describes how to calculate standard errors and confidence
intervals for fitted probabilities, predicted probabilities, and functions of these probabili-
ties. The second argues that a common statistic, “percentage correctly predicted,” that is
frequently used to assess the fit of limited dependent variable models is almost always
reported in a way that makes it appear more precise than it actually is. In place of “percent-
age correctly predicted,” this article proposes and justifies an alternative statistic which is
theoretically grounded and does not overstate precision.

Limited dependent variable models, such as probit, logit, multinomial probit, and so
forth, are used by quantitative researchers when a dependent variable of interest can take on

Author’s note:The author thanks Keith Krehbiel for comments and data and thanks Gary King, Jonathan Nagler,
Jasjeet Sekhon, Wendy Tam, Craig Volden, and three anonymous referees for helpful comments on early drafts
of this article. Software code is available at thePolitical Analysiswebsite.
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only one of several possible values. There is a vast body of literature on different types of
limited dependent variable models, also known as categorical data models (Maddala 1983;
Greene 1997; Agresti 1996). Within the political science literature, the most common
limited dependent variable model is probably the logit although the probit is becoming
increasingly popular. While political science research has also used other models in the
limited dependent variable class (e.g., Alvarez and Brehm 1995, 1998; Alvarez and Nagler
1997; Bailey and Brady 1998; Lacy and Burden 1999), for ease of exposition this article’s
technical discussion focuses solely on the probit model. Similarly, the article’s discussion
of, critique of, and suggested replacement for “percentage correctly predicted” is based
on the probit framework. However, the article’s general points about uncertainty, estimate
precision, and problems associated with “percentage correctly predicted” apply to all types
of limited dependent variable models.1

The remainder of this article is organized as follows. The next section describes the basic
probit model and highlights probit-based quantities that are typically of interest to quanti-
tative political researchers. The article then discusses fitted and predicted probabilities in
probit models, explains how they should be reported, and describes how standard errors
and confidence intervals for such probabilities can be constructed. The subsequent section
elaborates on the model fit statistic known as “percentage correctly predicted,” explains
how the statistic can overstate the accuracy of probit results, and proposes an alternative
statistic that does not overstate precision. After briefly describing how the probit results
presented in this article can be generalized to multinomial models and commenting on the
difference between in-sample and out-of-sample estimates, the calculations discussed here
are illustrated using data from Krehbiel (1995). The last section summarizes and concludes.

2 The Basic Probit Model

Let y∗i denote an unobserved, latent variable indexed by observationi , and letyi represent
an observed, dichotomous dependent variable whose value, either 0 or 1, depends ony∗i . In
accordance with standard usage, assume thatyi = 1 if and only if y∗i ≥ 0 andyi = 0 other-
wise. Suppose thaty∗i = x′iβ+ εi , wherexi is a covariate vector unique to observationi,β
is a parameter vector common to all observations, andεi is a standard normal disturbance.2

Given the set of assumptions, the probabilitypi that yi = 1 is

pi = P(y∗i ≥ 0)= P(x′iβ + εi ≥ 0)= P(εi ≥ −x′iβ) = 1−8(−x′iβ) (1)

where8(·) denotes the standard normal distribution function.
Based on the fact thatyi is a Bernoulli random variable, the following loglikelihood

function can be used to estimateβ:

L(β) =
∑

i

((1− yi ) ln[8(−x′iβ)] + yi ln[1−8(−x′iβ)]) (2)

β̂ is chosen as the unique maximizer of the expression in Eq. (2), and letΣ̂ denote the

1The article’s comments about precision and measures of uncertainty apply to statistical models in general.
However, for reasons that are unclear, political science research that relies on limited dependent variable models
is particularly problematic with respect to its frequent reporting of estimates without measures of uncertainty.

2It is the standard normal distributional assumption onεi that characterizes a probit model. Had it been assumed
thatεi had a logistic distribution, the resulting model would be a logit.
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resulting covariance matrix.3 Under standard regularity conditions, it follows that

(β − β̂)
a∼ N(0, Σ̂) (3)

There are two interpretations of the asymptotic result in Eq. (3). The frequentist inter-
pretation is thatβ is fixed, the estimatêβ is random, and̂Σ reflects uncertainty about̂β.
To Bayesians and what Tanner (1993, p. 16) calls likelihoodists,β̂ is fixed and the posterior
distribution ofβ is approximately normal with mean vectorβ̂ and covariance matrix̂Σ.
This article adopts the latter perspective and considersβ to be a random variable whose
posterior distribution is characterized byβ

a∼ N(β̂, Σ̂). The importance of this expression
becomes apparent when it is explained how functions of probit estimates can be calculated
by sampling from the normal distribution with mean vectorβ̂ and covariance matrix̂Σ.
See King et al. (1998) on the interpretation of Eq. (3).

Substituting the estimatêβ for β in Eq. (1) yields fitted probabilities,̂pi . This “plug-in”
notion is the same idea used to calculate fitted values in ordinary least squares models. In
particular,

p̂i = 1−8(−x′i β̂) (4)

At this point, the basic probit model and its likelihood function have been set up, and
three estimated quantities,β̂, Σ̂, and p̂i , have been described. In the following sections
of the article, it is argued that the way in which many political science research articles
report values of̂pi and functions of these values can be misleading with respect to estimate
precision.

3 Consequences of Postestimation Uncertainty

After probit estimation,β is a random variable. This is noted in Eq. (3), which indicates
that residual or postestimation uncertainty surroundingβ is captured by the posterior mean
vectorβ̂ and covariance matrix̂Σ. Consequently, a statement such asβ = β̂ would over-
state the precision with whichβ is known. Moreover, ifβ is a random variable after
estimation, then functions ofβ are random as well. In particular, randomness inβ implies
that the values of such functions cannot be known with complete certainty even after probit
estimation. Therefore, when researchers estimate probit models and report functions of
estimatedβ vectors, it is incumbent on them to identify residual uncertainty by also reporting
standard errors and/or confidence intervals for the estimated function values.

From Eq. (4), it can be seen thatp̂i , the estimate ofpi , is a function ofβ where the
estimateβ̂ has been substituted for the parameter vectorβ. Perhaps the most common way
to derive a confidence interval forp̂i is, first, to use the delta method to estimate its standard
error and, second, to specify the confidence interval based on the standard error. The delta
method is a general approximation procedure for calculating the standard error of a possibly
nonlinear function of a vector of random variables, and from Eq. (4) it can be seen thatp̂i

is indeed a nonlinear function ofβ (when substituted for bŷβ). The mathematics of the
delta method can be seen via the following simple example.4

3Σ̂ can be estimated in a variety of fashions, and the details of these calculations are beyond the scope of this
article. See, for example, Greene (1997, Chap. 4).

4The theory behind the delta method is explained in most textbooks on statistics. See, for example, Rice (1988,
pp. 142–147) and Greene (1997, p. 124).
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Let γ denote a scalar random variable with meanµ and varianceσ 2 and let f (·) be a
differentiable function. A first-order Taylor-series approximation off (γ ) aboutµ yields

f (γ ) ≈ f (µ)+ f ′(µ)(γ − µ) (5)

Therefore,

Var[ f (γ )] ≈ Var[ f ′(µ)(γ − µ)]
(6)

≈ [ f ′(µ)]2σ 2

Eq. (6) illustrates the well-known result that the variance of a functionf (·) of a random
variableγ can be approximated based on its first derivativef ′(·) and the varianceσ 2 of the
underlying random variable. Extensions of Eq. (6) to vector-valued random variables are
straightforward. Rather than containing a single first derivative as in Eq. (6), as illustrated
below such vector-valued extensions include a matrix of first partial derivatives.

Suppose that there arek covariates in each observation’sxi vector so that̂β, the posterior
mean ofβ (or the estimate ofβ), is a k vector. This means that̂pi is a function of a
k-dimensional random vector. Letxi j denote the (scalar) value of thej th covariate for
observationi , where 1≤ j ≤ k. Similarly, let β̂ j denote thej th element ofβ̂ andGi the
row vector of first derivatives of̂pi with respect toβ̂. Sinceβ̂ hask elements,Gi hask
elements as well, and letGi j denote thej th element ofGi . Then,

Gi j = ∂ p̂i

∂β̂ j
= ∂[1−8(−x′i β̂)]

∂β̂ j
= xi j φ(−x′i β̂) (7)

whereφ(·) is the standard normal density function and the right-hand side of Eq. (4) sub-
stitutes forp̂i . According to the delta method as generalized to ak vector, the approximate
variance ofp̂i is Gi Σ̂G′i . Whenk = 1,Gi andΣ̂ are scalars, and this expression simplifies
to that in Eq. (6). In general, though,Gi is a 1× k vector,Σ̂ is ak× k matrix, andG′i is a
k× 1 vector, soGi Σ̂G′i is a scalar.

Note the presence inGi Σ̂G′i of Σ̂, the covariance matrix generated from maximizing
the probit loglikelihood function in Eq. (2). The presence ofΣ̂ implies that covariances
between the individual elements of theβ̂ vector are internalized into the delta method’s
variance calculation.

A researcher seeking a 95% confidence interval forp̂i would use (̂pi − 1.96σ̂i , p̂i +
1.96σ̂i ), where ˆσi = (Gi Σ̂G′i )

1
2 . If, say, such a confidence interval didnotcontain 0.5, the

null hypothesispi = 0.5 could be rejected at the 0.05 level. Similarly, at statistic for p̂i

could be calculated by dividinĝpi by its estimated standard error ˆσi . If the t statistic were
greater in magnitude than 1.96, one could argue thatpi was significantly different from
zero at the 0.05 level. See Bailey and Brady (1998) for an example of these calculations.5

5Many computer packages automatically implement the delta method when asked to evaluate the variance of
a function of estimated parameters, and these packages allow users to avoid the potentially tedious derivative
calculations akin to those in Eq. (7). In Stata version 6, the commandtestnlimplements the delta method. In
TSP, the appropriate command isanalyz. For example, to usetestnlin Stata a researcher would estimate a probit
regression using theprobit command, define an equation usingeq, and then usetestnlon the equation. The Stata
commanddprobitautomatically uses the delta method to calculate the standard errors of fitted probabilities. To
useanalyzfrom within TSP, a researcher would estimate a probit model using either the TSP commandprobit or
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A confidence interval for̂pi can also be generated with a simulation where such an ap-
proach involves drawing random vectors from the normal distribution in Eq. (3) and then
computingp̂i repeatedly.6 The main reason that a researcher might want to use a simulation
as opposed to the delta method is because derivatives, for example, those in Eq. (7), of-
ten necessitate tedious calculations. Furthermore, the delta method requires a linearization
[see Eq. (5)] which can result in inaccuracies. On the other hand, a drawback to simulations
is that replication becomes troublesome; namely, simulating the same confidence interval
twice will generate two slightly different intervals. Moreover, accurate simulations often
require a great number of iterations. Choosing between the delta method and a simula-
tion therefore involves a trade-off among accuracy, computing speed, and importance of
replicability.

Steps for a simulation that can be used to estimate a confidence interval forp̂i are as
follows.

1. Estimateβ̂ andΣ̂ using the loglikelihood function in Eq. (2).

2. Repeat the following stepsS times (e.g.,S= 5000), indexing each iteration byl .

(a) Draw a vector̃β from a multivariate normal distribution with mean vectorβ̂ and
covariance matrix̂Σ.

(b) Calculatep̂l
i = 1−8(−x′i β̃)

3. Use the percentiles of the histogram ofp̂l
i , l = 1, . . . , S, to form a confidence interval

for p̂i .

For example, to construct a 95% confidence interval forp̂i , a researcher would determine
the 0.025 and the 0.975 percentiles of the distribution ofp̂l

i . More generally, forα ∈ (0, 1),
a (1− α) confidence interval could be derived using theα/2 and (1− α)/2 percentiles of
the distribution ofp̂l

i , l = 1, . . . , S.7

In the brief discussion of the delta method presented earlier, it was pointed out that the
delta method variance calculation internalizes the covariances of the individual elements
of theβ vector. The same is true of the aforementioned simulation procedure. In partic-
ular, in each iteration of the simulation procedure,β̃ is drawn from a multivariate normal
distribution with covariance matrix̂Σ. This implies that covariance between the elements
of the estimatedβ vector are not ignored when using the simulation procedure to derive a
variance estimate for̂pi .

Consequences for̂pi of changes in the covariate vectorxi should also be accompanied
by standard errors or confidence intervals. For example, when studying legislative voting,
a researcher might consider the impact onp̂i of a change ini ’s political party membership.
Whereasxi denotes observationi ’s original covariate vector, letx∗i be a modification ofxi .
To ascertain the impact on̂pi of a change fromxi to x∗i , the following simulation could be
used.

1. Estimateβ̂ andΣ̂ using the loglikelihood function in Eq. (2).

2. Repeat the following procedureS times, indexing each iteration byl .

ml and would then define a function with the commandfrml. The function would be the probability of interest,
that is, a function of estimated parameters. Thenanalyzwould be used on the defined formula and a standard
error for the probability would be produced.

6Similar simulations and a discussion of them are given by Katz and King (1997) and King et al. (1998).
7Increasing the number of simulations beyondS = 5000 did not appreciably change the results in the latter
section of this article. There may be situations, though, in which a greater number of simulations is necessary.
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(a) Draw a vector̃β from a multivariate normal distribution with mean vectorβ̂ and
covariance matrix̂Σ.

(b) Calculatep̂l
i = 1−8(−x′i β̃) and p̂l ,∗

i = 1−8(−x∗′i β̃).
(c) Letδl = p̂l

i − p̂l ,∗
i , whereδl is the difference between the probability based onβ̃

andxi and the probability based oñβ and the modified covariate vectorx∗i .

3. After calculatingS values ofδl , percentiles of its distribution can be used to form a
confidence interval for the impact on̂pi of a change fromxi to x∗i .

For example, does a percentile-based 95% confidence interval forδl contain 0? If so, then
it follows that a researcher could not reject the null hypothesis that a change fromxi to x∗i
has no impact on̂pi .

Finally, researchers often wish to estimatep̂i for the average observation. What is fre-
quently done is to calculate a covariate vectorx̄ based on averagingxi across all observations
i . Then, define

ˆ̄p = 1−8(−x̄′β̂) (8)

Reports of ˆ̄p, an estimate that depends onβ (whose estimated or posterior mean isβ̂),
should always be accompanied by standard errors or confidence intervals.

A 95% confidence interval for̂̄p can be generated using the same simulation process
described for̂pi . Similarly, to assess the impact onˆ̄p of changes in̄x, a researcher would
create a modified average covariate vector,x̄∗, sampleS times from a multivariate normal
distribution with mean vector̂β and covariance matrix̂Σ, repeatedly calculatē̂p− ˆ̄p∗ based
on Srandom draws, and then form a confidence interval forˆ̄p− ˆ̄p∗ using the percentiles of
the simulated distribution. If, for example, the confidence interval did not contain 0, then
the null hypothesiŝ̄p = ˆ̄p∗ could be rejected.

In addition, the delta method can be used to approximate the standard error ofˆ̄p− ˆ̄p∗,
and then a researcher could calculate at statistic based on̂̄p− ˆ̄p∗ divided by its approximate
standard error. If, say, the magnitude of thet statistic were greater than the critical value of
1.96, then the researcher could reject at the 0.05 level the null hypothesis thatˆ̄p = ˆ̄p∗.

In particular, letG represent thek vector of first derivatives of̄̂p− ˆ̄p∗ with respect tôβ.
The appropriate delta method equation is

G j = ∂( ˆ̄p− ˆ̄p∗)
∂β̂ j

= ∂[−8(−x̄′β̂)+8(−x̄∗′β̂)]

∂β̂ j
= x̄ jφ(−x̄′β̂)− x̄∗j φ(−x̄∗′β̂) (9)

wherex̄ j is the j th element of̄x, x̄∗j is the j th element of̄x∗,G j is the j th element ofG, and
1≤ j ≤ k. The approximate variance ˆσ 2 of ˆ̄p− ˆ̄p∗ is GΣ̂G′, and the relevantt statistic is
( ˆ̄p− ˆ̄p∗)/σ̂ . Note that Eq. (9) is very similar to Eq. (7): the only difference between the
two is the function being differentiated.

4 Fitted Probabilities and “Percentage Correctly Predicted”

Researchers who estimate probit models often seek a one-number summary of model fit,
something akin to theR2 value frequently reported alongside linear regression results.
Within political science, probably the most common and popular one-number summary
of probit model fit is the statistic known as “percentage correctly predicted” (PCP). This
article now addresses PCP, critiques the statistic on precision grounds, and then presents an
alternative to it.
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The use of one-number model fit statistics like PCP has advantages as well as drawbacks.
The most advantageous feature of such succinct summaries is simply that they reduce the
complexity of a statistical model to a single number. This can lead to one-number model fit
statistics that are comparable across different models, although not all such statistics can be
compared in this fashion. On the other hand, the primary drawback of one-number model
fit summaries like PCP is that their concise nature leads them to ignore the many facets of
model fit. Namely, as illustrated in the following discussion of PCP, any statistic that boils
down a model based on a large number of observations and covariates to a single number is
practically bound to discard useful information. Beyond PCP, various other one-number fit
statistics for limited dependent variable models are discussed by Train (1986) and Menard
(1995). The use of model deviance as a fit statistic is discussed by McCullagh and Nelder
(1989, Chap. 4).

In a probit model with excellent fit,̂pi values close to 1 should have associatedyi values
of 1. This is becausêpi is an estimate ofpi , the probability thatyi = 1. Similarly, p̂i

values close to 0 should be associated withyi = 0. In a loose sense, when there are many
observations that have eitherp̂i close to 1 andyi = 1 or p̂i close to 0 andyi = 0, it is
logical to conclude that the associated probit model provides a good fit for the data being
studied.

Let ŷi denote observationi ’s fitted category. Asyi is 0 or 1, the same applies tôyi .
Assuming for the moment thatβ = β̂ (this strong assumption is relaxed shortly), the
probability thatŷi = 1 is p̂i and the probability that̂yi = 0 is 1− p̂i . The expectation of
ŷi is

E(ŷi ) = 1× p̂i + 0× (1− p̂i ) = p̂i (10)

Note thatŷi is the realization of a random variable whose distribution depends on the fitted
probability p̂i . In other words, whilep̂i describes the distribution of̂yi , there is no way
to calculateŷi directly without additional assumptions that relate fitted probabilitiesp̂i to
fitted categorieŝyi . And, as can be seen from Eq. (10), the mean ofŷi is not a permissible
value of ŷi since p̂i must be 0 or 1.8

As defined in traditional usage, PCP for a probit model is the percentage of cases for
which ŷi = yi . Broadly speaking, the reason that researchers report PCP is because,ceteris
paribus, models with high PCP are preferable to those with low PCP.9 Since the calcula-
tion of PCP requires assessing whetheryi = ŷi for all observationsi , it follows that the
value of PCP cannot be calculated without specifyingŷi . This is a problem becauseŷi re-
mains unknown even with knowledge ofβ̂. Articles seeking to report PCP must somehow
manipulate knowledge of the distribution ofŷi into knowledge of̂yi itself.

PCP is typically defined by the following procedure.

1. Estimatêβ using the probit loglikelihood function in Eq. (2), and for each observation
i , calculatep̂i using Eq. (4).

2. For those observations witĥpi ≥ 0.5, setŷi = 1; otherwise set̂yi = 0.

8In ordinary least squares models, fitted values are calculated as expectations. The permissibility problem that
arises in probit models is not an issue in ordinary least squares models since in the latter there are no restrictions
on dependent variable values.

9The argument here is not that researchers use PCP to discriminate between competing models. Typically,
likelihood-ratio or Wald tests would be employed in this capacity. Researchers do, however, use PCP as a
measure of model accuracy or fit, and they have been known to trumpet high values of PCP as evidence of a
good model fit.
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3. Call each observationi with yi = ŷi a correct prediction. PCP is defined as the
percentage of observations that are correctly predicted.

PCP is a classification algorithm that depends on the estimateβ̂ and also depends on
a classifying rule based on̂pi ≥ 0.5.10 However, there are two problems associated with
the statistic. The first problem is somewhat minor and it pertains to PCP’s use of the word
“predicted.” In particular, PCP is an in-sample statistic because it is based on observations
with known values ofyi . Therefore, use of the word “predicted” in PCP is slightly inappro-
priate, as PCP does not attempt to assess the quality of out-of-sample predictions. While
it is arguable that PCP should actually be known as “percentage correctly classified”, for
compatibility with the existing statistical terminology, this article retains the PCP acronym.

The second problem with PCP is that its assignment rule forŷi can make PCP classifi-
cations appear more precise than they actually are. Again, consider the situation in which
β is assumed to be known exactly. Ifp̂i ≥ 0.5, it is appropriate to conclude that it ismore
likely that ŷi = 1 than it is that̂yi = 0. But it is potentially misleading to say thatp̂i ≥ 0.5
impliesŷi = 1. In fact, such an implication can be false. Even ifp̂i = 0.99, there is still a
1% chance that̂yi = 0. This subtlety is hidden by PCP, which makes it appear that probit
models are capable of assigning fitted categories, when, based on the estimate or posterior
meanβ̂ of β, they can only assign distributions over such categories.11

Broadly speaking, the reason that PCP can overstate probit model precision is that it
conflates abest guessof ŷi with knowledgeof ŷi . PCP disregards the possibility of errors
in best guesses when it assumes thatp̂i ≥ 0.5 implies ŷi = 1. Furthermore, PCP treats
p̂i = 0.51 andp̂i = 0.99 in the same fashion, this despite the fact that the former value of
p̂i says much less than the latter. Since a value ofp̂i close to1

2 indicates greater uncertainty
aboutŷi compared to a value of̂pi that is close to 1, it follows that PCP’s classification rule
can overstate precision.

Given PCP’s problem with precision, should research articles that use probit models
even report PCP? Because the classification rule that defines PCP can cover up model
uncertainty by treating fitted categories as known without error, it is the contention of
this article that researchers should not report the statistic. As described shortly, this article
proposes a modification of PCP that takes into consideration the randomness inherent inŷi .
This modification should be reported in lieu of standard PCP.

Before delving into the article’s proposed alternative to PCP, first consider the model fit
statistic known as “percentage reduction in error” (PRE). See Hagle and Mitchell (1992) and
Menard (1995) for details. Given a dichotomous dependent variable and a probit analysis
of it, PRE is based on a comparison of PCP with PMC, the percentage of observations in the
modal category of the observed data. For example, if a probit data set has 100 observations
andyi = 1 for 60 of them, then PMC= 0.6. PMC is a known quantity since it does not
depend on any estimated quantities.

Again, assuming thatβ = β̂, PRE is defined as

PRE= PCP− PMC

1− PMC
(11)

10Maximizing the probit loglikelihood in Eq. (2) will not necessarily lead to an estimateβ̂ that maximizes correct
classifications or predictions.

11This problem is even worse for multinomial models such as ordered probits. In such models, a fitted category
that comes from a process similar to PCP may not even reflect the category with the highest fitted probability.
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PRE seeks to compare the information provided by probit fitted categories with the clas-
sification errors a researcher would make if she naively assigned all fitted categories to
the modal category. If PCP is less than PMC, then the PCP-based classification errors are
actually greater than the classification errors a researcher would generate if she eschewed
probit estimation and classified observations based only on modal category.

However, since PRE is a function of PCP, the former carries with it the same precision
problems that accompany the latter statistic. In particular, PRE relies on calculations of
fitted categories that ignore randomness inŷi , and PRE can therefore understate the extent
of uncertainty surrounding probit results. Nonetheless, if a researcher reports PCP con-
trary to the recommendations of this article, PMC or PRE should always be reported as
well.

In lieu of reporting PCP, this article proposes that researchers report ePCP where “e”
stands for expected. ePCP is calculated in a manner which reflects the fact thatp̂i is
a probability and that researchers never know the value ofŷi exactly. In addition, the
derivation of ePCP recognizes that best guesses aboutŷi can be mistaken. Therefore, rather
than assuming thatp̂i ≥ 0.5 impliesŷi = 1, ePCP is defined as the sum over all observations
i of the probability that̂yi = yi . Given a data set of sizeN,

ePCP= 1

N

(∑
yi=1

p̂i +
∑
yi=0

(1− p̂i )

)
(12)

Suppose thatN = 3, y1 = 0, y2 = 1, andy3 = 1, and in addition, suppose thatp̂1 =
0.6, p̂2 = 0.6, andp̂3 = 0.8. Then, ePCP is13(0.4+0.6+0.8)= 0.6. PCP in this example
has a value of two-thirds, which, clearly, is greater than ePCP. This is not a general result,
however. It is possible that a given data set may have ePCP greater than PCP.

ePCP can be justified in two ways. First, suppose that one were to assign values ofŷi

for all observationsi by assuming that̂yi = 1 if p̂i ≥ 0.5 andŷi = 0 otherwise. As noted
earlier, this is a logical way to proceed, given thatp̂i ≥ 0.5 implies that the probability that
ŷi = 1 is at least as great as the probability thatŷi = 0. Were one to assign fitted valuesŷi

in such a manner, ePCP is theexpected percentage of correct predictions. In other words,
ePCP is the expected percentage of correct predictions given that one uses the assignment
rule that defines PCP.12

A second justification for ePCP is based on long-run frequencies. Suppose that a re-
searcher were to iterate repeatedly the assignment process for fitted categories in the fol-
lowing manner. On iterationj , for each observationi assume that̂yi = 1 with probability
p̂i and ŷi = 0 with probability 1− p̂i . Then, let CPj be the percentage of correct pre-
dictions on iterationj , and letCPn = 1/n

∑n
j=1 CPj be the average number of correct

predictions overn iterations (“CP” is used here to distinguish it from PCP). Since E(CPj )=
ePCP for eachj and since CPj is bounded, it follows from the strong law of large numbers
thatCPn→ ePCP almost surely asn → ∞. Importantly, the average number of correct
predictionsCPn will not in the long run equal PCP. By itself, this suggests that PCP may
be a problematic statistic with respect to model fit.

Note that ePCP, in contrast to PCP, distinguishes between large and small values ofp̂i .
Suppose for a given observationi thatyi = 1 and that̂pi = 0.99. In this scenario, guessing
that ŷi = 1 will be correct 99% of the time. Therefore,i ’s contribution to ePCP would be

12This is based on holdingβ fixed at its estimate of̂β. This is why the expectation of PCP, need not be concerned
with the nonlinearity of the normal distribution function.
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0.99, a number close to 1. However, werep̂i = 0.51, only 51% of the time would̂yi be
correct. In this case,i ’s contribution to ePCP would be 0.51.13

While the formula for ePCP in Eq. (12) relies on the estimate or posterior meanβ̂ through
p̂i , it does not allow for the fact that uncertainty overβ remains after probit estimation.
Recall the numerous caveats aboutβ = β̂ in the previous section. These caveats should be
taken into consideration when calculating a statistic based on fitted categories because fitted
categories are themselves a function ofβ, a random variable. Rather than calculating and
reporting ePCP as a single number between 0 and 1, a researcher could use the following
procedure to report a simulation-based confidence interval around ePCP.

1. Estimateβ̂ andΣ̂ using the loglikelihood function in Eq. (2).

2. Repeat the following stepsS times indexing each iteration byl .

(a) Draw a vector̃β from a multivariate normal distribution with mean vectorβ̂ and
covariance matrix̂Σ.

(b) For each observationi , define p̃i as the value ofpi whereβ̃ is used in place of
β. See Eq. (1).

(c) Using Eq. (12), calculate ePCP based onp̃i .
(d) Set ePCPl as the value of ePCP given the draw ofβ̃.

3. Examine a histogram of ePCPl , l = 1, . . . , S, and form a confidence interval for
ePCP based on the percentiles of this distribution.

After estimating a probit model, a valid way to describe the relation between observed
categories and fitted categories is with a confidence interval around ePCP. This is because
analysis of fitted categories requires consideration of two distinct levels of randomness. At
the top,ŷi is random and its distribution is determined by fitted probabilitiesp̂i . But, due
to the fact thatβ is a random variable even after probit estimation,p̂i remains uncertain as
well. Both these sources of randomness are internalized in the ePCP confidence interval,
but both are ignored in PCP.14

5 Extending ePCP Beyond Probit

To maintain a sense of continuity throughout the article, the discussion of fitted probabili-
ties p̂i , PCP, and ePCP has focused on the two-category probit model. This section briefly
describes how to extend the article’s calculations beyond two-category probit models. Ex-
tension to logit models is straightforward, as the only difference between probit and logit
is the presence of a logistically distributed error term.

For a multinomial limited dependent variable model, one would calculate ePCP based on
the number of categories in one’s model. For example, suppose that a researcher has a three-
category model, an estimated parameter vectorβ̂, and three relevant fitted probabilities,
p̂i,0, p̂i,1, and p̂i,2 such thatp̂i,0 + p̂i,1 + p̂i,2 = 1. Note the additional subscripts on fitted

13In a manner akin to PCP, PRE could be adjusted so that it reflects the fact that fitted categories are not known
without error. Furthermore, the denominator of PRE [see Eq. (11)] can be similarly adjusted. If PMC= α, then
with probabilityα each observation would be classified as falling in the modal category. This would provide an
ePCP-like framework for PRE and PMC.

14A similar one-number model fit statistic is pseudo-R2 as defined by McFadden (1974). The latter statistic is
automatically calculated by Stata when a user estimates a probit model. The prefix “pseudo” indicates that the
pseudo-R2 statistic used to evaluate probit model fit is in some sense similar to the familiarR2 common in
ordinary least squares regressions. Pseudo-R2 is by no means the only formulation of anR2-like fit statistic for
probit models, and various other measures are discussed by Maddala (1983, Chap. 2).
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probabilities when dealing with a model with more than two categories. If, for instance,
observationi were truly in categoryc for c ∈ {0, 1, 2}, the contribution to the multinomial
ePCP from observationi would be the value of̂pi,c. A confidence interval for the multinomial
ePCP could be generated by sampling from a multivariate normal distribution and repeatedly
calculating multinomial ePCP.

Similarly, extending the delta method to multinomial models requires only that the
function being differentiated in Eq. (7) or (9) be replaced by whatever probability ex-
pression is appropriate. Using simulations to generate confidence intervals for estimated
probabilities or changes in estimated probabilities is likewise straightforward. One would
repeatedly draw̃β from a multivariate normal distribution and compute probabilities based
on β̃. These steps follow logically and directly from the probit instructions described
earlier.

6 Out-of-Sample Predictions and Postestimation Uncertainty

Suppose that a researcher estimates a probit model for a group ofN observations based
on covariate dataxi and a categorical dependent variableyi . This producesβ̂, Σ̂, and
p̂i , i = 1, . . . , N. Now consider how this researcher can predict or forecast the categories
for T new observations for which neitheryi nor y∗i is observed. In particular, suppose that
the researcher wants to predict the fractionF of the T observations that haveyi = 1,
i = N + 1, . . . , N + T . This example, in contrast to the standard nomenclature for PCP,
reflects a logical use of the word “prediction.” The fractionF of interest pertains to an
out-of-sample group of observations that was not used to deriveβ̂.

There is a variety of situations in which out-of-sample predictions may be useful. One
such situation occurs when a researcher seeks to predict the voting behavior of individuals
who abstained in an election. Or a researcher might want to predict how members of
Congress who abstained from voting on a given bill would have cast their ballots conditional
on voting.

Another situation where out-of-sample predictions are used is cross-validation. A re-
searcher using cross-validation in a probit problem would divide a sample in half, estimate
β̂ based on the first half of the data set, and then “predict” the categories of the second
half of the observations based onβ̂ from the first half. In this case, “predict” is in quotes
because, in truth, the researcher actually knows the categories for the second half of the
observations. However, the notion of cross-validation is that the predicted categories for
the second half of the dataset should be as accurate as the correctly classified categories in
the first half.

For each of theT additional observations not used in estimatingβ̂, let ỹ∗i denote the
predicted value ofy∗i based on the estimatêβ. That is,ỹ∗i = x′i β̂, i = N + 1, . . . , N + T .
Based on Eq. (1), it might be tempting to posit thatỹ∗i ≥ 0 implies ỹi = 1. ThenF would
be defined as the fraction of theT observations that havẽy∗i ≥ 0.

Defining and reportingF using theỹ∗i ≥ 0 classification rule, however, would lead to
a prediction that overstates precision. Namely, this type of definition would disguise the
fact thatβ̂ is only an estimate ofβ and thatỹi is the realization of a random variable
whose distribution is characterized byỹ∗i . That is,P(ỹi = 1) = 8(ỹ∗i ), but it is not true
that ỹ∗i ≥ 0 implies ỹi = 1. Consequently,F should be estimated and reported using a
simulation similar to that used to characterize the ePCP confidence interval.

In particular, after derivinĝβ andΣ̂ usingxi andyi , i = 1, . . . , N, a researcher would
repeatedly draw a vector̃β from a multivariate normal distribution with mean vectorβ̂ and
covariance matrix̂Σ. For each observationi, i = N+1, . . . , N+T , definep̃i as the value
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of pi whereβ̃ is used in place ofβ. Then

Fj = 1

T

N+T∑
i=N+1

p̃i (13)

whereFj is the expected fraction of observations in category one. A histogram ofFj , j =
1, . . . , S can then be used to form a confidence interval forF based on the percentiles of
this distribution. The long-run interpretation of ePCP also applies to calculations ofFj .

The average of theS versions ofF is the point estimate of the fraction of observations
that are in category one, whereas the confidence interval aroundF recognizes that there
will always be uncertainty as to the fraction’s magnitude. Eq. (13) can be generalized in a
straightforward way to models with polychotomous dependent variables.

Within the political science literature, published predictions for category totals—this is
what F represents—are often not accompanied by measures of uncertainty. For example,
Alvarez and Nagler’s (1995) analysis of the 1992 American presidential election estimates
how Perot voters would have allocated themselves had Perot not run in 1992. Alvarez and
Nagler conclude that in such an instance 49.5% of actual Perot voters would have sided with
Bush and 50.5% would have opted for Clinton. These two predictions—49.5 and 50.5%—
are estimated quantities and therefore should be accompanied by confidence intervals or
standard errors.

7 Postestimation Uncertainty: Another Look at “A to Z”

A number of the calculations described in this article are now illustrated using data from
“Cosponsors and Wafflers from A to Z,” an article by Keith Krehbiel (1995) on the “A to
Z Spending Plan.”15 Table 2 of Krehbiel’s article reports probit estimates for an analysis
of the House members who chose to cosponsor this bill, formally known as H.R. 3266.
Of the 434 House members analyzed in Krehbiel’s article, 228 cosponsored the resolution.
Therefore, since 228/434≈ 0.525> 0.5, the modal category of House members consists
of cosponsors (i.e., PMC= 52.5%).

The independent variables that were used in Krehbiel’s analysis of H.R. 3266 cospon-
sors are a constant, a measure of House member liberalism published by Americans for
Democratic Action (ADA), a measure of fiscal conservatism published by the National
Taxpayers’ Union (NTU), an indicator variable for Democratic Party membership, a mea-
sure of Congressional seniority, the previous electoral margin, an indicator variable for
membership on the House Appropriations Committee, and an indicator variable for mem-
bership on the House Budget Committee. As specified in the Krehbiel article, the av-
erage House member has average seniority, average electoral margin, median ADA and
NTU scores, is nonpartisan, and is a member of neither the Appropriations nor the Budget
Committee.16

In his discussion of who cosponsored H.R. 3266, Krehbiel estimates five probit models
using different combinations of independent variables. For each model Krehbiel’s coeffi-
cient estimates were replicated, subject to a few minor coding errors, and this discussion

15Krehbiel was requested by the editor of theAmerican Journal of Political Scienceto include PCP in his article.
Krehbiel’s (1995) data are also the subject of Binder et al. (1998).

16Nonpartisan means that the indicator variable for Democratic Party membership is set to the average value (the
fraction of individuals who are Democrats) from the sample of 434 House members. See page 912 and, in
particular, footnote 8, of Krehbiel’s (1995) article.
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Table 1 PCP, ePCP, and 95% ePCP confidence intervals

Model

1 2 3 4 5

PCP 82.7 90.8 90.8 90.3 90.6
ePCP 77.6 85.4 85.4 85.9 86.9
ePCP interval (75.5, 79.1) (83.4, 86.7) (83.3, 86.7) (83.9, 87.1) (84.8, 87.9)

focuses on values of PCP and ePCP rather than on coefficient estimates themselves.17

Krehbiel used analytic second derivatives when estimating his five different covariance
matrices, and this article therefore does the same.

Table 1 lists by model number PCP as reported in Table 2 of Krehbiel’s article. In
addition, the table reports for each model ePCP and a 95% confidence interval for ePCP.18

The ePCP confidence intervals are based on the 0.025 and 0.975 percentiles of 5000-draw
simulations. All figures in Table 1 are percentages.

As noted in Table 1, ePCP is less that PCP for all five models, and this indicates that PCP
overstates the correct predictions of the models that appear in Krehbiel’s article. In other
words, once it is recognized that probit estimates generate only a distribution over fitted
categories rather than fitted categories themselves, model classifications or predictions turn
out to be less accurate than suggested by the traditional PCP statistic. The latter point is
accentuated by the ePCP values in the table. Furthermore, it follows from the fact that the
five 95% confidence intervals for ePCP in Table 1 do not include the five respective values
for PCP.19 The ePCP confidence intervals reported in Table 1 are based on a simulation,
and Fig. 1 plots a histogram of the simulated values of ePCP for Krehbiel’s Model 5.

Using the estimates from Krehbiel’s Model 5 (which includes all independent variables
used in Krehbiel’s article), the probability of cosponsorship for the average House member
is 0.318, with an estimated standard error of 0.0615. Therefore, using the delta method, a
95% confidence interval for this probability is (0.197, 0.439). Moreover, as described in
the body of this article another useful way to calculate confidence intervals for estimated

Table 2 Estimated changes in cosponsorship probability for Model 5

Variable Probability change SE t

ADA score −0.0883 0.0589 −1.50
NTU score 0.646 0.0685 9.43
Party membership 0.315 0.131 2.40

17Four ADA scores using Krehbiel’s (1995) original article were corrected by Binder et al. (1998). This article’s
use of data on the “A to Z Spending Plan” is for illustrative purposes only. In particular, the intent of the
analysis here is not to enter into the debate on the House bill, a focus of Krehbiel (1995), Binder et al. (1999),
and Krehbiel (1999).

18PMC is the same for each model in Table 1 because each model considers the same set of House members,
52.5% of whom cosponsored H.R. 3266.

19Based on Model 5, one might argue that 86.9% is reasonably close to 90.6% and therefore that PCP is just
as good as ePCP. Such an assertion would be troubling for two reasons. First, 86.9%< 90.6%, and if
quantitative political science is going to be meaningful, then numbers matter. In other words, statistics that
overstate precision should be considered dubious regardless of the extent to which they do so. Second, PCP
of Model 5 is outside the 95% confidence interval for ePCP.
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Fig. 1 Histogram of simulated ePCP (Krehbiel’s Model 5).

probabilities is via simulation. Simulated cosponsorship probabilities are pictured in Fig. 2,
and the 0.025 and 0.975 percentiles of the histogram in the figure lead to a 95% confidence
interval of (0.206, 0.447). This is very close to the previously described confidence interval
as calculated by the delta method.

The delta method of Eq. (9) can also be used to estimate the impact on cosponsorship
probability of changes in ADA score, NTU score, and party membership. For each indepen-
dent variable change, the new probability of cosponsorship is calculated and compared to a
base probability. The base probability is 0.318 for the ADA and NTU changes, and for the
party affiliation change the probability of cosponsorship for a Democratic House member
with otherwise average characteristics is compared to the probability of cosponsorship for
a Republican with otherwise average characteristics. Results are given in Table 2.

For the average House member, the hypothesis that a one standard deviation increase in
the ADA score would not have impacted the cosponsorship probability cannot be rejected at

Fig. 2 Simulated cosponsorship probabilities for the average
House member.
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the 0.05 level. This is because the probability change’st statistic,−1.50, is less in magnitude
than 1.96, the 0.05 critical value. Statistical insignificance of this probability change would
not be apparent in a hypothetical results table that reported neither standard errors nor con-
fidence intervals for estimated probability changes. In other words, this example illustrates
precisely why estimated probability changes should always be reported with measures of
uncertainty.

It is important to recognize thatp values for significance tests on estimated probit
coefficients donot inherently specifyp values for tests on related probability changes.
This is because the normal distribution function that constitutes part of the probit model
is nonlinear in its parameters. In linear least squares models, however, significance tests
on regression coefficients are equivalent to tests for whether changes in regressors have
nonzero impacts on an outcome variable. Thus, results generated by probit models and
limited dependent variable models in general require measures of estimate uncertainty
that go beyond those that should be reported alongside results from ordinary least squares
models.

Overall, this article’s reanalysis of Krehbiel’s study of the “A to Z Spending Plan”
illustrates two main points. First, the extent to which the various cosponsorship models
in the article fit the H.R. 3266 cosponsorship data was not as good as that described by
the common and popular fit statistic PCP. Within Krehbiel’s sequence of five models, the
difference between PCP and ePCP hovered around 5 percentage points. Although in an
arbitrary probit regression model the degree to which PCP will differ from ePCP is model-
specific, the discussion of H.R. 3266 cosponsorship illustrates precisely the type of precision
problems that can affect PCP.

Second, the use of standard errors and confidence intervals highlights the differences
in various estimated probabilities associated with H.R. 3266 cosponsorship probabilities.
Of the three probability changes reported in Table 2, only two are individually statistically
significant at the 0.05 level. Had these estimated probability changes been reported in
the fashion very common for political science research articles, this lack of statistical
significance would not have been apparent.

8 Conclusion

This article has focused on estimated quantities produced by limited dependent variable
models, a class of statistical models that is very common in quantitative political science
research. The technical discussion revolved around probit models, but the points regarding
precision and uncertainty apply to limited dependent variable models in general.

The article had three objectives. The first was to emphasize the importance of supplying
standard errors and/or confidence intervals when reporting fitted and predicted probabilities
generated by probit models. The second was to argue that a particular model fit statistic,
“percentage correctly predicted” (PCP), that often accompanies limited dependent variable
models is, first, inappropriately named—it really has little to do with prediction—and,
second, can overstate the accuracy of reported results. The third objective of the article
was to suggest a replacement for PCP. Thus, a measure denoted “expected percentage
correctly predicted” (ePCP) was presented, the theory behind it was explained, and steps
of a simulation for generating ePCP confidence intervals were detailed.

Accordingly, this article offers the following two recommendations. First, researchers
should always include measures of uncertainty when reporting estimated probabilities and
probability changes that are produced by limited dependent variable models. In particular,
probabilities generated by such models should be accompanied by confidence intervals or
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standard errors generated by either the delta method or a simulation. Second, researchers
should not report the common and popular model fit statistic known as PCP. Instead, they
should report what this paper has labeled ePCP and they should include with it a suitable
confidence interval.
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