# $L^{p}-L^{q}$ ESTIMATES OFF THE LINE OF DUALITY 

J.-G. BAK, D. McMICHAEL and D. OBERLIN

(Received 21 February 1992; revised 14 September 1992)

Communicated by E. N. Dancer


#### Abstract

Theorems 1 and 2 are known results concerning $L^{p}-L^{q}$ estimates for certain operators wherein the point $(1 / p, 1 / q)$ lies on the line of duality $1 / p+1 / q=1$. In Theorems $1^{\prime}$ and $2^{\prime}$ we show that with mild additional hypotheses it is possible to prove $L^{p}-L^{q}$ estimates for indices $(1 / p, 1 / q)$ off the line of duality. Applications to Bochner-Riesz means of negative order and uniform Sobolev inequalities are given.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 46B70, secondary 42B15, $35 B 45$.


## 1. Introduction

This paper is concerned with $L^{p}-L^{q}$ estimates for certain operators on $\mathbb{R}^{n}$. To explain our work we begin by stating two well-known principles as Theorems 1 and 2:

THEOREM 1. With notation as in [14], suppose $\left\{T_{2}\right\}$ is an analytic family of operators of admissible growth on $\mathbb{R}^{n}$ satisfying the estimates

$$
\begin{equation*}
\left\|T_{z} f\right\|_{2} \leq C_{z}\|f\|_{2}, \quad \operatorname{Re} z=0 \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\left\|T_{z} f\right\|_{\infty} \leq C_{z}\|f\|_{1}, \quad \operatorname{Re} z=-\lambda \tag{ii}
\end{equation*}
$$

Here $C_{z}$ is some non-negative function satisfying

$$
\log C_{z} \leq K e^{k|\operatorname{lm} z|}, \quad \operatorname{Re} z=0,-\lambda
$$

for some $K>0$ and $k<\pi$. Then if $0<\alpha<\lambda$ and $1 / p-1 / p^{\prime}=\alpha / \lambda$ (where, always, $1 / p+1 / p^{\prime}=1$ ) there is $C=C(\alpha)$ such that $\left\|T_{-\alpha} f\right\|_{p^{\prime}} \leq C\|f\|_{p}$.
(c) 1995 Australian Mathematical Society 0263-6115/95 $\$$ A2.00 +0.00

THEOREM 2. Suppose $0<\alpha<1$ and $1 / p-1 / p^{\prime}=\alpha$. Consider a one-parameter family $\{U(t)\}$ of operators on $\mathbb{R}^{n}$ satisfying $\|U(t) f\|_{p^{\prime}} \leq C|t|^{\alpha-1}\|f\|_{p}$ and a bounded function $a(t)$ on $\mathbb{R}$. Under suitable measurability conditions on $\{U(t)\}$ and $a(t)$, the operator $S$ defined on $\mathbb{R}^{n+1}$ by

$$
S g(s, x)=\int_{-\infty}^{\infty} a(t) U(t) g(s-t, \cdot)(x) d t, \quad(s, x) \in \mathbb{R} \times \mathbb{R}^{n}=\mathbb{R}^{n+1}
$$

satisfies the estimate $\|S g\|_{p^{\prime}} \leq C_{2}\|g\|_{p}$ for functions $g$ on $\mathbb{R}^{n+1}$.
Theorem 1 is of course a special case of Stein's interpolation theorem [14]. It has many applications in harmonic analysis. Perhaps the best known are to the problem of obtaining Fourier transform restriction estimates of the form

$$
\left(\int_{\Sigma}|\widehat{f}|^{2} d \mu\right)^{1 / 2} \leq C\|f\|_{p}
$$

where $\mu$ is a measure on a hypersurface $\Sigma$ in $\mathbb{R}^{n}$. The first of these is Stein's result in the paper [18]. Another class of applications of Theorem 1 concerns estimates of the form $\|\mu * f\|_{q} \leq C\|f\|_{p}$ where $\mu$ is as above. Two early examples of this are in $[9,15]$. Of the several later ones we mention [3, 10, 12].

Theorem 2 is a useful device introduced by Strichartz in the proof of [16, Theorem 1]. The proof is based on convolution properties of the fractional integration kernels $|t|^{\alpha-1}$ on $\mathbb{R}$. Two later applications may be found in $[8,10]$.

A feature common to Theorems 1 and 2 is that their conclusions give $L^{p}-L^{q}$ estimates only when $q=p^{\prime}$, or when $(1 / p, 1 / q)$ lies on the line of duality $1 / p+1 / q=$ 1. Our purpose is to show that with mild additional hypotheses it is possible to obtain $L^{p}-L^{q}$ estimates along a segment through $\left(1 / p, 1 / p^{\prime}\right)$ and perpendicular to the line of duality. To this end we will prove Theorems $1^{\prime}$ and $2^{\prime}$ below.

Theorem 1'. With notation as in Theorem 1, suppose $\left\{T_{z}\right\}$ satisfies the additional hypothesis

$$
\begin{equation*}
\left|T_{z}^{*} T_{z} f\right| \leq C_{z}\left|T_{2 \operatorname{Re} z} f\right| \quad \text { (pointwise) } \quad \text { if } \quad-\mu<\operatorname{Re} z<0 \tag{iii}
\end{equation*}
$$

for some positive $\mu$ with $\mu \leq \lambda / 2$. Then if $0<\alpha<\lambda$ there is $C=C(\alpha, p)$ such that

$$
\left\|T_{-\alpha} f\right\|_{q} \leq C\|f\|_{p}
$$

provided that $1 / p-1 / q=\alpha / \lambda$ and either

$$
\begin{array}{ll}
\frac{\lambda+\alpha}{2 \lambda} \leq \frac{1}{p} \leq \frac{\lambda+2 \alpha}{2 \lambda} & \text { if } 0<\alpha<\mu, \quad \text { or } \\
\frac{\lambda+\alpha}{2 \lambda} \leq \frac{1}{p}<\frac{\lambda^{2}+\alpha \lambda-2 \alpha \mu}{2 \lambda(\lambda-\mu)} & \text { if } \mu \leq \alpha<\lambda
\end{array}
$$



Figure 1

Thus $T_{-\alpha}$ is a bounded operator from $L^{p}$ to $L^{q}$ if the point $(1 / p, 1 / q)$ lies (1) on the line $1 / p-1 / q=\alpha$ and (2) inside the triangle bounded by the points $P_{1}=(1 / 2,1 / 2)$, $P_{2}=(1,0)$, and $P_{3}=(1 / 2+\mu / \lambda, 1 / 2)$, excluding the segment $P_{2} P_{3}$; see Figure 1. If $\left\|T_{2} f\right\|_{q} \leq C\|f\|_{p}$ implies $\left\|T_{2} f\right\|_{p^{\prime}} \leq C\|f\|_{q^{\prime}}$, then the ranges of $1 / p$ in (A) and (B) become $1 / 2 \leq 1 / p \leq(\lambda+2 \alpha) / 2 \lambda$, and $(\lambda-2 \mu+\alpha) / 2(\lambda-\mu)<1 / p<$ $\left(\lambda^{2}+\alpha \lambda-2 \alpha \mu\right) /[2 \lambda(\lambda-\mu)]$.

THEOREM 2'. With notation as in Theorem 2, suppose additionally that $\{U(t)\}$ is actually a one-parameter group of operators satisfying $U(-t)=U(t)^{*}$ and that

$$
\|U(t) f\|_{\infty} \leq C|t|^{(\alpha-1) / \alpha}\|f\|_{1} .
$$

Then there is $C=C(p)$ such that $\|S g\|_{q} \leq C\|g\|_{p}$ for functions $g$ on $\mathbb{R}^{n+1}$ provided that

$$
\frac{1}{p}-\frac{1}{q}=\alpha \quad \text { and } \quad \frac{1}{2-\alpha}<\frac{1}{p}<\frac{1+\alpha-\alpha^{2}}{2-\alpha}
$$

Theorems $1^{\prime}$ and $2^{\prime}$ are not, strictly speaking, new mathematics-their (somewhat parallel) proofs are based on methods present in [5, 11], respectively. They seem, however, to be useful tools which can be applied to produce, at the least, some
interesting extensions of known results. For a slight and technical improvement of Theorem 1', see the note after its proof in Section 2.

Our paper is organized as follows: Section 2 contains the proofs of Theorems $1^{\prime}$ and $2^{\prime}$, Section 3 is an application of Theorem $1^{\prime}$ to Bochner-Riesz means of negative order, and Section 4 contains applications of Theorems $1^{\prime}$ and $2^{\prime}$ to obtain generalizations of the results in $[7,8]$ on uniform Sobolev inequalities.

## 2. Proofs of Theorems $\mathbf{1}^{\prime}$ and $2^{\prime}$

The proof of Theorem $1^{\prime}$ is an easy consequence of complex interpolation and the so-called method of $T^{*} T$ : it follows from Theorem 1 that

$$
\begin{equation*}
\left\|T_{-\alpha} f\right\|_{p^{\prime}} \leq C(\alpha)\|f\|_{p} \quad \text { if } \quad \frac{1}{p}=\frac{\lambda+\alpha}{2 \lambda}, \quad 0<\alpha<\lambda \tag{1}
\end{equation*}
$$

Hölder's inequality and (iii) then imply

$$
\left\langle T_{z} f, T_{z} f\right\rangle=\left\langle f, T_{z}^{*} T_{z} f\right\rangle \leq C_{z}\|f\|_{p}\left\|T_{2 \operatorname{Re} z} f\right\|_{p^{\prime}} \leq C_{z}\|f\|_{p}^{2}
$$

and so

$$
\begin{equation*}
\left\|T_{z} f\right\|_{2} \leq C_{z}\|f\|_{p} \quad \text { if } \quad \frac{1}{p}=\frac{\lambda-2 \operatorname{Re} z}{2 \lambda}, \quad-\mu<\operatorname{Re} z<0 \tag{2}
\end{equation*}
$$

(This is the method of $T^{*} T$.) In particular,

$$
\begin{equation*}
\left\|T_{-\alpha} f\right\|_{2} \leq C\|f\|_{p} \quad \text { if } \quad \frac{1}{p}=\frac{\lambda+2 \alpha}{2 \lambda}, \quad 0<\alpha<\mu \tag{3}
\end{equation*}
$$

By the Riesz-Thorin theorem, (1) and (3) yield (A). To obtain (B) apply analytic interpolation to (ii) and (2) with $\operatorname{Re} z=-\beta, 0<\beta<\mu$. The result is $\left\|T_{-\alpha} f\right\|_{q}$ $\leq C(\alpha)\|f\|_{p}$ if

$$
\frac{1}{p}=\frac{\lambda^{2}+\alpha \lambda-2 \alpha \beta}{2 \lambda(\lambda-\beta)}, \quad \frac{1}{p}-\frac{1}{q}=\frac{\alpha}{\lambda}, \quad \text { and } \quad \beta<\alpha<\lambda
$$

This proves (B) since for fixed $\alpha \geq \mu, 1 / p$ varies from $(\lambda+\alpha) /(2 \lambda)$ to $\left(\lambda^{2}+\alpha \lambda-\right.$ $2 \alpha \mu) /[2 \lambda(\lambda-\mu)]$ as $\beta$ varies from 0 to $\mu$. Thus Theorem $1^{\prime}$ is established.

NOTE. The conclusion of Theorem $1^{\prime}$ is still true if (iii) holds only for a set of $\operatorname{Re} z$ whose closure contains $-\mu$. For then, by interpolation, (2) is still true. This observation is actually useful in some of the applications.

Let $p$ and $p^{\prime}$ be as in Theorem 2 and put $\gamma=(1-\alpha) / \alpha$. The starting point for the proof of Theorem $2^{\prime}$ is an analog of the dual of (2), the inequality

$$
\begin{equation*}
\left[\int_{-\infty}^{\infty}\left\||t|^{\gamma\left(1 / 2-1 / p^{\prime}\right)} U(t) f\right\|_{p^{\prime}}^{p^{\prime}} d t /|t|\right]^{1 / p^{\prime}} \leq C\|f\|_{2} \tag{4}
\end{equation*}
$$

for functions $f$ on $\mathbb{R}^{n}$. This will be established, again by the method of $T^{*} T$, at the end of this section. Interpolating analytically, in the mixed norm setting, between (4) and the hypothesis

$$
\sup |t|^{\gamma}\|U(t) f\|_{\infty} \leq C\|f\|_{1}
$$

of Theorem $2^{\prime}$ shows that if

$$
\left(\frac{1}{r}, \frac{1}{s}\right)=\left(\frac{1}{2-\alpha}, \frac{(1-\alpha)^{2}}{2-\alpha}\right)
$$

then

$$
\left[\int_{-\infty}^{\infty}\left\||t|^{\gamma(1 / r-1 / s)} U(t) f\right\|_{s}^{s} d t /|t|\right]^{1 / s} \leq C\|f\|_{r} .
$$

Interpolating this with the hypothesis of Theorem 2 shows that if $1 / p-1 / q=\alpha$ and $1 /(2-\alpha)<1 / p<(1+\alpha) / 2$, then there is $b \in(q, \infty)$ such that

$$
\begin{equation*}
\left[\int_{-\infty}^{\infty}\left\||t|^{\gamma(1 / p-1 / q)} U(t) f\right\|_{q}^{b} d t /|t|\right]^{1 / b} \leq C\|f\|_{p} \tag{5}
\end{equation*}
$$

Now suppose $g$ and $h$ are functions on $\mathbb{R}^{n+1}$ and $p, q$ are as above. Then

$$
\begin{aligned}
|\langle S g, h\rangle| & =\left|\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{\mathbb{R}^{n}} a(t) U(t) g(s-t, \cdot)(x) h(s, x) d x d s d t\right| \\
& \leq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|\langle U(t) g(s-t, \cdot), h(s, \cdot)\rangle| d s|a(t)| d t \\
& \leq M \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|\langle U(t) g(s, \cdot), h(s+t, \cdot)\rangle| d s d t
\end{aligned}
$$

if $M$ is a bound for $|a(t)|$. Thus

$$
|\langle S g, h\rangle| \leq M \int_{-\infty}^{\infty}\|U(t) g(s, \cdot)\|_{q}\|h(s+t, \cdot)\|_{q^{\prime}} d s d t
$$

$$
\begin{aligned}
&= M \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left\||t|^{\gamma(1 / p-1 / q)} U(t) g(s, \cdot)\right\|_{q}\|h(s+t, \cdot)\|_{q^{\prime}}|t|^{-\gamma(1 / p-1 / q)+1} \frac{d t}{|t|} d s \\
& \leq M \int_{-\infty}^{\infty}[ {\left[\int_{-\infty}^{\infty}\left\||t|^{\gamma(1 / p-1 / q)} U(t) g(s, \cdot)\right\|_{q}^{b} \frac{d t}{|t|}\right]^{1 / b} } \\
& \cdot\left[\int_{-\infty}^{\infty}\|h(s+t, \cdot)\|_{q^{\prime}}^{b^{\prime}}|t|^{-b^{\prime} \gamma(1 / p-1 / q)+b^{\prime}} \frac{d t}{|t|}\right]^{1 / b^{\prime}} d s \\
& \leq C M \int_{-\infty}^{\infty}\|g(s, \cdot)\|_{p}\left(\int_{-\infty}^{\infty}\|h(s+t, \cdot)\|_{q^{\prime}}^{b^{\prime}}|t|^{-b^{\prime} \gamma(1 / p-1 / q)+b^{\prime}-1} d t\right)^{1 / b^{\prime}} d s
\end{aligned}
$$

by (5) with $f(x)=g(s, x)$. Therefore Hölder's inequality yields
(6) $|\langle S g, h\rangle| \leq C M\left(\int_{-\infty}^{\infty}\|g(s, \cdot)\|_{p}^{p} d s\right)^{1 / p}$

$$
\cdot\left(\int_{-\infty}^{\infty}\left[\int_{-\infty}^{\infty}\|h(s+t, \cdot)\|_{q^{\prime}}^{b^{\prime}}|t|^{-b^{\prime} \gamma(1 / p-1 / q)+b^{\prime}-1} d t\right]^{p^{\prime} / b^{\prime}} d s\right)^{1 / p^{\prime}}
$$

Now if $h \in L^{q^{\prime}}\left(\mathbb{R}^{n+1}\right)$, then, as a function of $s,\|h(s, \cdot)\|_{q^{\prime}}^{b^{\prime}} \in L^{q^{\prime} / b^{\prime}}(\mathbb{R})$, and $q^{\prime} / b^{\prime}>1$ since $b>q$. Since $\gamma=(1-\alpha) / \alpha$ implies

$$
\frac{b^{\prime}}{q^{\prime}}-\left[-b^{\prime} \gamma\left(\frac{1}{p}-\frac{1}{q}\right)+b^{\prime}-1\right]=\frac{b^{\prime}}{p^{\prime}}+1
$$

the $L^{q^{\prime} / b^{\prime}}-L^{p^{\prime} / b^{\prime}}$ estimates for one-dimensional fractional integration combine with (6) to give $|\langle S g, h\rangle| \leq C M\|g\|_{p}\|h\|_{q^{\prime}}$, with the norms taken over $\mathbb{R}^{n+1}$. This yields the conclusion of Theorem $2^{\prime}$ for $1 /(2-\alpha)<1 / p<(1+\alpha) / 2$. The hypotheses of Theorem $2^{\prime}$ assure that the same is true for the adjoint of $S$, and so the proof of Theorem $2^{\prime}$ will be complete when (4) is established.

To this end, define an operator $T$ taking functions $f$ on $\mathbb{R}^{n}$ into functions on $\mathbb{R}^{n+1}$ by the rule $T f(s, x)=U(s) f(x)$. Since $\gamma\left(1 / 2-1 / p^{\prime}\right) p^{\prime}=1$, (4) is just the statement that $T$ is bounded from $L^{2}\left(\mathbb{R}^{n}\right)$ to $L^{p^{\prime}}\left(\mathbb{R}^{n+1}\right)$. Thus, as in the proof of Theorem $1^{\prime}$, it suffices to show that $T T^{*}$ is bounded from $L^{p}\left(\mathbb{R}^{n+1}\right)$ to $L^{p^{\prime}}\left(\mathbb{R}^{n+1}\right)$. A computation shows that, for $g$ on $\mathbb{R}^{n+1}$,

$$
T^{*} g(x)=\int_{-\infty}^{\infty} U^{*}(t) g(t, \cdot)(x) d t
$$

It follows that

$$
T T^{*} g(s, x)=U(s) T^{*} g(x)=\int_{-\infty}^{\infty} U(s-t) g(t, \cdot)(x) d t
$$

Therefore, basically repeating the proof of Theorem 2,

$$
\left\|T T^{*} g\right\|_{p^{\prime}} \leq\left\|\int_{-\infty}^{\infty}\right\| U(s-t) g(t, \cdot)\left\|_{p^{\prime}, x} d t\right\|_{p^{\prime}, s} \leq C\left\|\int_{-\infty}^{\infty}|s-t|^{\alpha-1}\right\| g(t, \cdot)\left\|_{p, x} d t\right\|_{p^{\prime}, s}
$$

Here the last inequality follows from the hypothesis of Theorem 2. By one-dimensional fractional integration, since $1 / p+(1-\alpha)=1 / p^{\prime}+1$, the last term is dominated by

$$
\left\|\|g(s, \cdot)\|_{p, x}\right\|_{p, s}=\|g\|_{p} .
$$

This establishes (4).

## 3. Bochner-Riesz means of negative order

The Bochner-Riesz operators $T_{\alpha}$ are defined on $\mathbb{R}^{n}, n \geq 2$, for $-(n+1) / 2 \leq \alpha \leq 0$ by

$$
\widehat{T_{\alpha} f}(x)=\frac{\left(1-|x|^{2}\right)_{+}^{\alpha}}{\Gamma(\alpha+1)} \widehat{f}(x)
$$

or, equivalently, by $T_{\alpha} f=K_{\alpha} * f$ where

$$
K_{\alpha}(x)=2^{\alpha+\frac{n}{2}} \pi^{\frac{n}{2}} J_{\alpha+\frac{n}{2}}(|x|) /|x|^{\alpha+\frac{n}{2}}
$$

Their $L^{p}-L^{q}$ boundedness has been studied in [1, 13, 2]. Necessary conditions for $T_{\alpha}: L^{p} \rightarrow L^{q}$, given in [1], are

$$
\begin{equation*}
\frac{n-1-2 \alpha}{2 n}<\frac{1}{p}, \quad \frac{1}{q}<\frac{n+1+2 \alpha}{2 n}, \quad \frac{-2 \alpha}{n+1} \leq \frac{1}{p}-\frac{1}{q} \tag{7}
\end{equation*}
$$

We will summarize the sufficient conditions of $[1,13,2]$ as Theorem 3 below. To facilitate the statement of this result, we label some points in $[0,1] \times[0,1]$ (see Figure 2): let

$$
\begin{gathered}
A=\left(1, \frac{n+1+2 \alpha}{2 n}\right), \quad A^{\prime}=\left(\frac{n-1-2 \alpha}{2 n}, 0\right) \\
B=\left(\frac{n+1+2 \alpha}{2 n}-\frac{2 \alpha}{n+1}, \frac{n+1+2 \alpha}{2 n}\right), \quad B^{\prime}=\left(\frac{n-1-2 \alpha}{2 n}, \frac{n-1-2 \alpha}{2 n}+\frac{2 \alpha}{n+1}\right), \\
C=\left(\frac{n+3}{2 n+2}, \frac{n+1+2 \alpha}{2 n}\right), \quad C^{\prime}=\left(\frac{n-1-2 \alpha}{2 n}, \frac{n-1}{2 n+2}\right) \\
D=\left(\frac{n+1-2 \alpha}{2 n+2}, \frac{n+1+2 \alpha}{2 n+2}\right) .
\end{gathered}
$$



Figure 2

Let $N=N(\alpha, n)$ denote the set of points $(1 / p, 1 / q)$ in $[0,1] \times[0,1]$ which satisfy the necessary conditions (7).

Theorem 3. If $(1 / p, 1 / q) \in N$, then there exists a constant $C=C(p, q, \alpha, n)$ such that $\left\|T_{\alpha} f\right\|_{q} \leq C\|f\|_{p}$ provided that one of the following holds:
(1) $n=2$ and $\alpha=-1$;
(2) $n=2,-3 / 2 \leq \alpha \leq 0$, and $1 / p-1 / q>-2 \alpha /(n+1)$;
(3) $n \geq 3,-(n+1) / 2 \leq \alpha \leq-1 / 2$, and $1 / p-1 / q>-2 \alpha /(n+1)$;
(4) $n \geq 3,-1 / 2<\alpha \leq 0$, and ( $1 / p, 1 / q$ ) lies strictly below the lines joining $D$ to $C$ and $D$ to $C^{\prime}$;
(5) $(1 / p, 1 / q)=D$.

Parts (1)-(3) are proved in [1] and [13], and (4) is in [2]. Part (5) is a well-known consequence of Theorem 1. But Theorem $1^{\prime}$ is as easily applicable and gives the following stronger result.

Theorem 4. Fix $n \geq 2$. There is $C=C(p, q, \alpha, n)$ such that $\left\|T_{\alpha} f\right\|_{q} \leq C\|f\|_{p}$ provided that $(1 / p, 1 / q)$ is on the open segment $B B^{\prime}$ and either
(A)

$$
-\frac{1}{2}<\alpha<0 \quad \text { and } \quad \frac{1}{2} \leq \frac{1}{p} \leq \frac{n+1-4 \alpha}{2 n+2}, \quad \text { or }
$$

(B)

$$
-\frac{n+1}{2} \leq \alpha \leq-\frac{1}{2}
$$

PROOF. Define $\left\{T_{z}\right\}$ by

$$
\widehat{T_{z} f}(x)=\frac{\left(1-|x|^{2}\right)_{+}^{z}}{\Gamma(z+1)} \widehat{f}(x)
$$

Clearly $\left\|T_{z} f\right\|_{2} \leq C_{z}\|f\|_{2}$ if $\operatorname{Re} z=0$. Well-known asymptotic estimates for Bessel functions give $\left\|T_{z} f\right\|_{\infty} \leq C_{z}\|f\|_{1}$ if $\operatorname{Re} z=-(n+1) / 2$. Since

$$
T_{z}^{*} T_{z}=\frac{\Gamma(1+2 \operatorname{Re} z)}{|\Gamma(1+z)|^{2}} T_{2 \operatorname{Re} z} \quad \text { if } \quad-\frac{1}{2}<\operatorname{Re} z<0,
$$

Theorem $1^{\prime}$ applies with $\lambda=(n+1) / 2$ and $\mu=1 / 2$ and yields (A) and (B).
Here are two additional observations:
(1) If $n \geq 3$ and $-1 / 2<\alpha<0$, boundedness at some additional interior points of $N$ can be obtained by interpolating (4) of Theorem 3 and (A) of Theorem 4.
(2) Let $R f=\left.\widehat{f}\right|_{s^{n-1}}$ denote the restriction of the Fourier transform of $f$ to the unit sphere. Then $R^{*} R$ is a multiple of $T_{-1}$. Thus taking $\alpha=-1$ in Theorem 4 gives a 'restriction' estimate which complements a result of [13]:

COROLLARY 5. If $1 / p-1 / q=2 /(n+1)$ and $(n+1) / 2 n<1 / p<\left(n^{2}-1+\right.$ $4 n) /[2 n(n+1)]$, then there is $C=C(p, n)$ such that

$$
\left\|\int_{S^{n-1}} e^{i x \cdot \xi} \widehat{f}(\xi) d \sigma(\xi)\right\|_{q} \leq C\|f\|_{p}
$$

This is (1) of Theorem 3 when $n=2$, where it follows from the two-dimensional restriction theorem

$$
\|R f\|_{L^{q}\left(S^{1}\right)} \leq C\|f\|_{L^{p}\left(\mathbb{R}^{2}\right)} \quad \text { if } \quad q=p^{\prime} / 3 \quad \text { and } \quad 1 \leq p<4 / 3
$$

of $[4,19]$. Similarly, Corollary 5 would follow from the $n$-dimensional restriction conjecture

$$
\|R f\|_{L^{q}\left(S^{n-1}\right)} \leq C\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)} \quad \text { if } q=(n-1) p^{\prime} /(n+1) \text { and } 1 \leq p<2 n /(n+1)
$$

## 4. Uniform Sobolev inequalities

We begin by recalling some of the principal results from [7,8]. Here is the requisite notation: $Q(\xi)$ will denote the form on $\mathbb{R}^{n}, n \geq 3$, given for some $j=1, \ldots, n-1$ by

$$
Q(\xi)=-\xi_{1}^{2}-\ldots-\xi_{j}^{2}+\xi_{j+1}^{2}+\ldots+\xi_{n}^{2}
$$

$\Delta=\sum_{j=1}^{n} \partial^{2} / \partial x_{j}^{2}$ is the Laplacian on $\mathbb{R}^{n}, i \partial / \partial t+\Delta$ is the Schrödinger operator on $\mathbb{R}^{n+1}$, and $L(D)=\left\langle\mathbf{a}, \nabla_{x}\right\rangle+b$ is an arbitrary first order operator on $\mathbb{R}^{n}$ with constant complex coefficients.

THEOREM 6. ([7, Theorem 2.1]) Suppose $n \geq 3$ and $1 / p-1 / p^{\prime}=2 / n$. There is a constant $C=C(n)$ such that whenever $P(D)$ is a constant coefficient operator on $\mathbb{R}^{n}$ with complex coefficients and principal part $Q(D)$, then

$$
\|u\|_{p^{\prime}} \leq C\|P(D)(u)\|_{p}
$$

for all $u \in \mathscr{S}\left(\mathbb{R}^{n}\right)$.

Theorem 7. ([7, Theorem 2.2]) Suppose $n \geq 3,1 / p-1 / q=2 / n$, and $(n+1) / 2 n<1 / p<(n+3) / 2 n$. There exists $C=C(p, n)$ such that whenever $P(D)$ is a constant coefficient operator on $\mathbb{R}^{n}$ with complex coefficients and principal part $\Delta$, then

$$
\|u\|_{q} \leq C\|P(D)(u)\|_{p}, \quad u \in \mathscr{S}\left(\mathbb{R}^{n}\right)
$$

THEOREM 8. ([8, Theorem 1]) If $n \geq 1$ and $1 / p-1 / p^{\prime}=2 /(n+2)$, then there is $C=C(n)$ which does not depend on $L(D)$ such that

$$
\|u\|_{p^{\prime}} \leq C\left\|\left(i \frac{\partial}{\partial t}+\Delta+L(D)\right) u\right\|_{p}, \quad u \in \mathscr{S}\left(\mathbb{R}^{n+1}\right)
$$

Comparison of Theorem 7 with Theorems 6 and 8 raises an obvious question which we answer with Theorems $6^{\prime}$ and $8^{\prime}$ :

Theorem 6'. Suppose $n \geq 3,1 / p-1 / q=2 / n$ and $n /(2 n-2)<1 / p<$ $\left(n^{2}+2 n-4\right) /\left(2 n^{2}-2 n\right)$. There is a constant $C=C(p, n)$ such that

$$
\|u\|_{q} \leq C\|P(D)(u)\|_{p}, \quad u \in \mathscr{S}\left(\mathbb{R}^{n}\right)
$$

for all $P(D)$ as in Theorem 6.

Theorem $8^{\prime}$. Suppose $n \geq 1,1 / p-1 / q=2 /(n+2)$ and $(n+2) /(2 n+2)<$ $1 / p<\left(n^{2}+6 n+4\right) /\left(2 n^{2}+6 n+4\right)$. There is a constant $C=C(p, n)$ which does not depend on $L(D)$ such that

$$
\|u\|_{q} \leq C\left\|\left(i \frac{\partial}{\partial t}+\Delta+L(D)\right) u\right\|_{p}, \quad u \in \mathscr{S}\left(\mathbb{R}^{n+1}\right)
$$

Taking $P(D)$ in Theorem $6^{\prime}$ to be the wave operator on $\mathbb{R}^{n}$ gives an estimate already obtained in [5, 11]. Examples in [5] therefore show that the hypotheses on $p$ and $q$ in Theorem $6^{\prime}$ cannot be weakened. Analogous examples show the same for Theorem $8^{\prime}$, even when $L(D)=0$. As will be clear to the reader familiar with the paper [7], several other results there, including the estimates for the Klein-Gordon operator and the unique continuation theorems, have analogs 'off the line of duality'.

To explain the proofs of Theorems $6^{\prime}$ and $8^{\prime}$ we recall the proofs of Theorems 6 and 8 , which are broadly similar. Let $\alpha=2 / n$ for Theorem 6 and $\alpha=2 /(n+2)$ for Theorem 8. After some reductions there is a clever argument based on LittlewoodPaley theory which yields, so long as $1 / p-1 / q=\alpha, L^{p}-L^{q}$ Sobolev inequalities as consequences of certain other $L^{p}-L^{q}$ estimates. These estimates, [7, Lemma 2.1] and [8, Lemmas 1 and 2], are established when $q=p^{\prime}$, that is, when $(1 / p, 1 / q)$ is on the line of duality. Our only contribution is to note that they actually hold for the ranges of $p$ and $q$ given in Theorems $6^{\prime}$ and $8^{\prime}$. The next three paragraphs contain sketches of the arguments.

After some Fourier transform estimates, [7, Lemma 2.1] is simply an application of Theorem 1, quite analogous to that which established (5) of Theorem 3. Again, the additional hypotheses of Theorem $1^{\prime}$ are easily verified and the result is that [7, Lemma 2.1] holds with ( $1 / p, 1 / p^{\prime}$ ) replaced by $(1 / p, 1 / q)$ as in Theorem $6^{\prime}$.

We will consider in detail only [8, Lemma 2]. The operator $S$ in question can be written

$$
S g(s, x)=\int_{-\infty}^{\infty} a(t) U(t) g(s-t, \cdot)(x) d t, \quad(s, x) \in \mathbb{R}^{n+1}
$$

where $U(t)$ is the Fourier multiplier operator on $\mathbb{R}^{n}$ with symbol $e^{i t|\xi|^{2}}$. Recalling that $\alpha=2 /(n+2),[8,(8)]$ is the hypothesis

$$
\|U(t) f\|_{p^{\prime}} \leq C|t|^{\alpha-1}\|f\|_{p}, \quad f \text { on } \mathbb{R}^{n}, \quad 1 / p-1 / p^{\prime}=\alpha
$$

of Theorem 2, and [8, Lemma 2] follows. But since $(\alpha-1) / \alpha=-n / 2$, the additional hypothesis

$$
\|U(t) f\|_{\infty} \leq C|t|^{(\alpha-1) / \alpha}\|f\|_{1}
$$

of Theorem $2^{\prime}$ results from a homogeneity argument and the fact that $e^{i|\xi|^{2}}$ is an $L^{1}-L^{\infty}$ multiplier on $\mathbb{R}^{n}$. Theorem $2^{\prime}$ then gives the estimate

$$
\|S g\|_{q} \leq C(p)\|g\|_{p}
$$

for $p$ and $q$ in Theorem $8^{\prime}$.
The result [8, Lemma 1] is a restriction result of [17] (as is [7, Lemma 2.1(a)]). It can be appropriately generalized either by reasoning analogous to that immediately above or, presumably, by another application of Theorem $\mathbf{1}^{\prime}$.

A concluding remark: it seems likely that an argument similar to our generalization of Theorem 8 may yield an extension of the results of [6] on time-dependent Schrödinger operators.

## References

[1] L. Börjeson, 'Estimates for the Bochner-Riesz operator with negative index', Indiana Univ. Math. J. 35 (1986), 225-233.
[2] A. Carbery and F. Soria, 'Almost-everywhere convergence of Fourier integrals for functions in Sobolev spaces, and an $L^{2}$-localisation principle', Rev. Mat. Iberoamericana 4 (1988), 319-337.
[3] S. Drury, 'Degenerate curves and harmonic analysis', Math. Proc. Cambridge Philos. Soc. 108 (1990), 89-96.
[4] C. Fefferman, 'Inequalities for strongly singular convolution operators', Acta Math. 124 (1970), 9-36.
[5] J. Harmse, 'On Lebesgue space estimates for the wave equation', Indiana Univ. Math. J. 39 (1990), 229-248.
[6] J. L. Journé, A. Soffer and C. Sogge, ' $L^{p}-L^{p^{\prime}}$ estimates for time-dependent Schrödinger operators', Bull. Amer. Math. Soc. 23 (1990), 519-524.
[7] C. Kenig, A. Ruiz and C. Sogge, 'Uniform Sobolev inequalities and unique continuation theorems for second order constant coefficient differential operators', Duke Math. J. 55 (1987), 329-347.
[8] C. Kenig and C. Sogge, 'A note on unique continuation for Schrödinger's operator', Proc. Amer. Math. Soc. 103 (1988), 543-546.
[9] W. Littman, $L^{p}$ - $L^{q}$ estimates for singular integral operators, volume 23 of Proc. Sympos. Pure Math. (Amer. Math. Soc., Providence, 1973).
[10] D. Oberlin, 'Convolution estimates for some measures on curves', Proc. Amer. Math. Soc. 99 (1987), 56-60.
[11] , 'Convolution estimates for some distributions with singularities on the light cone', Duke Math. J. 59 (1989), 747-757.
[12] F. Ricci and E. M. Stein, 'Harmonic analysis on nilpotent groups and singular integrals III: fractional integration along manifolds', J. Funct. Anal. 86 (1989), 360-389.
[13] C. Sogge, 'Oscillatory integrals and spherical harmonics', Duke Math. J. 53 (1986), 43-65.
[14] E. M. Stein, 'Interpolation of linear operators', Trans. Amer. Math. Soc. 83 (1956), 482-492.
[15] R. Strichartz, 'Convolutions with kernels having singularities on a sphere', Trans. Amer. Math. Soc. 148 (1970), 461-471.
[16] _- 'A priori estimates for the wave equation and some applications', J. Funct. Anal. 5 (1970), 218-235.
[17] -_, 'Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations', Duke Math. J. 44 (1977), 705-714.
[18] P. Tomas, 'A restriction theorem for the Fourier transform', Bull. Amer. Math. Soc. 81 (1975), 477-478.
[19] A. Zygmund, 'On Fourier coefficients and transforms of two variables', Studia Math. 50 (1974), 189-201.

Department of Mathematics
Florida State University
Tallahassee, FL 32306-3027
USA
email address: bak@math.fsu.edu email address: mcmichael@math.fsu.edu email address: oberlin@math.fsu.edu

