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In this paper, we establish a fluid limit for a two-sided Markov order book model. The
main result states that in a certain asymptotic regime, a pair of measure-valued processes
representing the “sell-side shape” and “buy-side shape” of an order book converges to a
pair of deterministic measure-valued processes in a certain sense. We also test the fluid
approximation on data. The empirical results suggest that the approximation is reasonably
good for liquidly traded stocks in certain time periods.
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1. INTRODUCTION

As a trading mechanism, limit order books have gained growing popularity in equity and
derivative markets in the past two decades. Nowadays, the majority of the world’s financial
markets, such as Electronic Communication Networks in the USA, the Hong Kong Stock
Exchange and the Toronto Stock Exchange, are organized as electronic limit order books
to match buyers and sellers. This has inspired intensive research activities on limit order
books. See, for example, [12,28] for reviews.

The primary goal of this paper is to develop approximations for the evolution of the
shape of a limit order book over a time horizon that is large compared with the length of
time between order book events. To this end, we perform asymptotic analysis of a stochastic
limit order-book model and thus connect the dynamics of a limit order book on two different
time scales. There has been a growing interest in studying such scaling limits of order book
dynamics, mainly motivated by a desire to better understand the price formation process
and the relation between the parameters of the point processes describing order flow at high
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frequency and the parameters of models describing price and order-book shape dynamics
at a larger time scale. See, for example, [1,5,7,8,15,19,24,25].

We contribute to this body of literature by establishing a fluid limit for a two-sided
in the following asymptotic regime: (a) Tick size goes to zero; (b) Rates of order arrivals
goes to infinity; (c) Relative order size (compared with limit order queue size) goes to zero.
Such a regime is relevant for high-frequency trading of liquid stocks where the tick size is
small (one penny in the USA), inter-arrival times of orders are very short (on the order of
milliseconds), and there are large volumes of limit orders sitting near the market price and
waiting for transactions.

Besides establishing a scaling limit, we also test the fluid approximation on historical
order book data from the U.S. exchange NYSE Arca. The in-sample analysis demonstrates
that our theory can be potentially useful to approximate the evolution of a limit order book
for liquid stocks in time periods of low-price volatility.

Our asymptotic analysis is built on the order-book model in [9], where the high-
frequency dynamics of order book events are described by a continuous-time Markov chain
(CTMC). In their discrete order-book model, there are a finite number of security price
levels and the state of the order book is described by an order quantity at each price. We
develop a fluid approximation for this high-dimensional CTMC by establishing a type of
law of large numbers limit theorem.

The main result (Theorem 3.1) states that as the tick size 1/n approaches zero (the tick
size, the arrival rates of orders, and the relative order sizes are all scaled as a power of a
large parameter n. See Section 2 for more details.), (a) the sequence of best bid and best ask
prices converges in probability to a constant; and (b) the sequence of pairs of measure-valued
processes {(ζn,+, ζn,−) : n ≥ 1}, representing the “sell-side shape” and “buy-side shape” of
the order book, converges to a pair of deterministic measure-valued processes in a certain
sense. Moreover, the density profile of the limiting processes can be described by Ordinary
Differential Equations (ODEs) with coefficients determined by order flow intensities.

Our key innovation in establishing the fluid limit is to represent a two–sided limit order
book by a pair of non-negative measure-valued processes and studying the weak convergence
of such processes using martingale methods. Such a measure-valued process representation of
an order-book and the related proof techniques could be potentially useful for establishing
scaling limits for more general two-sided order-book models such as multi-scale models
allowing the co-existence of high-frequency and low-frequency traders. See, for example, [6].

We now compare our work with some closely related alternatives which also study the
scaling limits of the shape of limit order books in certain asymptotic regimes. These include
[3,14,15,21,22,24,25]. Among them, only the three studies [3,14,15] incorporate order can-
cellations. Modelling order cancellations is important: e.g., more than 95% of limit orders at
NASDAQ are canceled without execution, see [13]. In [15], the authors prove a law of large
numbers result for the limit order book dynamics. In their limit, the best bid and best ask
price dynamics can be described by two coupled ODEs and the relative buy and sell shape
functions can be described by two linear first-order partial differential equations. This fluid
limit result is later generalized in [14] to allow order flows depend on the state of the order
book including the prices and volumes, and in [3] which establishes the functional central
limit theorems for order book dynamics. We remark that though we rely on a slightly dif-
ferent discrete stochastic order-book model to conduct asymptotic analysis, our theoretical
result is not completely new in view of these three studies. However, we emphasize that our
proof technique to establish the scaling limit is novel and it is very different from theirs.
Moreover, unlike the aforementioned studies, we empirically test our fluid approximation
on real data and illustrate the potential relevance of the approximation. These are the two
main contributions of this paper.
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Finally, we remark that we have had to focus on a few features to keep the model and
the asymptotic analysis tractable, and that this has necessarily led to some undesirable
consequences. We briefly discuss the main limitations. First, the limit is deterministic, and
the limit price is a constant. This is not realistic. However, such a deterministic model could
be potentially useful. For example, a similar fluid order-book model, where the best bid and
ask prices are also constants, has been used in [26] to analyze the problem of limit and
market order placement to optimally buy a block of shares over a fixed time horizon in the
order of several minutes. Second, to keep the mathematical analysis tractable, a number of
realistic features such as non-stationarity, time-clustering, and mutual dependence of order
flows are necessarily left out in our asymptotic analysis. For recent developments along this
line, see, for example, [1].

Outline of this paper. Section 2 reviews a variant of the Markov order-book model in
[9] and states the assumptions on order flow rates and initial conditions. Section 3 summa-
rizes our main result. Section 4 discusses empirical analysis. Section 5 presents preliminaries
for proving the main result. Section 6 is devoted to the proof of the main result. Auxiliary
results and their proofs are provided in the appendices.

Notation. All random elements are defined on a common probability space (Ω,F , P)
unless otherwise specified. Given x ∈ R, we set x+ = max{x, 0} and x− = max{−x, 0}. We
write �x� for the smallest integer not less than x, and �x� for the largest integer not greater
than x. The set of continuous functions on [0, 1] is denoted by C([0, 1]). Given a Polish
space E , the space of right-continuous functions f : [0, T ] → E with left limits is denoted
by D([0, T ], E). The space D([0, T ], E) is assumed to be endowed with the Skorohod J1-
topology. For a sequence of random elements {Xn : n ≥ 1} taking values in a metric space,
we write Xn ⇒ X to denote the convergence of Xn to X in distribution. Each stochastic
process with sample paths in D([0, T ], E) is considered to be a D([0, T ], E)-valued random
element. For a Borel measure ν and function f , we set 〈ν, f〉 =

∫
f(u)ν(du) when the inte-

gration exists. The symbol δu represents the Dirac measure at location u ∈ R, that is, for a
Borel set U ,

δu(U) =

{
1 if u ∈ U,

0 if u /∈ U.

The space of finite non-negative measures on [0, 1] is denoted by M+([0, 1]), and the space
of finite signed measures on [0, 1] is denoted by M([0, 1]).

2. MODEL AND ASSUMPTIONS

In this section we describe a variant of the order-book model introduced in [9] and state
the assumptions. Throughout of this paper, we fix the time T > 0.

Fix n ≥ 1. Without loss of generality, we suppose that investors can submit their limit
orders to n discrete equally spaced price levels { 1

n , 2
n , . . . , n

n} within the price range (0, 1].
Thus, the parameter n also represents the inverse of tick size. The state of the limit
order book at time t is given by a vector Xn(t) ≡ (Xn

1 (t), . . . ,Xn
n (t)) ∈ Z

n, where for
i ∈ {1, . . . , n}, |Xn

i (t)| represents the number of outstanding limit orders at price i/n at
time t. If Xn

i (t) > 0, then there are Xn
i (t) sell orders at price i/n, and if Xn

i (t) < 0, then
there are −Xn

i (t) buy orders at price i/n.
To define the best ask price (lowest price among limit sell orders) and best bid price

(highest price among limit buy orders), we define two mappings Pn
A and Pn

B such that for
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a given state x = (x1, . . . , xn) ∈ Z
n

Pn
A(x) ≡ inf{i ∈ {1, . . . , n} : xi > 0} ∧ {n + 1}, (2.1)

Pn
B(x) ≡ sup{i ∈ {1, . . . , n} : xi < 0} ∨ 0, (2.2)

where inf ∅ = ∞ and sup ∅ = −∞ by convention. For t ≥ 0, we write

pn
A(t) = Pn

A(Xn(t)), (2.3)

pn
B(t) = Pn

A(Xn(t)). (2.4)

Thus for order book Xn(·) at time t, the best ask price is pn
A(t)/n and best bid price is

pn
B(t)/n, where 1/n is the tick size. We will be interested in the regime where n → ∞, that

is, the tick size approaches zero. For each fixed n, as in [9], we assume

(a) Limit buy (respectively sell) orders arrive at a distance of i ticks from the oppo-
site best quote at independent, exponentially distributed times with rate Λn

B(i)
(respectively Λn

A(i)),
(b) Market buy (respectively sell) orders arrive at independent, exponentially distributed

times with rate Υn
B (respectively Υn

A),
(c) Each limit buy (respectively sell) order at a distance of i ticks from the opposite

best quote is canceled independently after exponentially distributed times with rate
Θn

B(i) (respectively Θn
A(i) ) .

(d) All the above events are mutually independent.
(e) All the orders are of unit size, which is independent of n.

Compared to the model in [9], the extra feature is that we allow order flow intensities
to be side-dependent (buy orders or sell orders). This has been observed empirically and
such feature will be useful in our empirical analysis in Section 4. Given these assumptions,
the state process Xn(·) is a n-dimensional CTMC with state space Z

n. Define an operator
Ln as follows: for any function H : Z

n → R and each x ∈ Z
n

LnH(x) =
∑

k<Pn
A(x)

[(H(xk+) −H(x)
) · Θn

B(Pn
A(x) − k) · |xk|

]

+
∑

k<Pn
A(x)

[(H(xk−) −H(x)
) · Λn

B(Pn
A(x) − k)

]

+
∑

k>Pn
B(x)

[(H(xk+) −H(x)
) · Λn

A(k − Pn
B(x))

]

+
∑

k>Pn
B(x)

[(H(xk−) −H(x)
) · Θn

A(k − Pn
B(x)) · |xk|

]

+
(
H(xPn

B(x)+) −H(x)
)
· Υn

A

+
(
H(xPn

A(x)−) −H(x)
)
· Υn

B , (2.5)

where Pn
A and Pn

B are mappings given in (2.1) and (2.2), and for k ∈ {1, . . . , n}{
xk+ = (x1, . . . , xk−1, xk + 1, xk+1, . . . , xn),
xk− = (x1, . . . , xk−1, xk − 1, xk+1, . . . , xn),
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and

x0+ = x(n+1)− = x.

The infinitesimal generator of Xn coincides with the operator Ln on the space of bounded
functions from Z

n to R.
A few remarks are in order. First, the price range (0, 1] is not essential in our asymptotic

analysis. We can also use (c1, c2] for some integers c1 < c2 that are independent of n, and
this would not affect our results. Second, the state space of the above model is the n-
dimensional integer lattice and it becomes infinitely dimensional as n → ∞. So standard
limit theorems on Markov chains (see, e.g., [23]) do not apply in our asymptotic analysis.
Third, it is possible to allow random order size with finite second moment in our analysis.
For example, if we adopt the order-book model in [16] which generalizes [9] by allowing limit
orders to arrive in multiple sizes, we still have the Markovian structure for the order-book
dynamics and our main result on the fluid limit would essentially not change. To keep the
presentation simple, as in [9], we work with unit order size (which can be taken as the
average order size) in this paper.

Throughout the paper, we make the following assumptions.

Assumption 2.1: There exists a function � from [0, 1] to R such that for fixed n ≥ 1, the
initial order book Xn(0) is given by

Xn
i (0) ≡ n · �

(
i

n

)
for i ∈ {1, 2, . . . , n}. (2.6)

The initial profile � satisfies

(a) For some p ∈ (0, 1), �(p) = 0 and

sup{x ∈ [0, 1] : �(x) < 0} = inf{x ∈ [0, 1] : �(x) > 0} = p; (2.7)

(b) the function |�| is positive on (p − Δ, p) and (p, p + Δ) for some small Δ > 0;
(c) the function � is continuous and bounded on [0, p) and (p, 1].

Assumption 2.2: For each market side j ∈ {A,B}, there exists positive continuous function
Λj(x) and non-negative continuous function Θj(x) on [0, 1], and constants κ < 1 and Υ ≥ 0
such that for each n and i ∈ {1, 2, . . . , n},

Λn
j (i) = Λj

(
i

n

)
, Θn

j (i) =
1
n

Θj

(
i

n

)
, and Υn

j ≤ nκ · Υ. (2.8)

Both assumptions are motivated by our data analysis. First, empirically we find that
for certain liquidly traded stocks such as Bank of America, Ford Motor Co. and Dell Inc.,
there are large volumes of limit orders sitting at or near the best quotes and waiting for
executions. This provides empirical support for (2.6). For technical convenience, we also
make three assumptions on the regularity of the initial profile �. Here, the number p can be
viewed as the “market price” of a stock at time zero. Second, from our data we also find that
for the aforementioned liquid stocks, typically the ratio of limit order arrival rate and cancel
rate Λn

j (i)

Θn
j (i) is of the order of n = 100 in the vicinity of the best quotes. In addition, we observe

that the magnitude of market order arrival rate (e.g., volume per second) is not very high
compared to the volumes of limit orders in the vicinity of market price, specifically during
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the time periods of low price volatility. These two facts motivate (2.8). The assumptions on
the continuity of functions Λj ,Θj and positivity of Λj are technical and they facilitate our
mathematical analysis.

3. THE MAIN RESULT

In this section, we state the main result of this paper. We first define three sequences of
measure-valued process (see, e.g., [10] for background on measure-valued processes). For
fixed n ≥ 1 and t ∈ [0, T ], we set

ζn,+
t =

1
n2

n∑
i=1

(Xn
i (nt))+ · δ i

n
=

1
n2

∑
i>pn

B(nt)

Xn
i (nt) · δ i

n
, (3.1)

ζn,−
t =

1
n2

n∑
i=1

(Xn
i (nt))− · δ i

n
=

1
n2

∑
i<pn

A(nt)

−Xn
i (nt) · δ i

n
, (3.2)

ζn
t = ζn,+

t − ζn,−
t =

1
n2

n∑
i=1

Xn
i (nt) · δ i

n
, (3.3)

where Xn is the n-dimensional CTMC with state space Z
n and it describes the evolution

of the limit order book, pn
A, pn

B are given in (2.3) and (2.4), and δu is the Dirac measure
centered at u. In (3.1)–(3.3), we scale the time by a large number n so that it allows us to
study the low-frequency dynamics of an order book based on the high-frequency dynamical
model Xn. We scale the space by n2 so that the pair (ζn,+, ζn,−) will have a non-trivial
limit as n → ∞. Let us give an intuitive explanation on this combination of space-time
scalings. When we scale the time and speed up the order-book process Xn by a factor of
n, the rates of order arrivals are then magnified from order one to order n. Together with
Assumption 2.1 which indicates the initial queue size of limit orders is of the order n, one
can then expect that the number of limit orders on each price level is of the order n at each
time t. Hence, the choice of space scaling n2 follows since there there are n price levels in
total and the total number of sell limit orders and buy limit orders at all n price levels are
of the order of n2.

For fixed t, the pair (ζn,+
t , ζn,−

t ) represents the “sell-side shape” and “buy-side shape”
of the order book at some large time nt, and the measure ζn

t represents the whole shape
of the order book at large time nt. Note that the pair (ζn,+

t , ζn,−
t ) lives in the product

space M+([0, 1]) ×M+([0, 1]). For the moment, we use M([0, 1]) to denote this product
space equipped with an appropriate metric such that M([0, 1]) is complete and separable.
A precise definition of the space M([0, 1]) is given in Section 5.2.

We are interested in the limiting behavior of the Markov process (ζn,+, ζn,−) as n → ∞.
This corresponds to the limiting regime where price tick size 1/n approaches zero, rates of
order arrivals goes to infinity, and relative order size (compared to limit order queue size)
goes to zero. This can be readily seen from Assumptions 2.1–2.2 and the fact that the time
is speeded up by n in (3.1)–(3.2). It is worthwhile to note that ζn is also a Markov process,
which contains the same information as (ζn,+, ζn,−). However, for fixed t, ζn

t is a signed
measure living in the space M([0, 1]) which is ill-suited for studying weak convergence since
the weak topology is in general not metrizable (see, e.g., [31]). Thus we instead work with
the sequence of pairs of non-negative measure-valued processes {(ζn,+, ζn,−) : n ≥ 1}.

Now we state the main theorem of this paper. The proof is given in Section 6. Recall
that �, p,ΛA,ΛB ,ΘA, and ΘB are given in Assumptions 2.1 and 2.2.
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Theorem 3.1: Suppose that Assumptions 2.1 and 2.2 hold. Then as n → ∞,

(a) we have

sup
0≤t≤T

∣∣∣∣pn
A(nt)
n

− p

∣∣∣∣⇒ 0, (3.4)

sup
0≤t≤T

∣∣∣∣pn
B(nt)
n

− p

∣∣∣∣⇒ 0; (3.5)

(b) we have

(ζn,+, ζn,−) ⇒ (ζ+, ζ−) in D([0, T ],M([0, 1])),

where (ζ+, ζ−) is a pair of deterministic measure-valued process. In addition,
for any t ∈ [0, T ], the non-negative measures ζ+

t and ζ−t are absolutely continu-
ous with respect to Lebesgue measure and have density functions ϕ+ = max{ϕ, 0}
and ϕ− = max{−ϕ, 0} such that ζ+

t (dx) = ϕ+(x, t)dx and ζ−t (dx) = ϕ−(x, t)dx for
x ∈ [0, 1]. The function ϕ is uniquely determined by the following set of equations: for
x ∈ [0, 1]

ϕ(x, 0) = �(x), (3.6)

∂tϕ(x, t) = ΛA(x − p) − ΘA(x − p) · ϕ(x, t), x > p, (3.7)

∂tϕ(x, t) = −ΛB(p − x) − ΘB(p − x) · ϕ(x, t), x < p. (3.8)

ϕ(p, t) = 0, t ∈ [0, T ]. (3.9)

Theorem 3.1 provides a fluid approximation for the order-book dynamics. If we allow
limit orders to arrive in multiple sizes while keeping market orders and cancellations of
existing orders being unit size as in [16] which generalizes [9], our fluid limit still holds and
the only change we need to make is to multiply the limit order arrival rate ΛA,ΛB (number
of orders per unit time) by the average limit order size (relative to the market order size)
in Eqs. (3.7) and (3.8). Note that in high-frequency trading, the inter-arrival times of order
book events are typically very short (in the order of milliseconds). So the result suggests
that on a “low-frequency” time scale (in the order of a few minutes), the scaled best bid
and best ask prices are a constant p, and the density profile of the sell-side and buy-side
shape of the order book, given by ϕ+(x, t) and ϕ−(x, t), are characterized by a linear ODE
with coefficients determined by order arrival rates and cancellation rates. As discussed in
the introduction, this deterministic limit may not be realistic, but it could be potentially
useful for studying other problems.

One readily verifies from Theorem 3.1 and (2.7) that for each t ∈ [0, T ],

ϕ+(x, t) = e−ΘA(x−p)t · �(x)+ +
ΛA(x − p)
ΘA(x − p)

·
(
1 − e−ΘA(x−p)t

)
for p < x ≤ 1, (3.10)

ϕ−(x, t) = e−ΘB(p−x)t · �(x)− +
ΛB(p − x)
ΘB(p − x)

·
(
1 − e−ΘB(p−x)t

)
for 0 ≤ x < p. (3.11)
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When n is large, we obtain from Theorem 3.1 the following approximation for the transient
behavior of the shape of an order book: for interval I ⊂ [0, 1] and t ∈ [0, T ]

ζn,+
t (I) � 1

n2

∑
i>pn

B(nt), i
n∈I

Xn
i (nt) ≈ ζ+

t (I) =
∫

I

ϕ+(x, t)dx ≈ 1
n

∑
i
n∈I

ϕ+

(
i

n
, t

)
, (3.12)

ζn,−
t (I) � 1

n2

∑
i<pn

A(nt), i
n∈I

−Xn
i (nt) ≈ ζ−t (I) =

∫
I

ϕ−(x, t)dx ≈ 1
n

∑
i
n∈I

ϕ−
(

i

n
, t

)
, (3.13)

where ϕ+ and ϕ+ are given in (3.10) and (3.11). In the next section, we will test the
approximations (3.12) and (3.13) on data.

4. EMPIRICAL ANALYSIS

In this section, we perform in-sample analysis to illustrate the potential relevance of our
fluid approximation in Theorem 3.1.

Our empirical analysis is based on one-month message-level order book data from NYSE
Arca (in short, Arca) in August 2010. As of 2009, around 20% of market share for NASDAQ-
listed securities and 10% of NYSE-listed securities are traded on Arca.

Two data sets are used. The first data set consists of all limit order activities on Arca,
including limit order submission, modification and deletion. For each message in the data, it
contains a time stamp down to millisecond, the price and order size, the buy or sell indicator,
stock symbol, exchange, and an ID (identifier). This data set enables us to recreate the limit
order book at any give time for stocks traded on Arca. Our second data set records all the
trades. Each message contains a time stamp down to second, the traded price and order
size, the buy or sell indicator, the best bid/ask prices and standing limit order quantities
on these two prices when trades occur, stock symbol, and an ID (identifier). In conjunction
with the first data set, we can analyze the detailed order flow properties such as limit order
arrival rate, market order arrival rate and limit order cancellation rate.

4.1. Empirical Analysis

The goal of this section is to illustrate that our theoretical model can be potentially used
to approximate the evolution of the shape of an order book on time scale of minutes for
stocks and time periods, which satisfy our model assumptions.

We specifically test the approximations in (3.12) and (3.13) with empirical data. For
convenience we multiply both sides of these approximate equations by n2, that is, we test
the following approximations and show that they hold reasonably well:

∑
i>pn

B(nt), i
n∈I

Xn
i (nt) ≈ n

∑
i
n∈I

ϕ+

(
i

n
, t

)
, (4.1)

∑
i<pn

A(nt), i
n∈I

−Xn
i (nt) ≈ n

∑
i
n∈I

ϕ−
(

i

n
, t

)
. (4.2)

The left-hand side of (4.1) (respectively (4.2)) represents the total number of limit sell
(respectively buy) orders in price interval I ⊂ [0, 1]. With an appropriate shift of the price
levels, such quantities can be directly obtained from data since we have the full empirical
order book information at each time instant. For example, we can simply shift the best ask
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price to 0.5 and move other prices and order queues correspondingly. On the other hand,
the quantities at the right-hand side involve the values of functions ϕ+ and ϕ− at discrete
price levels i/n. We next discuss how to compute such values.

First, we screen the data to identify stocks and time periods, which satisfy Assumptions
2.1 and 2.2. We find that liquidly-traded stocks, such as Bank of America Corp. (BAC),
General Electric Co. (GE), Ford Motor Co. (F) and Dell Inc. (DELL), typically have large
volumes of limit orders sitting at or near the best quotes and waiting for market transactions.
This is consistent with Assumption 2.1. Once a stock is chosen, we scan the intra-day order
book data and look for time horizon (e.g., a few minutes) with low price volatility such
that Assumption 2.2 is also satisfied. To give an intuitive explanation, note that when the
volatility is low, trading is typically not active so the market order arrival rate is not large
which is the key in Assumption 2.2. On the other hand, for the liquid stocks that we study,
there are long queues of limit orders sitting in the order book. So if the market order arrival
rate is not relatively large in certain periods, it will take long time for the quote to be
depleted and for the price to move. This leads to the low volatility of the stocks in such
periods. For illustration purposes, we focus on the stock BAC during 12:45–13:05 pm on
August 5, 2010 as a representative example. The best bid and ask prices of BAC barely
change during this 20 min time period.

Second, we estimate and input the needed parameters to compute ϕ+ and ϕ− given in
(3.10) and (3.11). Such parameters include the initial order book profile �, the number p,
the time length nt, the limit order arrival rates and the limit order cancellation rates. We
follow the four-step procedure described below to choose and compute these parameters.

1. Normalize the calendar time 12:45 pm to be time zero. The initial order book is given
by the first snapshot of the order book after 12:45 pm. Hence, we obtain � at each
discrete price level.

2. Set p to be the best bid price at 12:45 pm when computing ϕ+ and the best ask when
computing ϕ−. Best bid and ask prices at 12:45 pm are $13.99 and $14, respectively.

3. Take snapshots of the order book every 5 min till 13:05 pm. More precisely, we record
the first snapshot of the order book after 12:50, 12:55, 13, and 13:05 pm, respectively.
We do so because we are interested in the dynamics of the shape on the “large” time
scale in the order of minutes.

4. For each of the four time intervals: 12:45–12:50 pm, 12:45–12:55 pm, 12:45–13:00 pm
and 12:45–13:05 pm, estimate the order flow intensities following [9].

Finally, we compute the right-hand side of (4.1) and (4.2) by plugging in the model
parameters. We use n = 100 which is the reciprocal of the tick size one cent. For the four
time points 12:50, 12:55, 13:00, and 13:05 pm, we have nt correspond to 5, 10, 15, and
20 min, respectively. We take interval I in (4.1) and (4.2) as 3-cent price bins, e.g., [$0.5,
$0.53]. It turns out that varying the bin size yields similar results, so we suppress further
details.

We now present the main empirical findings on in-sample tests of the approximations
in (4.1) and (4.2). We use Table 1 and Figure 1 for an illustration. For further statistics
and results on both buy-side and sell-side shapes, see the Internet supplement available
at the author’s website http://www1.se.cuhk.edu.hk/xfgao/lobSupplement. For the clarity
of the presentation, we focus on price levels 10 ticks above the best ask price. Table 1 records
the values of the function ϕ+(x, t) for stock BAC at five different time points including
12:45 pm, which corresponds to the time zero. From Table 1 and (4.1), one can readily obtain
Figure 1, which plots the comparisons of the empirical sell-side shape of stock BAC and the
theoretical sell-side shape obtained from applying our model at four different time instants.

https://doi.org/10.1017/S0269964816000413 Published online by Cambridge University Press

http://www1.se.cuhk.edu.hk/xfgao/lobSupplement
https://doi.org/10.1017/S0269964816000413


HYDRODYNAMIC LIMIT OF ORDER-BOOK DYNAMICS 105

Table 1. This table records the values of ϕ+(x, t) for BAC during 12:45–13:05 pm, August
5, 2010. The time t = 0 (unit, minute) corresponds to 12:45 pm. The position x = $0.50
corresponds to $14.00, the best ask price at 12:45 pm due to the price shift. When computing
ϕ+, the number p is set to be $0.49 which corresponds to the best bid price $13.99.

t

x 0 0.05 0.1 0.15 0.2

0.50 1.355 1.845 2.265 2.780 2.998
0.51 1.842 2.015 2.074 2.120 2.098
0.52 2.079 2.192 2.254 2.310 2.243
0.53 1.937 2.188 2.211 2.301 2.468
0.54 1.494 1.627 1.688 1.744 1.813
0.55 1.561 1.689 1.682 1.693 1.533
0.56 1.786 1.808 1.780 1.777 1.695
0.57 0.938 0.969 0.959 0.960 0.966
0.58 1.184 1.191 1.190 1.190 1.206
0.59 1.015 1.006 1.008 1.009 1.027

Figure 1. Comparisons of empirical sell-side shapes and theoretical sell-side shapes for
BAC on August 5, 2010. Each blue bar corresponds to the total number of limit sell orders
in each 3-cent price bin and it is obtained from data. Each magenta bar corresponds to the
total number of limit sell orders in each price bin and it is obtained from our model. We
have seven “consecutive” 3-cent price bins in each subfigure since we focus on price levels
10 ticks above the best ask price. The unit order size is taken to be 363-shares, which is
the average limit sell order size of BAC during 12:45–13:05 pm. The best ask prices are the
same ($14) at four time instants 12:50, 12:55, 13:00, and 13:05 pm. Each time instant (say,
12:50 pm) represents the time that the first order book event occurs after that time instant.
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For convenience, the aggregated order volume in each price bin is scaled by 363-shares, the
average limit sell order size of BAC during 12:45–13:05 pm. From Figure 1, we observe good
agreement between the theoretical shapes computed from our model (Theorem 3.1) and the
empirical shapes of stock BAC on Arca. Thus, despite the simplifying assumptions, there is
positive evidence that our limiting model can potentially explain the evolution of the shape
of an order book over a time horizon that is large compared with the length of time between
order book events.

Finally, we remark that the main goal of the empirical analysis is to illustrate the
potential relevance of the fluid approximation rather than to make prediction about the
future order-book shape, so no out-of-sample prediction result is reported here. In fact, we
have attempted the analysis and found that the model does not work well for prediction
purpose. One possible reason is that the parameters (order flow intensities) in our fluid
model are constants, while in reality they vary over time and are random on the time
scale of several minutes. This begs for further research on predictive models of order flow
intensities and order-book shape, which is outside the scope of this paper.

5. PRELIMINARIES

This section presents preliminaries for proving the main result (Theorem 3.1).

5.1. A Technical Lemma

In this section, we introduce a technical lemma. It connects the process (ζn,+, ζn,−) with
the process ζn which plays a fundamental role in the proof of Theorem 3.1.

Note that for fixed f ∈ C[0, 1], one can construct a family of functions fγ ∈ C[0, 1]
indexed by γ ∈ (0, p) such that {fγ} are uniformly bounded and

fγ(x) =

⎧⎪⎨
⎪⎩

f(x) if p ≤ x ≤ 1,

0 if 0 ≤ x ≤ p − γ,

smooth if p − γ < x < p.

(5.1)

It is clear that

lim
γ→0+

fγ(x) = f(x) · 1[p,1](x) for each x ∈ [0, 1]. (5.2)

The following lemma says that 〈ζn,+
t , f〉 is “close” to 〈ζn

t , fγ〉 and 〈ζn,−
t , f〉 is “close”

to 〈ζn
τ , fγ − f〉 when n is large and γ is small. The proof is given in Appendix A.

Lemma 5.1: Fix a function f ∈ C[0, 1]. There exists a positive constant C depending on T
and two non-negative sequences {ãn}, {ân} both depending on T and both approaching 0 as
n → ∞, such that for each γ ∈ (0, p) and n large, we have

E

[
sup

0≤t≤T

∣∣〈ζn,+
t , f〉 − 〈ζn

t , fγ〉
∣∣ ] ≤ ãn + Cγ, (5.3)

E

[
sup

0≤t≤T

∣∣〈ζn,−
t , f〉 − 〈ζn

t , fγ − f〉∣∣ ] ≤ ân + Cγ. (5.4)
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5.2. Tightness of {(ζn,+, ζn,−) : n ≥ 1}
In this section, we define the Polish space D([0, T ],M([0, 1])) on which the pair of measure-
valued processes {(ζn,+, ζn,−) : n ≥ 1} lives and discuss the tightness of this sequence.

Recall that the space of finite non-negative measures on [0, 1], denoted by M+([0, 1]),
is a Polish space under the following metric d+:

d+ (υα, υβ) =
∞∑

k=1

1
2k

|〈υα, φk〉 − 〈υβ , φk〉|
1 + |〈υα, φk〉 − 〈υβ , φk〉| , (5.5)

where υα, υβ ∈ M+([0, 1]), {φk : k ≥ 1} are chosen to be a dense subset of C([0, 1]) endowed
with uniform topology, and 〈υ, φk〉 ≡

∫
φk(x)υ(dx) for measure υ, see, for example, [18,

Section 4.1]. Relying on the metric d+, we can define a metric d on the product space
M+([0, 1]) ×M+([0, 1]) such that

d
(
(υ+

α , υ−
α ), (υ+

β , υ−
β )
)

�
√

d2
+(υ+

α , υ+
β ) + d2

+(υ−
α , υ−

β ), (5.6)

where (υ+
α , υ−

α ), (υ+
β , υ−

β ) ∈ M+([0, 1]) ×M+([0, 1]). The product space M+([0, 1]) ×
M+([0, 1]) equipped with metric d defined in (5.6) is denoted by M([0, 1]). One readily
verifies that M([0, 1]) is a Polish space (see, e.g., [20]). Therefore, the Skorohod space
D([0, T ],M([0, 1])) on which (ζn,+, ζn,−) lives is also a Polish space with Skorohod J1

topology. See [4] for more details on the topology.
We now state the main result of this section. The proof is given in Appendix B. Recall

a sequence of random elements is called C-tight if it is tight, and if all the limit points of the
sequence are concentrated on continuous paths. See, for example, [17, Definition VI.3.25].

Proposition 5.1: Fix a function f ∈ C[0, 1]. Then {(〈ζn,+, f〉, 〈ζn,−, f〉) : n ≥ 1} is
C–tight in D([0, T ], R2), and {(ζn,+, ζn,−) : n ≥ 1} is C–tight in D([0, T ],M([0, 1])).

Proposition 5.1 together with Prohorov’s Theorem implies that the sequence
{(ζn,+, ζn,−) : n ≥ 1} is relatively compact. The next step is to characterize the limit points
of this relatively compact sequence. Suppose (ζ+, ζ−) is a limit point, that is, there is a
subsequence {(ζnk,+, ζnk,−) : k = 1, 2 . . .} such that

(ζnk,+, ζnk,−) ⇒ (ζ+, ζ−) in D([0, T ],M([0, 1])) as nk → ∞. (5.7)

To characterize the pair (ζ+, ζ−), we rely on an auxiliary process defined by

ζt � ζ+
t − ζ−t for each t ∈ [0, T ], (5.8)

5.3. Characterization of the Process ζ

In this section, we characterize the process ζ defined in (5.8).
It is straightforward to verify that for f ∈ C[0, 1], the function from (π+, π−) ∈

D([0, T ],M([0, 1])) to (〈π+, f〉, 〈π−, f〉) ∈ D([0, T ], R2) is continuous with respect to Sko-
rohod J1 topology [use (5.5) and (5.6) and Lemma A.24 in [30]]. Now (5.7) together with
continuous mapping theorem implies that for an arbitrary fixed function f ∈ C([0, 1]) we
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have as nk → ∞,(〈ζnk,+, f〉, 〈ζnk,−, f〉)⇒ (〈ζ+, f〉, 〈ζ−, f〉) in D([0, T ], R2). (5.9)

Thus, we deduce that

〈ζnk , f〉 ⇒ 〈ζ, f〉 in D([0, T ], R), (5.10)

where ζn is given in (3.3) and ζ is given in (5.8).
Next, for fixed n ≥ 1, if we define a function F on R

n by

F (x1, . . . , xn) =
1
n2

n∑
k=1

f
(k

n

)
xk, (5.11)

we obtain from (3.3) and Markov property of Xn that for t ∈ [0, T ],

〈ζn
t , f〉 =

1
n2

n∑
i=1

Xn
i (nt) · f

( i

n

)
= F (Xn(nt))

= 〈ζn
0 , f〉 +

∫ nt

0

LnF (Xn(s))ds + Mn
t . (5.12)

Here Ln is operator given in (2.5) and Mn is a (local) martingale. The martingale
representation (5.12) and the convergence in (5.10) are the keys to characterize ζ.

To state the main result of this section, we recall the functions ΛA,ΛB ,ΘA, and ΘB

given in Assumption 2.2 and p given in Assumption 2.1. For notational convenience, we
let νΛ be a signed measure that is absolutely continuous with respect to Lebesgue measure
such that for x ∈ [0, 1]

ν(dx)
dx

= ΛA(x − p) · 1x>p − ΛB(p − x) · 1x<p. (5.13)

In addition, we let AΘ be a linear operator such that for f ∈ C([0, 1]),

AΘf(x) = f(x) ·
(
ΘA(x − p) · 1x>p + ΘB(p − x) · 1x<p

)
. (5.14)

We now state the main result of this section which gives a characterization of ζ.

Proposition 5.2: Let (ζ+, ζ−) be a limit point in (5.7) and let ζ be defined in (5.8). Then
ζ satisfies the following set of equations: for any f ∈ C([0, 1]) and t ∈ [0, T ],

〈ζt, f〉 = 〈ζ0, f〉 + 〈ν, f〉 · t −
∫ t

0

〈ζs,AΘf〉ds, (5.15)

where ν and AΘ are given in (5.13) and (5.14). Moreover, 〈ζ, f〉 has continuous trajectory
and there is a unique deterministic measure-valued process solving Eq. (5.15). Finally, for
fixed t ∈ [0, T ], ζt is a finite measure that is absolutely continuous with respect to Lebesgue
measure, and it has bounded density function ϕ determined by (3.6)–(3.9).

The main technical part of the proof of Proposition 5.2 consists of showing that in (5.12)
as n → ∞, the martingale term vanishes and the term involving the generator converges
weakly. We leave the details of the proof to Appendix C.
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6. PROOF OF THEOREM 3.1

In this section, we prove the main result Theorem 3.1. The proof of part (b) of Theorem 3.1
relies on the results in Section 5 while the proof of part (a) does not.

6.1. Proof of Part (a) of Theorem 3.1

Proof: We prove (3.4) using a stochastic comparison method. The convergence in (3.5)
follows from a similar argument and is thus omitted.

We first note that

lim
n→∞

pn
A(0)
n

= lim
n→∞

pn
B(0)
n

= p. (6.1)

This readily follows from the definition of best bid and best ask prices and the regularity
condition (b) of � in Assumption 2.1. Hence, in order to prove (3.4), it suffices to show

sup
0≤t≤T

∣∣∣∣pn
A(nt)
n

− pn
A(0)
n

∣∣∣∣⇒ 0, as n → ∞.

Given any ε > 0, we have

P

(
sup

0≤t≤T

∣∣∣∣pn
A(nt)
n

− pn
A(0)
n

∣∣∣∣ > ε
)

≤ P

(
sup

0≤t≤T
pn

A(nt) − pn
A(0) > nε

)
+ P

(
pn

A(0) − inf
0≤t≤T

pn
A(nt) > nε

)
. (6.2)

We next show that for any small δ > 0, there exists Nδ such that when n > Nδ,

P

(
sup

0≤t≤T
pn

A(nt) − pn
A(0) > nε

)
≤ δ. (6.3)

Since pn
A(·) is upper bounded by n + 1 by definition, we deduce that if pn

A(0) ≥ n + 1 − nε,
then (6.3) follows trivially. Thus below we assume pn

A(0) < n + 1 − nε, or equivalently,
pn

A(0) + �nε� ≤ n. For a fixed n and a given pn
A(0), we first define a map g from

Z
n to Z:

g(x) =
pn

A(0)+�nε�∑
i=pn

A(0)

x+
i . (6.4)

We use the map g to further introduce an auxiliary process Zn to track the number of sell
limit orders on price levels from pn

A(0) to pn
A(0) + �nε�. That is, for each t ≥ 0,

Zn(t) � g(Xn(nt)) =
pn

A(0)+�nε�∑
i=pn

A(0)

[Xn
i (nt)]+. (6.5)

Write
σn
Zn � inf{t ≥ 0 : Zn(t) = 0}. (6.6)

Then σn
Zn is the first time that Zn reaches 0 starting from Zn(0) > 0, where Zn(0) > 0

follows from the fact that pn
A(0) ≤ n. Thus, in order to show (6.3), it suffices to prove

P(σn
Zn ≤ T ) ≤ δ, when n > Nδ. (6.7)

The key idea for proving (6.7) is to construct a n-dimensional CTMC {Wn(t) : t ≥ 0}
on Z

n that is dominated by {Xn(t) : t ≥ 0} in the sense of strong stochastic order for each
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n. That is, Er(Wn(t)) ≤ Er(Xn(t)) for all real-valued increasing functions r on Z
n and all

t ≥ 0. To proceed, we set Wn(0) = Xn(0). For convenience, we define two constants:

Λ̄ � 2 ·
[(

max
x∈[0,1]

ΛA(x)
)
∨
(

max
x∈[0,1]

ΛB(x)
)]

< ∞, (6.8)

Θ̄ �
(

max
x∈[0,1]

ΘA(x)
)
∨
(

max
x∈[0,1]

ΘB(x)
)

> 0. (6.9)

We construct Wn by modifying the transition parameters of the CTMC Xn as follows: (a)
set the limit sell order arrival rate to zero; (b) set the limit buy order cancellation rate
and the market sell order arrival rate to zero; (c) set the limit buy order arrival rate at
each price level to Λ̄ given in (6.8), the market buy order arrival rate to nκ · Υ given in
Assumption 2.2, and the limit sell order cancellation rate per order to 1

n Θ̄.
We next argue Wn is stochastically dominated by Xn. We apply the result of [27].

Recall a set Γ ⊂ Z
n is said to be decreasing if x ∈ Γ implies {y ∈ Z

n : y ≤ x} ⊂ Γ. From the
construction of Wn, we know that there are no limit sell order arrivals and limit buy order
removals (due to cancellation or matches with market sell orders) in Wn. This implies that
if Wn transits from one state w ∈ Z

n to another state w′ ∈ Z
n, then w′ ≤ w with respect to

the partial order ≤ on Z
n. Thus we deduce from [27, Theorem 5.3] that it suffices to show

for all decreasing sets Γ ⊂ Z
n such that w /∈ Γ

∑
z∈Γ

qWn(w, z) ≥
∑
z∈Γ

qXn(x, z) for all w ≤ x, (6.10)

where qWn and qXn are transition rates for Wn and Xn. One readily verifies (6.10) from
the construction of Wn and the fact that both Wn and Xn have the property that only one
component can change its value at each transition.

Given that Wn is stochastically dominated by Xn, we are ready to construct a process
Z̃n that is stochastically dominated by Zn given in (6.5). We simply set for t ≥ 0

Z̃n(t) � g(Wn(nt)) =
pn

A(0)+�nε�∑
i=pn

A(0)

[Wn
i (nt)]+ ≥ 0. (6.11)

Then Zn dominates Z̃n in strong stochastic order since g in (6.4) is an increasing function
on Z

n. We then deduce that

P(σn
Zn ≤ T ) ≤ P(σn

Z̃n ≤ T ),

where σn
Z̃n is the first time that Z̃n reaches zero starting from Z̃n(0) = Zn(0), that is,

σn
Z̃n � inf{t ≥ 0 : Z̃n(t) = 0}. (6.12)

Hence, to show (6.7) it suffices to prove that given any δ > 0, there exists Nδ such that

P(σn
Z̃n ≤ T ) ≤ δ, when n > Nδ. (6.13)

We now focus on proving (6.13). One can verify that the process Z̃n defined in (6.11)
is a pure-death process with absorbing barrier at zero, and the death rate of Z̃n when it is
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in state k ∈ {1, 2, . . .} is given by

n ·
(

k · Θ̄
n

+ nκ · Υ
)

. (6.14)

One can also check from Assumption 2.1, (6.11) and (6.1) that

lim
n→∞

Z̃n(0)
n2

= lim
n→∞

1
n2

pn
A(0)+�nε�∑
i=pn

A(0)

[Xn
i (0)]+ =

∫ p+ε

p

�(x)dx > 0. (6.15)

Since Z̃n is a pure death process with absorbing state zero, we obtain

σn
Z̃n =

Z̃n(0)∑
k=1

Dk, (6.16)

where Dk represents the first passage time that Z̃n starts from state k and reaches k − 1, so
Dk is an exponential random variable with rate k · Θ̄ + n1+κΥ given in (6.14). In addition,
all the Dk’s are mutually independent. Thus, we have

E[σn
Z̃n ] = E

[ Z̃n(0)∑
k=1

Dk

]
=

Z̃n(0)∑
k=1

1
k · Θ̄ + n1+κ · Υ ,

Var(σn
Z̃n) =

Z̃n(0)∑
k=1

Var(Dk) =
Z̃n(0)∑
k=1

1
(k · Θ̄ + n1+κ · Υ)2

.

Since κ < 1, we deduce from (6.15) that there exists C independent of n such that

lim
n→∞

1
ln n

E[σn
Z̃n ] =

1 − κ

Θ̄
> 0, and sup

n
Var(σn

Z̃n) ≤ C. (6.17)

Thus, for all n large enough, we obtain E[σn
Z̃n ] > T . It follows that

Var(σn
Z̃n) ≥ E

[(
E[σn

Z̃n ] − σn
Z̃n

)2 : σn
Z̃n ≤ T

]
≥ E

[(
E[σn

Z̃n ] − T
)2 : σn

Z̃n ≤ T
]

=
(
E[σn

Z̃n ] − T
)2 · P(σn

Z̃n ≤ T ).

Therefore we deduce that when n is large,

P(σn
Z̃n ≤ T ) ≤ 1(

E[σn
Z̃n

] − T
)2 Var(σn

Z̃n).

This yields (6.13) after applying (6.17). Thus we have completed the proof of (6.3).

https://doi.org/10.1017/S0269964816000413 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964816000413


112 X. Gao and S.J. Deng

We next show that for n large,

P

(
pn

A(0) − inf
0≤t≤T

pn
A(nt) > nε

)
≤ δ. (6.18)

Note that pn
B(·) is smaller than pn

A(·) at each time, we have

pn
A(0) − inf

0≤t≤T
pn

A(nt) ≤ pn
A(0) − inf

0≤t≤T
pn

B(nt)

= pn
B(0) − inf

0≤t≤T
pn

B(nt) + pn
A(0) − pn

B(0).

Now (6.1) implies that for n large,

P

(
pn

A(0) − pn
B(0) >

nε

2

)
≤ δ

2
.

Thus, it suffices to prove that for n large

P

(
pn

B(0) − inf
0≤t≤T

pn
B(nt) >

nε

2

)
≤ δ

2
.

This follows from a similar argument for (6.3). Thus, we have (6.18). On combining (6.2),
(6.3), and (6.18), we obtain (3.4). Therefore the proof is complete. �

6.2. Proof of Part (b) of Theorem 3.1

In this section, we prove part (b) of Theorem 3.1. We rely on the results in Section 5 and
characterize the limit point (ζ+, ζ−) in (5.7).

Proof: Assume (ζ+, ζ−) is a limit point as in Proposition 5.2. In view of Proposition 5.2, to
show that ζ+

t (respectively ζ−t ) is absolutely continuous with density ϕ+(·, t) (respectively
ϕ−(·, t)), it suffices to show that for any f ∈ C([0, 1]) and t ∈ [0, T ], we have

〈ζ+
t , f〉 =

∫ 1

0

f(x)ϕ+(x, t)dx, (6.19)

〈ζ−t , f〉 =
∫ 1

0

f(x)ϕ−(x, t)dx, (6.20)

where ϕ+ = max{ϕ, 0}, ϕ− = max{−ϕ, 0} and ϕ is uniquely determined by (3.6)–(3.9).
To this end, we first note that 〈ζnk,+

t , f〉 ⇒ 〈ζ+
t , f〉 as nk → ∞ for fixed time t ∈ [0, T ].

This is true because 〈ζnk,+, f〉 ⇒ 〈ζ+, f〉 in (5.9) and almost every path of the limit
point 〈ζ+, f〉 is continuous by Proposition 5.1. Similarly, we deduce from (5.10) that
〈ζnk

t , fγ〉 ⇒ 〈ζt, fγ〉 for fγ ∈ C[0, 1] introduced in (5.1) and t ∈ [0, T ]. Since ζ is deterministic
by Proposition 5.2, we obtain that 〈ζnk

t , fγ〉 converges in probability to 〈ζt, fγ〉. Therefore,
we have for fixed γ > 0,

〈ζnk,+
t , f〉 − 〈ζnk

t , fγ〉 ⇒ 〈ζ+
t , f〉 − 〈ζt, fγ〉 as nk → ∞.
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Using Theorem 3.4 in [4], we obtain from Lemma 5.1 that there exists a constant C > 0
such that for each γ ∈ (0, p) and t ∈ [0, T ]

E
∣∣〈ζ+

t , f〉 − 〈ζt, fγ〉
∣∣ ≤ lim inf

nk→∞ E
∣∣〈ζnk,+

t , f〉 − 〈ζnk
t , fγ〉

∣∣
≤ lim inf

nk→∞ (ãnk
+ Cγ)

= Cγ. (6.21)

In addition, since ζt is a deterministic signed measure with bounded density function by
Proposition 5.2 and {fγ : γ ∈ (0, p)} is uniformly bounded on [0, 1], one infers from the
dominated convergence theorem and (5.2) that

lim
γ→0+

〈ζt, fγ〉 = 〈ζt, lim
γ→0+

fγ〉 =
∫ 1

p

f(x)ϕ(x, t)dx. (6.22)

Since ϕ satisfies (3.6)-(3.9), and ρ satisfies (2.7), we deduce that ϕ is non-negative on [p, 1]
and non-positive on [0, p]. This implies∫ 1

p

f(x)ϕ(x, t)dx =
∫ 1

0

f(x)ϕ+(x, t)dx. (6.23)

Therefore, we find from (6.21) that

E

∣∣∣∣〈ζ+
t , f〉 −

∫ 1

0

f(x)ϕ+(x, t)dx

∣∣∣∣ ≤ E
∣∣〈ζ+

t , f〉 − 〈ζt, fγ〉
∣∣+ |〈ζt, fγ〉 −

∫ 1

0

f(x)ϕ+(x, t)dx|

≤ Cγ + |〈ζt, fγ〉 −
∫ 1

0

f(x)ϕ+(x, t)dx|. (6.24)

Let γ → 0+ in inequality (6.24), we conclude from (6.22) and (6.23) that

E

∣∣∣∣〈ζ+
t , f〉 −

∫ 1

0

f(x)ϕ+(x, t)dx

∣∣∣∣ = 0.

Thus, (6.19) holds with probability one. A similar argument yields (6.20). The proof is
therefore complete. �
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APPENDIX A. PROOF OF LEMMA 5.1

In this section, we prove Lemma 5.1 in Section 5.1. To do so, we first introduce a result on bounding
the (scaled) total number of limit orders within a certain price range of the order book. The proof
is deferred to the end of this appendix.
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Lemma A.1: Fix T > 0. There exists a positive constant C, which depends on T, but is independent
of n such that for any fixed interval [a, b] ⊂ [0, 1], we have

lim sup
n→∞

E

⎡
⎢⎣ sup

0≤t≤T

1

n2

∑
i: i

n∈[a,b]

|Xn
i (nt)|

⎤
⎥⎦

2

≤ C2(b − a)2, (A.1)

and

lim sup
n→∞

E

⎡
⎢⎣ sup

0≤t≤T

1

n2

∑
i: i

n∈[a,b]

|Xn
i (nt)|

⎤
⎥⎦ ≤ C(b − a). (A.2)

In addition for any σ ∈ [0, T ] we have

lim sup
n→∞

E

[
sup

0≤s≤T−σ

∫ s+σ

s

1

n2

n∑
k=1

|Xn
k (nu)|du

]
≤ Cσ. (A.3)

We now prove Lemma 5.1.

Proof of Lemma 5.1: We focus on proving (5.3). The proof for (5.4) follows similarly and hence
is omitted. Throughout the proof, we use a generic constant C that may depend on T and may
vary from line to line, but C is independent of n.

From the definitions of ζn,+, ζn and fγ (see (3.1), (3.3) and (5.1)) we derive

E

[
sup

t∈[0,T ]

∣∣∣〈ζn,+
t , f〉 − 〈ζn

t , fγ〉
∣∣∣ ]

=
1

n2
E

⎡
⎣ sup

t∈[0,T ]

∣∣∣∣∣∣
∑

i>pn
B(nt)

Xn
i (nt)f

(
i

n

)
−

n∑
i=1

Xn
i (nt)fγ

(
i

n

)∣∣∣∣∣∣
⎤
⎦

=
1

n2
E

⎡
⎣ sup

t∈[0,T ]

∣∣∣∣∣∣
∑

i>pn
B(nt)

Xn
i (nt)f

(
i

n

)
−
∑
i≥np

Xn
i (nt)f

(
i

n

)
−

∑
i∈(np−nγ,np)

Xn
i (nt)fγ

(
i

n

)∣∣∣∣∣∣
⎤
⎦

≤ 1

n2
E

⎡
⎣ sup

t∈[0,T ]

∣∣∣∣∣∣
∑

i>pn
B(nt)

Xn
i (nt)f

(
i

n

)
−
∑
i≥np

Xn
i (nt)f

(
i

n

)∣∣∣∣∣∣
⎤
⎦

+
1

n2
E

⎡
⎣ sup

t∈[0,T ]

∣∣∣∣∣∣
∑

i∈(np−nγ,np)

Xn
i (nt)fγ

(
i

n

)∣∣∣∣∣∣
⎤
⎦ . (A.4)

We now bound the two terms after the inequality sign in (A.4). We first bound the second
term, that is, the last display in (A.4). Since the family of functions fγ are constructed such that
fγ are uniformly bounded by some constant C on [0, 1] for all γ ∈ (0, p), the second term in (A.4)
is bounded above by

C

n2
· E

⎡
⎣ sup

t∈[0,T ]

∑
i∈(np−nγ,np)

|Xn
i (nt)|

⎤
⎦ ,

which is further bounded above by Cγ for large n by (A.2).
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We next bound the first term, which we denote by ãn. It is clear that ãn ≥ 0, so we only have
to show that limn→∞ ãn = 0. We split it into two parts and study them separately. Fix some δ > 0.
Since f is continuous, it is bounded by some constant C on [0, 1]. We then deduce that

1

n2
E

⎡
⎣ sup

t∈[0,T ]

∣∣∣∣∣∣
∑

i>pn
B(nt)

Xn
i (nt)f(

i

n
) −
∑
i≥np

Xn
i (nt)f

(
i

n

)∣∣∣∣∣∣ ; sup
t∈[0,T ]

∣∣∣∣pn
B(nt)

n
− p

∣∣∣∣ ≥ δ

⎤
⎦

≤ 2C · E

[
sup

0≤s≤T

n∑
i=1

1

n2

∣∣Xn
i (ns)

∣∣ ; sup
t∈[0,T ]

∣∣∣∣pn
B(nt)

n
− p

∣∣∣∣ ≥ δ

]
� bn,δ. (A.5)

Now (A.1) in Lemma A.1 implies that the sequence {sup0≤s≤T

∑n
k=1

1
n2 |Xn

k (ns)| : n ≥ 1} is uni-

formly bounded in L2, thus {sup0≤s≤T

∑n
k=1

1
n2 |Xn

k (ns)| : n ≥ 1} is uniformly integrable. Thus,
we obtain from part (a) of Theorem 3.1 and (A.5) that for any δ > 0,

lim
n→∞ bn,δ = 0. (A.6)

We next proceed to bound

1

n2
E

⎡
⎣ sup

t∈[0,T ]

∣∣∣∣∣∣
∑

i>pn
B(nt)

Xn
i (nt)f

(
i

n

)
−
∑
i≥np

Xn
i (nt)f

(
i

n

)∣∣∣∣∣∣ ; sup
t∈[0,T ]

∣∣∣∣pn
B(nt)

n
− p

∣∣∣∣ < δ

⎤
⎦ .

We can choose small δ > 0 such that (p − δ, p + δ) ⊂ (0, 1). The above term is then bounded above
by

C

n2
· E

⎡
⎣ sup

t∈[0,T ]

∑
i∈(np−nδ,np+nδ)

|Xn
i (nt)|

⎤
⎦ ,

which is bounded above by Cδ for n large using (A.2). Upon combining the two parts we find for
large n

0 ≤ ãn ≤ bn,δ + Cδ for sufficiently small δ > 0.

Fix δ > 0 and let n → ∞. We infer from (A.6) that

0 ≤ lim sup
n→∞

ãn ≤ Cδ.

Let δ → 0+, we obtain limn→∞ ãn = 0. Therefore the proof is complete. �

Proof of Lemma A.1: It suffices to prove (A.1) since it is clear that (A.1) implies (A.2) by the
Jensen’s inequality. Inequality (A.2) further leads to (A.3) by observing that

E

[
sup

0≤s≤T−σ

∫ s+σ

s

1

n2

n∑
k=1

|Xn
k (nu)|du

]
≤ E

[
sup

0≤s≤T−σ

∫ s+σ

s
sup

u∈[s,s+σ]

1

n2

n∑
k=1

|Xn
k (nu)|du

]

≤ σ · E

[
sup

0≤s≤T−σ
sup

u∈[s,s+σ]

1

n2

n∑
k=1

|Xn
k (nu)|

]

= σ · E

[
sup
u≤T

1

n2

n∑
k=1

|Xn
k (nu)|

]
.

Thus, the rest of the proof focus on establishing (A.1). For fixed n and i ∈ {1, . . . , n}, we write
An

i (t) for the total number of new limit orders submitted at price level i/n by time t. One can
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construct independent Poisson processes Ān
1 , . . . , Ān

n with rate Λ̄ given in (6.8) such that for each
i, Ān

i is defined on the probability space which An
i lives in, and

Ān
i (t, ω) ≥ An

i (t, ω) for every sample path ω and every t ≥ 0. (A.7)

Set

Ēn(t) �
∑

i: i
n∈[a,b]

Ān
i (nt) and Nn(t) =

∑
i: i

n∈[a,b]

|Xn
i (nt)|.

We immediately get that Ēn(·) is a Poisson process with rate rn where

rn � nΛ̄ · (
nb� − �na + 1) ≤ nΛ̄ · (nb − na + 1), (A.8)

and

sup
0≤t≤T

Nn(t) ≤ Nn(0) + Ēn(T ) for every sample path.

This implies that

E[ sup
0≤t≤T

Nn(t)]2 ≤ E[Nn(0) + Ēn(T )]2 ≤ 2E[Nn(0)]2 + 2E[Ēn(T )]2. (A.9)

One readily checks from Assumption 2.1 that

1

n4
E[Nn(0)]2 =

( 1

n

∑
i: i

n∈[a,b]

|�(i/n)|
)2

≤
[
C
(
(b − a) +

1

n

)]2
, (A.10)

where we use the fact that � is bounded by some constant C on [0, 1]. To bound E[Ēn(T )]2 in (A.9),
we note that Ēn is a Poisson process with rate rn. Thus, we have

E[Ēn(T )]2 = rnT + r2
nT 2. (A.11)

One readily verifies from (A.8) and (A.11) that

lim sup
n→∞

1

n4
E[Ēn(T )]2 = Λ̄2 · (b − a)2T 2. (A.12)

Now (A.1) follows from (A.9), (A.10) and (A.12). The proof is complete. �

APPENDIX B. PROOF OF PROPOSITION 5.1

It is the goal of this appendix to establish the tightness of {(ζn,+, ζn,−) : n ≥ 1}, that is, to prove
Proposition 5.1. The approach is to first show the tightness of {ζn,+ : n ≥ 1} and {ζn,− : n ≥ 1}
individually, and then obtain the joint tightness by proving the limit points of {ζn,+ : n ≥ 1} and
{ζn,− : n ≥ 1} are concentrated on the set of continuous paths. Throughout the proofs in this
section, we use a generic constant C, which may vary from line to line, but C is independent of n.

We start with several auxiliary lemmas. The next lemma says that in order to establish the
tightness of {ζn,+ : n ≥ 1} and {ζn,− : n ≥ 1}, it suffices to show that, for every f ∈ C[0, 1], the
sequences of real-valued processes {〈ζn,+, f〉 : n ≥ 1} and {〈ζn,−, f〉 : n ≥ 1} are both tight in
D([0, T ]; R). This lemma can be found in [18, Chapter 4, Proposition 1.7].
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Lemma B.1: A family of non-negative measure-valued processes {νn : n ≥ 1} is tight in
D([0, T ],M+[0, 1]) if {〈νn, f〉 : n ≥ 1} is tight in D([0, T ]; R) for every f ∈ C[0, 1].

The next lemma is Proposition VI.3.26 in [17].

Lemma B.2: For fixed T > 0, let {X
n : n ≥ 1} be a sequence of processes that take values in

D([0, T ], R
d) equipped with Skorokhod J1 topology. For each n ≥ 1, {X

n} is adapted to a filtra-
tion (Fn

t )t∈[0,T ]. Then {X
n : n ≥ 1} is C-tight in D([0, T ], R

d) if and only if the following two
conditions hold:

(a) For any t ∈ [0, T ] and ε > 0, there exists a compact set K(t, ε) ⊂ R
d such that

inf
n

P(Xn
t ∈ K(t, ε)) > 1 − ε. (B.1)

(b) For every ε > 0,

lim
σ→0

lim sup
n→∞

P

(
sup

|s−t|≤σ,0≤s,t≤T
|Xn

t − X
n
s | > ε

)
= 0. (B.2)

For Lemma B.2 and its applications in this paper, we always take filtration (Fn
t )t∈[0,T ] as the

natural filtration generated by {Xn(nt) : t ∈ [0, T ]} for fixed n ≥ 1. That is,

Fn
t � σ(Xn(ns), s ≤ t). (B.3)

The next lemma is Corollary VI.3.33 in [17].

Lemma B.3: Let {X
n : n ≥ 1} and {Y

n : n ≥ 1} be two C–tight sequences of processes in
D([0, T ], R

d). Then {X
n + Y

n : n ≥ 1} is C–tight in D([0, T ], R
d) and {(Xn, Yn) : n ≥ 1} is C–tight

in D([0, T ], R
2d).

The next lemma states the C–tightness of the sequence of real-valued processes {〈ζn, f〉 :
n ≥ 1} for each f ∈ C([0, 1]). The proof is lengthy so we defer it to the end of this appendix. Recall
from (3.3) that we have for each n ≥ 1 and t ∈ [0, T ],

〈ζn
t , f〉 =

1

n2

n∑
i=1

Xn
i (nt) · f

(
i

n

)
.

Lemma B.4: Fix any f ∈ C([0, 1]). The sequence of real-valued stochastic processes {〈ζn, f〉 :
n ≥ 1} is C–tight in D([0, T ], R).

With Lemmas B.1–B.4 at our disposal, we are ready to prove Proposition 5.1.

Proof of Proposition 5.1: We apply Lemma B.2 to establish the C-tightness of {〈ζn,+, f〉 :
n ≥ 1} in D([0, T ], R) for fixed f ∈ C([0, 1]), where

〈ζn,+
t , f〉 =

1

n2

n∑
i=1

[
Xn

i (nt)
]+

· f
(

i

n

)
. (B.4)

The C–tightness of {〈ζn,−, f〉 : n ≥ 1} follows using a similar argument. The C-tightness of
{(〈ζn,+, f〉, 〈ζn,−, f〉) : n ≥ 1} immediately follows after applying Lemma B.3.
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We first show that {〈ζn,+, f〉 : n ≥ 1} satisfies part (a) of Lemma B.2. We rely on the family
of functions fγ ∈ C[0, 1] introduced in (5.1). Note that for fixed t ∈ [0, T ],

sup
n

P(|〈ζn,+
t , f〉| > L)

≤ sup
n

P

(
|〈ζn,+

t , f〉 − 〈ζn
t , fγ〉| >

L

2

)
+ sup

n
P

(
|〈ζn

t , fγ〉| >
L

2

)

≤ 2

L
sup
n

(ãn + Cγ) + sup
n

P

(
|〈ζn

t , fγ〉| >
L

2

)
,

where we use Markov inequality and (5.3) in the last inequality. Since {ãn} is a bounded sequence,
we can choose L large such that 2

L supn(ãn + Cγ) is arbitrarily small. In addition, for fixed γ
and t, {〈ζn

t , fγ〉 : n ≥ 1} is a tight sequence by Lemma B.4. Thus, we can pick L large such that

supn P(|〈ζn,+
t , f〉| > L) is also arbitrarily small. These two facts imply that {〈ζn,+

t , f〉 : n ≥ 1} is a
tight sequence for fixed t ∈ [0, T ].

We next verify that {〈ζn,+, f〉 : n ≥ 1} also satisfies part (b) of Lemma B.2. Clearly from (B.4)
we have for fixed n ≥ 1, the process 〈ζn,+, f〉 is adapted to the filtration Fn given in (B.3). Given
a real number c > 0, we obtain from (5.3) that for n large

P

(
sup

|s−t|≤σ,0≤s,t≤T
|〈ζn,+

t , f〉 − 〈ζn,+
s , f〉| > c

)

≤ 2 · P

(
sup

0≤t≤T
|〈ζn,+

t , f〉 − 〈ζn
t , fγ〉| >

c

3

)
+ P

(
sup

|s−t|≤σ,0≤s,t≤T
|〈ζn

t , fγ〉 − 〈ζn
s , fγ〉| >

c

3

)

≤ 2 · 3

c
(ãn + Cγ) + P

(
sup

|s−t|≤σ,0≤s,t≤T
|〈ζn

t , fγ〉 − 〈ζn
s , fγ〉| >

c

3

)
. (B.5)

Since for fixed γ > 0, the process 〈ζn, fγ〉 is adapted to Fn, we infer from Lemma B.4 that

lim
σ→0

lim sup
n→∞

P

(
sup

|s−t|≤σ,0≤s,t≤T
|〈ζn

t , fγ〉 − 〈ζn
s , fγ〉| >

c

3

)
= 0.

In conjunction with (B.5), this implies for fixed γ ∈ (0, p) and c > 0,

lim
σ→0

lim sup
n→∞

P

(
sup

|s−t|≤σ,0≤s,t≤T
|〈ζn,+

t , f〉 − 〈ζn,+
s , f〉| > c

)
≤ 6Cγ

c
.

Let γ → 0+, we obtain

lim
σ→0

lim sup
n→∞

P

(
sup

|s−t|≤σ,0≤s,t≤T
|〈ζn,+

t , f〉 − 〈ζn,+
s , f〉| > c

)
= 0.

Given the C-tightness of {〈ζn,+, f〉 : n ≥ 1} and {〈ζn,−, f〉 : n ≥ 1} for any fixed function
f ∈ C[0, 1], we first deduce from Lemma B.1 that both {ζn,+ : n ≥ 1} and {ζn,− : n ≥ 1} are tight
in D([0, T ],M+[0, 1]). We next argue that the limit points of {ζn,+ : n ≥ 1} and {ζn,− : n ≥ 1}
have continuous sample paths. Suppose ζ+ is a limit point of {ζn,+ : n ≥ 1}, then we readily verify
from continuous mapping theorem that 〈ζ+, f〉 is a limit point of {〈ζn,+f〉 : n ≥ 1} for any function
f ∈ C[0, 1]. Since all the limit points of the C-tight sequence {〈ζn,+, f〉 : n ≥ 1} are concentrated
on the set of continuous paths, we deduce that for almost every ω we have: for fixed t ∈ [0, T ],

lim
s→t

d+

(
ζ+
s (ω), ζ+

t (ω)
)

= lim
s→t

∞∑
k=1

1

2k

|〈ζ+
s (ω), φk〉 − 〈ζ+

t (ω), φk〉|
1 + |〈ζ+

s (ω), φk〉 − 〈ζ+
t (ω), φk〉|

= 0, (B.6)

where (φk) is a dense subset of C[0, 1] and the distant measure d+ is given in (5.5). Thus, the
limit point ζ+ has continuous sample paths. Similarly, almost every path of each limit point of
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{ζn,− : n ≥ 1} is continuous. Now the tightness of {(ζn,+, ζn,−) : n ≥ 1} in D([0, T ],M([0, 1]))
follows from Lemma 3.5 and Corollary 3.6 in [2]. �

PROOF OF LEMMA B.4: We verify that the conditions (a) and (b) in Lemma B.2 are satisfied.
For notational conveniences, we write for a fixed function f ∈ C[0, 1] and for t ≥ 0

Yn
t � 〈ζn

t , f〉 =
1

n2

n∑
i=1

Xn
i (nt) · f

(
i

n

)
. (B.7)

We first prove that Yn satisfies condition (a) from Lemma B.2. Since supx∈[0,1] |f(x)| ≤ C for
some constant C by the continuity of f , we deduce from (B.7) that

|Yn
t | ≤ 1

n2

n∑
i=1

|Xn
i (nt)| · |f(

i

n
)| ≤ C

n2

n∑
i=1

|Xn
i (nt)|.

We now deduce from Lemma A.1 that

sup
n

E

[
sup

0≤t≤T
|Yn

t |2
]
≤ C. (B.8)

An application of Markov’s inequality immediately yields that Yn
t satisfies (B.1).

Next we show that Yn also satisfies condition (b) in Lemma B.2. Note that

Yn
t = F (Xn(nt)) = Yn

0 +

∫ nt

0
LnF (Xn(s))ds + Mn

t , (B.9)

where Ln is the operator given in (2.5), Mn is a (local) martingale, and the function F is defined
in (5.11). Given ε > 0, σ > 0, we deduce from (B.9) that

P

(
sup

|s−t|≤σ,0≤s,t≤T
|Yn

t − Yn
s | > ε

)

≤ P

(
sup

0≤t−s≤σ,0≤s,t≤T

∣∣∣∣
∫ nt

ns
LnF (Xn(u))du

∣∣∣∣ > ε

2

)

+ P

(
sup

|s−t|≤σ,0≤s,t≤T
|Mn

t − Mn
s | >

ε

2

)
. (B.10)

The strategy is to show for large n, there is a constant C independent of n such that

E

[
sup

0≤t−s≤σ,0≤s,t≤T

∣∣∣∣
∫ nt

ns
LnF (Xn(u))du

∣∣∣∣
]
≤ Cσ, (B.11)

E

[
sup

|s−t|≤σ,0≤s,t≤T
|Mn

t − Mn
s |2
]
≤ CT

n2
. (B.12)

Using Markov’s inequality and Chebyshev’s inequality, and (B.10), we obtain

lim
σ→0

lim sup
n→∞

P

(
sup

|s−t|≤σ,0≤s,t≤T
|Yn

t − Yn
s | > ε

)
= 0.
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The rest of the proof focuses on establishing (B.11) and (B.12). We start with proving (B.11).
For fixed n, we deduce from (5.11) and (2.5) that

LnF (Xn(u)) =
∑

k<pn
A(u)

[
1

n2
f

(
k

n

)
Θn

B(pn
A(u) − k)|Xn

k (u)| − 1

n2
f

(
k

n

)
Λn

B(pn
A(u) − k)

]

+
∑

k>pn
B(u)

[
1

n2
f

(
k

n

)
Λn

A(k − pn
B(u)) − 1

n2
f

(
k

n

)
Θn

A(k − pn
B(u))|Xn

k (u)|
]

+
1

n2

(
f

(
pn
B(u)

n

)
Υn

A − f

(
pn
A(u)

n

)
Υn

B

)
.

(B.13)
Since f is bounded on [0, 1], we deduce from Assumption 2.2 that

|LnF (Xn(u))| ≤ C

n3

n∑
k=1

|Xn
k (u)| + C

n
. (B.14)

This immediately yields that

E

[
sup

0≤t−s≤σ,0≤s,t≤T

∫ nt

ns

∣∣LnF (Xn(u))
∣∣ du

]
≤ C

n2
E

[
sup

0≤s≤T−σ

∫ s+σ

s

n∑
k=1

|Xn
k (nu)|du

]
+ Cσ.

On combining (A.3), we obtain (B.11).
We next show (B.12). To this end, we define for each u ≥ 0,

ηn(u) = LnF 2(Xn(u)) − 2F (Xn(u)) · LnF (Xn(u)),

where Ln is given in (2.5) and F is the linear function given in (5.11). One checks that

ηn(u) =
∑

k<pn
A(u)

[
1

n4
f

(
k

n

)2

· Θn
B(pn

A(u) − k) · |Xn
k (u)| + 1

n4
f

(
k

n

)2

· Λn
B(pn

A(u) − k)

]

+
∑

k>pn
B(u)

[
1

n4
f

(
k

n

)2

· Λn
A(k − pn

B(u)) +
1

n4
f

(
k

n

)2

· Θn
A(k − pn

B(u)) · |Xn
k (u)|

]

+
1

n4

(
f

(
pn
A(u)

n

)2

· Υn
B + f

(
pn
B(u)

n

)2

· Υn
A

)
.

Now for each fixed n, one verifies that {(Mn
t )2 − ∫ nt

0 ηn(u)du : t ≥ 0} is a local martingale
with respect to the filtration Fn in (B.3) (see Lemma 5.1 in Appendix 1 of [18]). Sup-

pose {(Mn
t )2 − ∫ nt

0 ηn(u)du : t ≥ 0} and {Mn
t : t ≥ 0} are indeed Fn−martingales. Then Doob’s

maximal inequality for martingales yields that

E

[
sup

|s−t|≤σ,0≤s,t≤T
|Mn

t − Mn
s |2
]
≤ 4E

[
sup

0≤t≤T
|Mn

t |2
]
≤ 16E(|Mn

T |2) = E

[ ∫ nT

0
ηn(u)du

]

(B.15)

Hence to establish (B.12), we proceed to bound ηn(u). Using Assumption 2.2 and the fact that f
is bounded on [0, 1], there is a constant C > 0 such that

0 ≤ ηn(u) ≤ 1

n4

[
C

n

n∑
k=1

|Xn
k (u)| + Cn

]
. (B.16)
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Upon combining (A.3) and applying the change of variable formula we find for n large

E

[ ∫ nT

0
ηn(u)du

]
≤ CT

n2
. (B.17)

We then obtain (B.12) from (B.15).

It remains to show that the two local martingales {(Mn
t )2 − ∫ nt

0 ηn(u)du : t ≥ 0} and {Mn
t :

t ≥ 0} are indeed Fn-martingale for each fixed n. By [29, Theorem 51], it suffices to show for every
t ≤ T ,

E

[
sup

0≤s≤t
|Mn

s |2
]

< ∞, (B.18)

E

[ ∫ nt

0
ηn(u)du

]
< ∞. (B.19)

Inequality (B.19) directly follows from (B.17). To prove (B.18), we use (B.9), which implies

sup
0≤s≤t

|Mn
s |2 ≤ 3 sup

0≤s≤t
(Yn

s )2 + 3(Yn
0 )2 + 3

( ∫ nt

0

∣∣∣LnF (Xn(s))
∣∣∣ds
)2

Inequality (B.18) then follows from (B.8), (B.14) and (A.1). The proof is thus complete. �

APPENDIX C. PROOF OF PROPOSITION 5.2

In this section, we prove Proposition 5.2. We rely on the representation in (5.12), that is,

〈ζn
t , f〉 =

1

n2

n∑
i=1

Xn
i (nt) · f

( i

n

)
= F (Xn(nt))

= 〈ζn
0 , f〉 + n

∫ t

0
LnF (Xn(ns))ds + Mn

t . (C.1)

Here Ln is operator given in (2.5), Mn is a martingale and F is given in (5.11). We fix f ∈ C([0, 1])
throughout this section. It is clear from (2.6) that

lim
n→∞〈ζn

0 , f〉 =

∫ 1

0
f(x)�(x)dx = 〈ζ0, f〉, (C.2)

where ζ0 is a deterministic signed measure with density ζ0(dx) = �(x)dx for x ∈ [0, 1].
To prove Proposition 5.2, we now introduce two auxiliary lemmas. The next lemma implies

that the martingale term in (C.1) vanishes (converges weakly to zero) as n → ∞. The proof directly
follows from (B.15) and (B.17).

Lemma C.1: For T > 0, we have

lim
n→∞E

[
sup

0≤t≤T
|Mn

t |2
]

= 0. (C.3)

The next lemma concerns the weak convergence of the “scaled” generator. The proof is lengthy
and thus deferred to the end of this appendix.

Lemma C.2: For the subsequence {nk : k = 1, 2 . . .} in (5.7) we have for fixed f ∈ C([0, 1])

sup
0≤s≤T

∣∣∣nk · LnkF (Xnk(nks)) − 〈ν, f〉 + 〈ζs,AΘf〉
∣∣∣⇒ 0 as nk → ∞, (C.4)

where ν is given in (5.13), AΘ is given in (5.14) and F is given in (5.11).
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We are now ready to prove Proposition 5.2.

Proof of Proposition 5.2: Given (C.1)–(C.4) and that 〈ζnk , f〉 ⇒ 〈ζ, f〉 as nk → ∞, we deduce
that the process ζ satisfies Eq. (5.15). The continuity of the path of 〈ζ, f〉 directly follows from
Lemma B.4.

Next we show that there is an unique measure-valued process satisfying (5.15). It is evident that
ζ is deterministic since there is no source of randomness in Eq. (5.15). Suppose for fixed t ∈ [0, T ],
ζt is absolutely continuous with respect to Lebesgue measure and it has a bounded density function
ϕ such that ζt(dx) = ϕ(x, t)dx. After multiplying a smooth test function g(t) on both sides of Eq.
(5.15), integrating with respect to t on [0, T ], substituting (5.13) and (5.14), and noting that f can
be an arbitrary continuous function on [0, 1], we readily verify that for almost every x ∈ (p, 1],∫ T

0
ϕ(x, t)g(t)dt = �(x)

∫ T

0
g(t)dt

+

∫ T

0
g(t)

∫ t

0

[
ΛA(x − p) − ΘA(x − p)ϕ(x, s)

]
ds dt.

That is, for fixed x ∈ (p, 1], ϕ(x, ·) is a weak solution for the ODE given in (3.6) and (3.7), and thus
ϕ(x, t) is measurable in the second argument t. On the other hand, it is clear that there is an unique
classical solution to the ODE (3.6) and (3.7) for fixed x ∈ (p, 1]. Therefore, we deduce from the
equivalence of classical solution and weak solution for ODE (see, e.g., [32, Chapter 1, Lemma 1.3])
that the density function ϕ(x, ·) is the unique classical solution of (3.6) and (3.7) when x > p. A
similar argument yields that ϕ(x, ·) is the unique classical solution for (3.6) and (3.8) when x < p.
As a consequence, the solution for (5.15) is unique (we allow ourselves the ability to modify ϕ(x, t)
on a set of measure zero including the point x = p. The modification is independent of t).

The rest of the proof focuses on showing that ζt is absolutely continuous and that it has a
bounded density function. We prove that there exists some constant CT depending on T such that
for all f ∈ C([0, 1]) and t ∈ [0, T ],

|〈ζt, f〉| ≤ CT

∫ 1

0
|f(x)|dx.

To this end, we first deduce from Eq. (5.10) and the continuous mapping theorem that for any
f ∈ C([0, 1]) and t ∈ [0, T ], ∣∣〈ζnk

t , f〉∣∣⇒ |〈ζt, f〉| as nk → ∞.

Applying Theorem 3.4 in [4] yields

E |〈ζt, f〉| ≤ lim infnk→∞E
∣∣〈ζnk

t , f〉∣∣ . (C.5)

We next focus on bounding E|〈ζnk
t , f〉|. Recall the limit order arrival process An

i is pathwisely
upper bounded by a Poisson process Ān

i with rate Λ̄ (see (A.7)). Hence,

∣∣〈ζn
t , f〉∣∣ =

∣∣∣∣∣ 1

n2

n∑
i=1

Xn
i (nt) · f

(
i

n

)∣∣∣∣∣
≤ 1

n2

n∑
i=1

|Xn
i (0)| ·

∣∣∣∣f
(

i

n

)∣∣∣∣+
∣∣∣∣∣ 1

n2

n∑
i=1

An
i (nt) · f

(
i

n

)∣∣∣∣∣
≤ 1

n

n∑
i=1

|�(
i

n
)| ·
∣∣∣∣f
(

i

n

)∣∣∣∣+ 1

n2

n∑
i=1

Ān
i (nt) ·

∣∣∣∣f
(

i

n

)∣∣∣∣ ,
which implies that

E
∣∣〈ζnk

t , f〉∣∣ ≤ 1

nk

nk∑
i=1

∣∣∣∣�
(

i

nk

)∣∣∣∣ ·
∣∣∣∣f
(

i

nk

)∣∣∣∣+ Λ̄t · 1

nk

nk∑
i=1

∣∣∣∣f
(

i

nk

)∣∣∣∣ .
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In conjunction with (C.5) and the fact that ζt is a deterministic measure, we deduce

|〈ζt, f〉| ≤
∫ 1

0
|�(x)| · |f(x)|dx + Λ̄t ·

∫ 1

0
|f(x)|dx, (C.6)

after letting nk → ∞. Thus, we have all f ∈ C([0, 1]) and t ∈ [0, T ],

|〈ζt, f〉| ≤ CT

∫ 1

0
|f(x)|dx, (C.7)

where CT = maxx∈[0,1] |�(x)| + Λ̄T . Since continuous functions are dense in the space of Lebesgue-

integrable functions L1([0, 1]), we deduce from the bounded linear transformation theorem that
Eq. (C.7) holds for all f ∈ L1([0, 1]). We then conclude from [11, Theorem 15.6] that ζt is a finite
measure, absolutely continuous with respect to Lebesgue measure, and its density function ϕ(x, t)
is bounded by CT uniformly with respect to x ∈ [0, 1] and t ∈ [0, T ]. The proof is complete. �

Proof of Lemma C.2: Throughout the proof, we fix f ∈ C([0, 1]) and we use {n : n ≥ 1} instead
of its subsequence {nk : k ≥ 1} for notational simplicity. We also use a generic constant C which
may vary from line to line but C is independent of n.

We first show for f ∈ C[0, 1],

sup
0≤s≤T

∣∣∣∣∣∣n ·
∑

k>pn
B(ns)

[
1

n2
f

(
k

n

)
· Λn

A(k − pn
B(ns))

]
−
∫ 1

p
f(x)ΛA(x − p)dx

∣∣∣∣∣∣⇒ 0 as n → ∞.

(C.8)
To this end, we define for z ∈ [0, 1] and n ≥ 1

hn(z) =
∑
k
n >z

[
1

n
f

(
k

n

)
ΛA

(
k

n
− z

)]
, (C.9)

h(z) =

∫ 1

z
f(x)ΛA(x − z)dx. (C.10)

Applying Assumption 2.2, we find that (C.8) is equivalent to

sup
0≤s≤T

∣∣∣∣hn

(
pn
B(ns)

n

)
− h(p)

∣∣∣∣⇒ 0, as n → ∞. (C.11)

Part (a) of Theorem 3.1 implies that when n → ∞, we have

pn
B(n·)

n
⇒ p in D([0, T ], R).

In addition, since f and ΛA are uniformly continuous and bounded on [0, 1], it is straightforward
to verify that the function h is continuous, and the sequence {hn : n ≥ 1} converges uniformly to
h. In particular, we obtain for any sequence of real numbers {zn : n ≥ 1},

lim
n→∞hn(zn) = h(p) if lim

n→∞ zn = p ∈ (0, 1). (C.12)

Then generalized continuous mapping theorem [33, Theorem 3.4.4] yields that as n → ∞

hn

(
pn
B(n·)

n

)
⇒ h(p) in D([0, T ], R).

Since the Skorohod J1 topology relativized to C([0, T ], R) of continuous functions is equivalent to
the uniform topology [4, Section 12], we obtain (C.11) and (C.8).
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Applying a similar argument, we find

sup
0≤s≤T

∣∣∣∣∣∣
∑

k<pn
A(ns)

[
1

n
f

(
k

n

)
· Λn

B(pn
A(ns) − k)

]
−
∫ p

0
f(x)ΛB(p − x)dx

∣∣∣∣∣∣⇒ 0 as n → ∞.

(C.13)
We next prove that when n → ∞,

sup
0≤s≤T

∣∣∣∣∣∣
∑

k>pn
B(ns)

[
1

n
f

(
k

n

)
· Θn

A(k − pn
B(ns)) · Xn

k (ns)

]
−
∫ 1

p
f(x)ΘA(x − p)dζs(x)

∣∣∣∣∣∣⇒ 0.

(C.14)
It suffices to show

sup
0≤s≤T

∣∣∣∣∣
∫ 1

p
f(x)ΘA(x − p)dζn

s (x) −
∫ 1

p
f(x)ΘA(x − p)dζs(x)

∣∣∣∣∣⇒ 0, (C.15)

and

sup
0≤s≤T

∣∣∣∣∣∣
∑

k>pn
B(ns)

[
1

n
f

(
k

n

)
Θn

A(k − pn
B(ns)) · Xn

k (ns)

]
−
∫ 1

p
f(x)ΘA(x − p)dζn

s (x)

∣∣∣∣∣∣⇒ 0.

(C.16)
First, we prove (C.15). We provide a sketch. Define a function G by setting

G(x) =

{
f(x)ΘA(x − p) if p < x ≤ 1,

0 if 0 ≤ x ≤ p.
(C.17)

If G is continuous on [0, 1], (C.15) readily follows from (5.10) and the equivalence of Skorohod J1

topology and the uniform topology on the space of continuous functions. If G is not continuous,
one can similarly prove (C.15) by constructing a family of continuous functions {Gε : ε > 0} such
that for each small ε > 0, G and Gε are equal except on a small interval (p − ε, p]. We omit further
details.

Next, we prove (C.16). We also provide a sketch. Using Assumption 2.2 and the definition of
ζn in (3.3), it is equivalent to show as n → ∞

sup
0≤s≤T

∣∣∣∣∣
∑

k
n >

pn
B

(ns)
n

[
1

n2
f

(
k

n

)
ΘA

(
k

n
− pn

B(ns)

n

)
· Xn

k (ns)

]

−
∑
k
n >p

[
1

n2
f

(
k

n

)
ΘA

(
k

n
− p

)
· Xn

k (ns)

] ∣∣∣∣∣⇒ 0. (C.18)

This can be readily verified from (3.4), (3.5) and Lemma A.1. We omit further details.
Similarly we can show as n → ∞,

sup
0≤s≤T

∣∣∣∣∣∣
∑

k<pn
A(ns)

[
1

n
f

(
k

n

)
Θn

B(pn
A(ns) − x) · Xn

k (ns)

]
−
∫ p

0
f(x)ΘB(p − x)dζs(x)

∣∣∣∣∣∣⇒ 0.

(C.19)
Finally, using Assumption 2.2 and the fact that f is bounded on [0, 1], we obtain that there

exists some constant C such that

sup
0≤s≤T

n

∣∣∣∣ 1

n2

(
f

(
pn
B(u)

n

)
Υn

A − f

(
pn
A(u)

n

)
Υn

B

)∣∣∣∣ ≤ C

n1−κ
⇒ 0, as n → ∞. (C.20)

On combining (C.8), (C.13), (C.14), (C.19), and (C.20), we obtain (C.4). �
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