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INFLUENZA VIRUSES: DO CHANGES IN VIRULENCE
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With Appendix by S. FAZEKAS DE ST GBOTH and P. A. P. MOHAN

(With 3 Figures in the Text)

Commenting on some recent studies by von Magnus, Fulton (1953) made the
relevant suggestion that the phenomenon generally referred to as 'production of
incomplete virus' might be by rights 'production of avirulent virus'. The oddity
of the contradiction in terms should not mar a nice distinction which, indeed,
touches upon points of fundamental theoretical interest, and has immediate bearing
on our concepts of the intracellular development, genetic behaviour, infectivity
and adaptation of influenza viruses. The notion of 'incomplete virus' implies that
the developmental process has been interrupted at a particular stage, the product
being indistinguishable from fully fledged virus as regards antigenic make-up,
enzyme activity, adsorptive capacity, interfering ability, etc., but lacking infect-
ivity. Accordingly, infectivity is regarded as the crowning step of the reproductive
sequence, the latter being undisturbed up to this level, and completely blocked
thereafter. The notion of 'avirulent virus' visualizes an end-product which is
slightly imperfect, and does so without any unnecessary assumptions on the nature
of the multiplication process and the stage (or stages) at which deviations from the
normal occur. Thus 'avirulent virus' may differ from infective virus in several
respects, both qualitatively and/or quantitatively, and cannot be regarded as its
precursor. Essentially, 'incomplete virus' is yielded by a normal process of virus
production, 'avirulent' by an abnormal one. Thus a preparation containing 'in-
complete virus' would show low average infectivity because some of the particles
do not infect at all; a preparation of 'avirulent virus' would show the same low
infectivity because all particles, in general, are less infective.

Although Fulton has not defined what he meant by 'avirulent', it will be clear
that the customary interpretations of virulence are meaningless in this context,
since the response of the host organism to fully active and 'incomplete virus' is
the same, as has been convincingly demonstrated by von Magnus (19516) in the
papers which actually provoked Fulton's criticism. Neither can it be maintained
that ' avirulence' referred to a proportion of the yield only, nor that the change
from 'virulent' to 'avirulent' meant that a smaller fraction only of host cells was
infectible, as this would reduce the distinction between 'incomplete' and 'aviru-
lent' to a verbal nicety. The latter follows from the fact, pointed out by Moran
(1954a), that such variations alter the position of the dose-response curve, but not
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its shape. Thus, as set out formally in the Appendix, in terms of the definition
given at the end of the previous paragraph, 'avirulent' is operationally meaningful
only if it implies that the virus is less likely to overcome the natural defences of its
host. The sum of these defences is what we called 'host resistance' in an earlier
paper (Fazekas de St Groth & Cairns, 1952), and its presence and variability can
be gauged from the shape of the infectivity curve. The implications of this are
evident: the difference between 'incomplete' and 'avirulent' virus should show up
in the slope of their dose-response curves. ' Avirulent' virus should give a relatively
flatter titration curve than 'virulent' virus; a preparation containing 'incomplete'
particles, on the other hand, should give the same slope as 'complete' virus but
a lower infectivity end-point. Accordingly, the question can be decided by the
critical comparison of infectivity tests on virus preparations showing the von
Magnus phenomenon and preparations of standard virus.

Several hundred such titrations have been performed in our laboratory during
the past 2 years, but the details were considered too trivial to be included in the
final reports (Fazekas de St Groth & Graham, 1953, 1954). As the same holds for
other workers in the field, with a consequent lack of published data, it is proposed
to furnish the relevant information here and to examine whether it supports one
or the other of the alternative hypotheses.

METHODS

Comparison of slopes would present no problem, were the shape of the dose-
response curve known. This, however, is not the case with allantoic infectivity
titrations of influenza viruses. It has been shown that the simplest assumption,
viz. a Poissonian distribution of 'takes', does not hold as a certain degree of host
resistance is operative against all strains and this property shows inter-egg varia-
tion (Fazekas de St Groth & Cairns, 1952). What is more disappointing, some of the
most carefully obtained and extensive sets of data (e.g. von Magnus, 1951a) were
fitted neither by the normal or logistic distributions, nor by the negative binomial
(Moran, 1954a). Under the circumstances there are two possible ways of evalua-
tion open. One might choose to remain uncommitted as regards the fundamental
curve, and make use of one of the non-parametric methods. Or, one might use the
discrepancy between the data and one of the theoretical dose-response curves as
a measure of slope. Neither method is beyond reproach. The first, straightforward
and comprehensible to the uninitiated, will be decried by the statistician as
wasteful of information and altogether lacking 'intuitive meaning'. The second,
indirect, is essentially a test for goodness of fit where good fit cannot be expected
on existing knowledge.

(I) As the non-parametric method I have chosen the method of cumulative totals
(Dragstedt & Lang, 1928; Behrens, 1929; Reed & Muench, 1938) for purposes of
this study; partly because it is computationally the simplest, and partly because it
has already been used for determination of infectivity end-points on the same
experimental material. The interquartile range served as a measure of the slope,
and thus the cumulative quartile points, called here ID25 and ID75, had to be found
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first. The computation required is similar to that of the ID50) where in a set of
dilutions (xv x2, ..., xk) we seek the dose xi satisfying the identity Sf = 8^, that

is, the point where the cumulative total of 'takes' l$i~ = 5X.) and 'misses'

\8i =Yi {nx~rxn *s equal. The cumulative upper quartile point is denned

in this context by S£ = 3S^, while the cumulative lower quartile point by 3Sf = <Sf.
A sample calculation on the first entry of Table 1 from our earlier paper (Fazekas
de St Groth & Graham, 1954) will make this clearer.

An allantoic fluid containing WSE virus was titrated for infectivity in a group
of 30 eggs, subgroups of 5 eggs being inoculated with falling 3-16-fold (log 0-5)
dilutions of the test material. Table 1 gives the results in full.

Table 1. Allantoic infectivity test on WSE virus
(Details of sample 1 from Table 1 of Fazekas de St Groth & Graham, 1954.)

Besponse

Dilution of sample ^ _ 'Takes'
(r)
5
5
4
3
2
0

' Misses'
(n-r)

0
0
1
1
3
5

(log10 units/ml.)

5-0 + +
5-5 + +
6-0 + +
6-5 - D
7-0 + -
7-5 - -

+ = positive haemagglutination at 42 hr. ('take'); — = negative haemagglutination at
42 hr. ('miss'); D = embryo dead at 42 hr., egg discarded.

The infectivity end-point may be found now by cumulative summing of 'takes'
and 'misses' for each dilution. For the determination of the cumulative quartile
points these figures have to be multiplied by 3, giving two further half-columns,
as the total 'takes' need be considered only below the 50%-end-point, and the
'misses' only above it (cf. Table 2). Linear interpolation may be done either
graphically (Fig. 1) or arithmetically (Table 2). From the results of this particular
test we derive thus (in log10 units/ml.) ID25 = 7-05, ID50=6-75, ID75 = 6-43, with
a lower quartile of 0-30 (Q;=ID50 —ID25) and an upper quartile of 0-32
(Qu = ID75 —ID50), the interquartile range being, of course, 0-62 (i? = ID75 —ID25).

Since there is no justification for assuming a priori that the dose-response curve
is symmetrical, the two quartiles might be different and should be considered
separately. In the tables to follow the ID50, the two quartiles and the inter-
quartile range of every assay therefore appear, together with their geometric
means and the standard error. This allows an analysis of variance for the com-
parison of yields from concentrated and dilute inocula, and differences between
either of the quartiles or in the interquartile range should thus be revealed, i.e.
any significant changes in the shape and/or the slope of the curves.

With a limited range of dilutions, as used in our studies, it is inevitable to have
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Table 2. Evaluation of the infectivity test by Method I
(First three columns taken from Table 1.)

15

279

Dilution
of sample
(Iog10/ml.)

5-0
5-5
6-0

Response
i

(r)
5
5
4

(n-r) 3S+
0
0
1

Cumulative
A

19
14
9

totals

ST
0
0
1

3S
0
0
3

7-0

7-5

Interpolation s+-s-

10

15

where Xa and Xb are the dilutions bracketing the endpoint (Xt), and d is the dilution factor.
The differences (S+ — S~), (3S+ — S~), and (S+ — 3S~), at particular levels are shown in circles.

3x0-5
" 3 + 3

= 6-75. ID75 =
6x0-5
6 + 1

= 6-43. ID25 = 7-0 +
1x0-5
1 + 10

= 7-05.

6-43 675 705

00
-50 -5 -5 - 7 0 - 7 - 5-60 -6-5

Dose (logio units)
Fig. 1. Graphical evaluation of the infectivity test by Method I. (From data of Tables 1
and 2; the continuous lines are the cumulative totals, the broken lines the cumulative totals
multiplied by three.)

19 Hyg. 53, 3
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some assays where one of the quartile points was not bracketed. In these cases
the point could have been determined only by extrapolation. To avoid such an
adventurous procedure, truncated tests were omitted from the tables and sub-
stituted by others, from later experiments (Fazekas de St Groth & Graham, to be
published); these are marked with an asterisk. Care was taken to select as closely
similar substituents as possible, and the minor differences so introduced should
not influence the validity of the conclusions, as controllable experimental con-
ditions were kept constant throughout the two phases of our work.

The statistical evaluation was based on the null hypothesis that all samples
(both the quartiles and their sums, the interquartile ranges) were drawn from
a homogeneous population. An analysis of variance will answer whether dis-
crepancies between the different groups in the tables are attributable to chance
variation.

(II) When choosing the theoretical curve for the second method, no consideration
need be given whether this curve will actually fit the data. In the present case,
indeed, the choice could but be between bad and worse. The way is thus open to
make the simplest assumption, namely, that uniformly infective particles are
randomly distributed in an inoculum that reaches uniformly infectible cells. The
corresponding dose-response curve, the Poissonian, is defined by a single parameter.
The standard procedure here would be the maximum likelihood fitting of the
negative exponential (the zero term of the Poisson distribution), with a x2 test for
goodness of fit. Our infectivity tests, like the majority of virological data, hardly
warrant an iterative method as laborious as this. Fortunately, we have now in the
ingenious test of Moran (19546) an alternative probably more powerful yet ex-
ceptionally simple to apply. First the statistic T has to be computed by multi-
plying the number of 'takes' and 'misses' at each dilution level, and summing the
products (T — Urf (n — r^). This involves mental arithmetic only. The deviation of
T from the value expected on the Poisson distribution can be tested by the formula
(T — E{T))laT = M, the quantity M being a normal deviate. E(T) and aT are
uniquely defined by the dilution factor and the number of subjects at any dilution
level. Moran (19546) has published appropriate tables of these, and with their aid
the M-values of an infectivity test may be computed in less than half a minute.
A sample calculation on the data of Table 1 shall follow.

It will be noticed that only those groups are considered where the response is
neither all 'takes' nor all 'misses', since in others the product r(n — r) will be zero.
The example is useful also in illustrating the corrections required in cases of natural
mortality. At dilution 106'5 one of the embryos died during the incubation period.
At that level we have thus 3 positives, 1 negative, and 1 missing. The missing entry
is proportionately allotted to the other groups, making 3-75 positives and 1-25
negatives. Hence the value of T is 4+ 4-69+ 6 = 14-69, as compared with 12-04,
the expected value read from Moran's tables. To allow for the reduced precision
in the estimate of M due to the missing entry, the error of T will have to be cor-
rected too. With log 0-5 dilution steps aT equals 4-42 for 5 subjects per group,
and 3-07 for 4 subjects per group. Since in our example there are three levels
(dilutions 6-0, 6-5 and 7-0) giving finite products, two of which have 5 and one
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4 subjects, the theoretical error of T may be approximated by linear interpola-
tion, making

o> = 4-42-^(4-42-3-07) = 3-97. Hence M = 1 4 ' 6 ^~ 1 2 ' 0 4
 = 0 . 6 7

Were it used as a measure for goodness of fit, we would conclude that this value
did not differ significantly from that expected and could occur by chance once in
every four trials. Thus the hypothesis of a Poissonian dose-response relationship is

Table 3. Evaluation of the infectivity test by Method II
(First three columns taken from Table 1.)

Dilution
of sample
(Iog10/ml.)

5-0
5-5
6-0
6-5
7-0
7-5

(r)

5
5
4
3
2
0

T-E(T)
(Tip

* Adjustment for

Response
A

(n-r)
0
0
1
1
3
5

T = Sr,. (;
_ 14-69-12-04
• 3-97* °'67>

missing entry; of. text.

n{ + rt)

r(n-r)

4
4-69*
6

= 14-69

not contradicted by the outcome of that particular infectivity titration. This
aspect of the results is, however, not directly relevant to the theme of the present
study. The M-values, or more precisely their average, M, will be used as the test
criterion in the comparison of response curves obtained with preparations con-
taining incomplete virus on the one hand, and fully infective virus on the other.

if-values have been calculated for each of the assays evaluated by the non-
parametric method. These, their arithmetic mean M and its standard error will
appear in the tables. Since M is the mean of a number of independent variates its
distribution will not be very far from normal, and the difference between two
inocula of the same strain may be assessed by Student's i-test.

STATISTICAL

Comparison of infectivity curves by Method I

The results obtained with the non-parametric method are given in Table 4.
Although analyses of variance have been worked out for each of the ten strains,

there is no need to give them here in detail, as in no case did any of the contrasts—
variation between inocula, between quartiles, and their interaction—reach
significance at the 5 % level. The standard errors of the means are shown in the
table, and these should be sufficient to establish this point.

Since the cumulative quartiles are potential test criteria for comparing slopes
of infectivity curves, it might be useful to examine the statistical properties of their

19-2
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distribution. To test for normality the deviations of the individual values about
their means were plotted, giving the histogram of Fig. 2. The distribution shows
positive skewness ((mean —median)/standard deviation = +0-15). Comparison of
the standardized areas under this curve with the normal probability integral at ^cr
intervals gives a x2 of 15*63 with 9 degrees of freedom. The corresponding prob-
ability, 0-08, although within the span usually allowed for chance variation,
would suggest that the condition of normality is not strictly fulfilled. In the present
case this is of little consequence, partly because it would only render comparisons

90 i—

80

70

60

50

40

30

20

10

I
- 3 - 2

Fig. 2. Distribution of cumulative quartiles (Q-values) about their
mean. (Plotted from data of Table 4.)

stricter by tending to underestimate the average error, and partly because intra-
strain differences are uniformly so small that the need for exact tests of significance
does not really arise.

Were a better estimate of error required, it would be advisable to use either
a normalizing metameter of the quartiles, or some combined linear measure of
slope, such as the interquartile range. The distribution of the latter would tend, on
the central limit theorem, to be more nearly normal. As the less elaborate meta-
metric transformations usually achieve normality at the expense of variance homo-
geneity, the second course seems sounder. We have actually examined the distri-
bution of i?-values and found that its skewness was minimal ((M — Md)js = + 0-09),
and that the test for goodness of fit gave ;\;2=8-72 (P~0-3), i.e no serious dis-
crepancy from the normal.
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The use of the range (R) instead of the quartiles may have also another point
in its favour. Owing to the fact that the two quartiles have one common point
(the ID50), some negative correlation might exist between them. As estimates of
variance would be vitiated if this were so, the independence of the observations
had to be tested. However, no significant correlation was found within any of the
20 subgroups; neither was the overall correlation between the 140 pairs of quartiles

Table 4. The infective behaviour of virus issuing from concentrated or dilute seed:
I. Comparisons by a non-parametric method

(Qu = upper quartile = ID7 5 — ID5 0 ; (?j = lower quartile = ID5 0 — ID2 5 ;
R = interquartile range = ID7 5 —ID25.)

Inoculum: ~10»ID, .

Strain

WSE (A)

ID50/ml.
of

sample

6-75
7-42
6-50*
7-41
7-75

6-75

Mean + S.E.

PR8(A) 7-14
7-72
7-30
7-55
7-24
7-70

Mean + S.E.

MEL (A) 7-80
8-28
7-50
7-71*
7-75
7-63*
7-25

Mean + S.E.

BEL (A) 8-90
9-35
8-33
8-38
7-43
8-63

Mean + S.E.

Cam (A' 8-00*
9-78
9-25
8-42
9-30
8-81*
8-60

Mean + S.E.

0-32
0-17
0-23
0-48
0-61
0-24
0-33

0-30
0-22
0-43
0-37
0-53
0-40
0-32

R

0-62
0-39
0-66
0-85
1-14
0-64
0-65

0-34 + 0-06 0-37 + 0-04 0-71 + 0-09

0-25
0-58
0-25
0-20
0-42
0-51

0-23
0-30
0-29
0-18
0-68
0-52

0-48
0-88
0-54
0-38
1-10
1-03

0-37 ± 0-06 0-37 + 0-08 0-74 + 0-13

0-49
0-28
0-33
0-48
0-45
0-38
0-58

0-10
0-19
0-45
0-47
0-47
0-30
0-63

0-59
0-47
0-78
0-95
0-92
0-68
1-21

0-43 + 0-04 0-37 ± 0-07 0-80 + 0-09

0-55
0-15
0-33
0-20
0-30
0-46

0-26
0-15
0-34
0-26
0-33
0-15

0-81
0-30
0-67
0-46
0-63
0-61

0-33 ± 0-06 0-25 + 0-03 0-58 ± 0-07

0-92
0-23
0-19
0-29
0-15
0-33
0-58

0-40
0-22
0-19
0-50
0-30
0-22
0-40

1-32
0-45
0-38
0-79
0-45
0-55
0-98

Inoculum: ~ 104 ID5 0

ID50/ml.
of

sample

9-25
10-20
10-40
9-70

10-20

9-12

10-22
10-34
9-42

10-30
9-39

10-19

8-92*
9-36
8-75

10-00
9-08*
8-79*
9-40

9-50*
9-75
9-80
9-50*
9-65
9-70*

9-17*
9-72
9-06
9-63*
9-25
9-15
9-67*

0-40
0-67
0-55
0-20
0-23

Qi
0-40
0-32
0-23
0-33
0-67

R

0-80
0-99
0-78
0-53
0-90

0-41 0-26 0-67

0-41 + 0-07 0-37 + 0-07 0-78 + 0-07

0-31
0-29
0-75
0-37
0-40
0-44

0-28
0-19
0-23
0-36
0-41
0-58

0-59
0-48
0-98
0-73
0-81
1-02

0-43 + 0-07 0-34 + 0-04 0-77 + 0-09

0-37
0-24
0-31
0-32
0-68
0-29
0-54

0-36
0-25
0-42
0-20
0-37
0-71
0-54

0-73
0-49
0-73
0-52
1-05
1-00
1-08

0-39 + 0-06 0-41 + 0-07 0-80 + 0-09

0-50
0-18
0-38
0-44
0-23
0-50

0-23
0-18
0-55
0-44
0-25
0-23

0-73
0-36
0-93
0-88
0-48
0-73

0-37 + 0-06 0-31 + 0-06 0-69 + 0-09

0-50
0-53
0-36
0-48
0-17
0-17
0-45

0-33
0-40
0-19
0-47
0-17
0-16
0-55

0-83
0-93
0-55
0-95
0-34
0-33
1-00

0-38 +0-10 0-32 +0-04 0-70+ 0-13 0-38 + 0-06 0-32 + 0-06 0-70 + 0-10
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Table 4 (cont.)
Inoculum: ~ 109 ID.,

Strain

FM1 (A')

IDM/ml.
of

sample

7-50
7-85
8-35
7-70
8-88
8-88

Mean + s.B.

LEE (B) 9-81
9-20
9-62
9-82
9-63
9-30

10-05
9-80

10-05
9-07*
9-42
8-63
8-50
9-38
8-76

Mean + s.E.

BON (B) 6-72
6-35
6-50
5-81*
5-65
6-28

Mean + s.E.

HUT (B)

SW

7-42
8-00
7-22
8-62
7-42
8-50

Mean + S.E.

7-43
7-50
7-58
8-08*
8-32
8-40

Mean + s.E.

Qu
0-50
0-35
0-48
0-20
0-42
0-52

Qi
0-67
0-35
0-33
0-22
0-30
0-62

R
1-17
0-70
0-81
0-42
0-72
1-14

0-41 + 0-05 0-42 + 0-08 0-83 + 0-12

0-20
0-40
0-20
0-55
0-21
0-57
0-67
0-53
0-44
0-42
0-27
0-33
0-44
0-25
0-22

0-24
0-29
0-33
0-62
0-18
0-56
0-33
0-25
0-50
015
0-23
0-33
0-44
0-45
0-23

0-44
0-69
0-53
1-17
0-39
113
1-00
0-78
0-94
0-57
0-50
0-66
0-88
0-70
0-45

0-38 + 0-04 0-34 + 0-04 0-72 + 0-07

0-26
0-46
0-36
0-20
0-44
0-46

0-28
0-29
0-55
0-26
0-22
0-49

0-54
0-75
0-91
0-46
0-66
0-95

0-36± 0-05 0-35 ±0-06 0-71 + 0-08

0-37
0-64
0-36
0-91
0-32
0-17

0-45
0-38
0-80
0-32
0-47
0-33

0-82
1-02
1-16
1-23
0-79
0-50

0-46 + 0-11 0-46 + 0-07 0-92 + 0-11

0-43
0-92
0-58
0-63
0-42
0-50

0-52
0-59
0-47
0-21
0-51
0-37

0-95
1-51
1-05
0-84
0-93
0-87

0-58 + 0-08 0-45 + 0-06 1-03 + 0-10

Inoculum: ~10 4 ID 5 1

ID60/ml.
of

sample

10-33*
9-07
8-20
8-86
7-90
9-28

9-45
9-80
9-40
9-02
9-80
9-30

7-55

9-17
9-00
7-86
7-86

9-67*

Qu Qt B

0-76 0-46 1-22
0-32 0-28 0-60
1-01 0-59 1-60
0-22 0-24 0-46
0-40 0-35 0-75
0-37 0-61 0-98

0-51 ±0-12 0-42+ 0-06 0-94 +0-17

0-40
0-21
0-97
0-43
0-37
0-29

0-29

0-61
0-60
0-32
0-32

0-35
0-21
0-35
0-28
0-22
0-22

0-21

0-55
0-24
0-47
0-36

0-75
0-42
1-32
0-71
0-59
0-51

0-50

1-16
0-84
0-79
0-68

0-31 0-28 0-59

0-43 ± 0-06 0-31 + 0-03 0-74 + 0-08

8-60
8-06
7-87
8-00
7-92*
8-57*

8-93
8-50
7-85
8-78
8-36
9-06

9-20
9-50
8-81
9-28
9-20*
9-80*

0-28
0-42
0-60
0-44
0-19
0-57

0-40
0-21
0-50
0-60
0-29
0-21

0-68
0-63
1-10
1-04
0-48
0-78

0-42 + 0-07 0-37 + 0-07 0-79 ± 0-10

0-49
0-24
0-33
0-70
0-43
0-58

0-28
0-62
0-32
0-33
0-62
0-33

0-77
0-86
0-65
103
1-05
0-91

0-46 + 0-07 0-42 + 0-06 0-88 ± 0-06

0-78
0-21
0-27
0-56
0-87
0-72

0-59
0-30
0-23
0-49
0-66
0-58

1-37
0-51
0-50
1-05
1-53
1-30

0-57 + 0-11 0-47 + 0-07 1-04 + 0-19

The calculations are based on the data of Table 1 from Fazekas de St Groth & Graham (1954); those
marked with * are substituents, drawn from later experiments (cf. text).

significant. Undoubtedly, this is due to the rather wide scatter of the quartiles
about their mean, as such a state of affairs would mask any serial correlation
assessed against the error variance. On the other hand, it also means that valid—
even if not too precise—comparisons can be made using the same error term.
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To test for heteroscedasticity the variances of the subgroups were compared
by Bartlett's test. The obtained %2 of 28-69 with 39 degrees of freedom corresponds
to a probability of > 0-5. The variances are thus homogeneous, and the distribution
of the quartiles homoscedastic.

The prerequisites of a valid analysis are met by the above results, and comparison
of quartiles or of interquartile ranges may serve as a legitimate basis for investi-
gating differences between strains. Accordingly an analysis of variance has been
set up on the data given in Table 4.

Table 5. Analysis of variance on the data of Table 4

Source of variation
Strains
Replicates within strains

Between experiments
Inocula
Quartiles
Interactions: IxQ

IxS
QxS
IxQxS

Residual

Within experiments

Degrees
of

freedom
9

62

71
1
1
1
1
9
9

178*

208

Sum
of

squares
0-7580
2-4930

3-2510
0-0252
0-1800
0-0149
0-0306
0-0622
0-0527

4-3643

4-7299

Mean
square
0-0882
0-0402

0-0252
0-1800
0-0149
0-0306
0-0069
0-0059

0-0245

Variance
ratio
2-194

1-029
7-347
0-608
1-249
0-282
0-241

Proba-
bility

~0-02
•

~0-5
~ 0-008
>0-5
~0-3
>0-5
>0-5

Total 279 7-9809

* 178 = (3 x 62) — 8 for missing readings.

The finding relevant to the theme of this study is contained in the third line of
Table 5. The variance ratio for differences between inocula does not reach signi-
ficance. This more stringent test thus confirms that the shape of infectivity curves
remains the same by inoculating seed yielded by the von Magnus phenomenon
instead of standard infective virus. Two further points of interest emerge from
this table. First, the two quartiles differ significantly, that is, the infectivity curves
of influenza viruses are not symmetrical about the ID50. Secondly, there is a sig-
nificant difference among the ten strains tested as regards their infective behaviour.
The implications of these findings will be discussed at the end of the paper.

Comparison of infectivity curves by Method II

Moran's test for goodness of fit gives, with our data, the results shown in
Table 6.

Again, as in the case of Method I, there is no difference exceeding that account-
able by chance between the mean M-values obtained for any of the ten strains. The
only instance where this is perhaps not obvious on inspection is the BEL strain.
Here M is — 0-21 + 0-54 and 1-05 + 0-61 respectively for virus yielded by the von
Magnus phenomenon and for standard virus. However, by Student's test the
value of <=l-32 is obtained, with the probability 0-3>P>0-2; clearly, the
difference is far from significant.

https://doi.org/10.1017/S0022172400000760 Published online by Cambridge University Press

https://doi.org/10.1017/S0022172400000760


286 S. FAZEKAS DE ST GBOTH

Table 6. The infective behaviour of virus issuing from concentrated or dilute seed:
II. Comparisons by Moran's test for goodness of fit

(M = Moran's statistic = T-E(T)j<rT)

Inoculum ~109 Inoculum ~104 Inoculum ~ 109 Inoculum -^l

Strain

WSE (A)

ID50/ml.
of

sample

6-75
7-42
6-50*
7-41
7-75
6-89
6-75

Mean + s.E.

MEL (A) 7-80
8-28
7-50
7-71*
7-75
7-63*
7-25

Mean + s.E.

CAM (A') 8-00*
9-78
9-25
8-42
9-30
8-81*
8-60

Mean + s.E.

LEE (B) 9-81
9-20
9-62
9-82
9-63
9-30

10-05
9-80

10-05
9-07*
9-42
8-63
8-50
O QC

8-76

Mean + s.E.

M

0-67
-1-36

0-58
2-25
3-07
114
1-77

1-16 + 0-54

1-57
-0-01

1-95
1-28
2-20
0-13
3-50

1-52 + 0-46

3-16
0-44

-0-91
0-95

-0-01
0-58
2-20

0-92 + 0-52

-0-27
0-58

-0-27
2-64

-0-40
3-67
2-53
0-87
3-29
0-67

-0-48
1-63
1-56
ft A A

0-44
1-28

1-18 + 0-35

ir>50/ml.
of

sample

9-25
10-20
10-40
9-70

10-20

9-12

8-92*
9-36
8-75

10-00
9-08*
8-79*
9-40

9-17*
9-72
9-06
9-63*
9-25
9-15
9-67*

9-45
9-80
9-40
9-02
9-80
9-30

7-55

9-17
9-00
7-86
7-86

9-67*

M

1-80
0-90

-0-08
0-27
0-90

0-90

0-78 + 0-26

1-23
-0-46

0-89
-0-40

3-77
0-13
2-53

1-09 + 0-61

2-53
1-88

-0-86
2-00

-0-86
-1-38

1-88

0-74 + 0-64

2-28
-0-40

1-88
1-55

-0-40
0-87

-0-40

3-61
0-44
1-59
1-95

-0-65

1-03 + 0-25

IDM/ml.
of

Strain sample

PR 8 (A) 7-14
7-72
7-30
7-55
7-24
7-70

Mean + s.E.

BEL (A) 8-90
9-35
8-33
8-38
7-43
8-63

Mean + s.E. —

FM1 (A') 7-50
7-85
8-35
7-70
8-88
8-88

Mean + s.E.

BON (B) 6-72
6-35
6-50
5-81*
5-65
6-28

Mean + S.E.

HUT (B) 7-42
8-00
7-22
8-62
7-42
8-50

Mean + s.E.

SW 7-43
7-50
7-58
8-08*
8-32
8-40

Mean + s.E.

M

-0-01
0-90

-0-08
-0-40

2-28
1-25

0-66 ±0-41

1-14
-2-39

0-90
-0-91
-0-46

0-44
0-21 + 0-54

3-04
0-90
2-27

-0-46
0-06
3-09

1-48 + 0-63

0-43
0-90
2-51

-0-01
0-90

-0-46
0-71 + 0-42

1-80
1-88
4-76
3-05
1-88

-0-27
2-18±0-68

3-61
2-47
3-16

-1-05
2-25
1-80

2-04 + 0-67

ID50/ml.
of

sample

10-22
10-34
9-42

10-30
9-39

10-19

9-50*
9-75
9-80
9-50*
9-65
9-70*

10-33*
9-07
8-20
8-86
7-90
9-28

8-60
8-06
7-87
8-00
7-92*
8-57*

8-93
8-50
7-85
8-78
8-36
9-06

9-20
9-50
8-81
9-28
9-20*
9-80*

M

0-68
-0-12

0-90
1-23
2-28
2-86

1-31 ±0-45

0-87
-0-91

2-71
2-86

-0-08
0-87

1-05 + 0-61

1-55
0-44
4-35

-0-46
1-06
1-27

1-37 + 0-67

-0-01
-0-01

2-12
1-28

-0-40
1-88

0-81 + 0-44

1-55
-0-46

1-55
1-88
1-62
2-37

1-42 + 0-40

3-61
-0-46
-0-01

1-44
3-29
3-51

1-90 + 0-75

The calculations are based on the data of Table 1 from Fazekas de St Groth and Graham (1954);
those marked with * are substituents, drawn from later experiments (cf. text).
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The distribution of M-values about their mean, as shown in Fig. 3, is not skew
(M - Mdjs = + 0-02), and the test for goodness of fit gives a x2 of 5-32, with P > 0-5.
Normality of the distribution is thus not contradicted. Neither does the x2 i n

Bartlett's test reach significance: its value, 8-61, with 19 degrees of freedom indi-
cates homoscedasticity since the corresponding probability (P > 0-5) is in close
agreement with what might be expected by chance.

40 r -

30

20

10

- 3 - 2 - 1

(Mx-Mx)/sH

Fig. 3. Distribution of Moran's M-values about their mean.
(Plotted from data of Table 6.)

The analysis of variance on the data furnished by Moran's test (Table 7) reveals,
once more, no significant differences between the response to the two types of
inocula. However, with this test the strains do not differ either—the probability

Table 7. Analysis of variance on the data of Table 6

Source of variation

Strains
Replicates within strains

Between experiments
Inocula
Interaction: I xS
Residual

Within experiments

Total

Degrees
of

freedom
9

62

71
1
9

58

68

139

Sum
of

squares
24-7467

144-9498

169
0-0913
9-2474

82-9800

92-

262-

Mean
square

2-7496
2-3379

•6965
0-0913
1-0275
1-4307

3187 .

0152

Variance
ratio

1-176

0-064
0-718

•

Proba-
bility

~0-20

>0-5
>0-5

•
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corresponding to their variance ratio is about 0-20. This lack of discrimination is
due in great measure to the large error variance, and to this point we shall return
later.

Interrelations of Methods I and II

In the foregoing sections the slope of infectivity curves has been compared by
each of the two methods. Although these tests are independent in so far as their
underlying principles differ, they were developed for a common practical purpose,
namely the assessment of virulence. For this reason the results obtained with the
two should be correlated, even though the means by which they approach their
common aim are dissimilar. In this section the extent of their association will be
determined, and also the way in which their results can be combined.

Table 8. Analysis of covariance on R and M values from Tables 4 and 6

Source
of

variation

Inocula
Strains
Interaction
Error

Degrees
of

freedom

1
9
9

120

Sum
of

products

- 0-0482
5-7673

-0-3915
33-6322

Mean
product

- 0-0482
0-6408

- 0-0435
0-28027

Correlation
coefficient

+ 0-942
-0-303
+ 0-755

Total 139 38-9598

First an analysis of covariance was set up for the two methods. To have com-
parable statistics, the i?-values derived by Method I were matched with the
corresponding M-values of Method II. By doing this some of the information was
lost; however, as has been pointed out above, the choice is not without its com-
pensating gain, since bias from correlation and non-normality could be excluded
thereby. From the covariances of Table 8 and the variances of Table 5 and 7 the
appropriate correlation coefficients were calculated; these, too, are shown in
Table 8.

Strong overall correlation between the two methods is evident from the results,
and the value obtained, 0-76, could have arisen by chance in less than once in
a thousand cases.

As regards inocula, we have already seen that on its own neither of the two
methods revealed significant differences between them. Now, as shown in the
first row of Table 8, we find that the two are negatively correlated in this respect,
although not too strongly. It may be hoped therefore that a combined function
of the variables will give rise to a more efficient estimator of differences at this
level. Although a discriminant function could be derived by regression analysis
as there are only two inocula, we have used the more general method of canonical
correlations for the purpose. The equation obtained, D = R + 0-110M, has been
applied to our data, with the results shown in Table 9.

Obviously, even this more powerful method could not discriminate between
inocula, either in the overall test, or at the level of individual strains.
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Table 9. Analysis of variance on the data obtained with the
discriminant function D

Source Degrees Sum
of

variation
Inocula
Strains
Interaction
Error

of
freedom

1
9
9

118

of
squares

0-0622
0-6129
0-0585
3-7920

Mean
square

0-0622
0-0681
0-0065
00321

Variance
ratio

1-93
2-12
0-22

Proba-
bility

~0-07
~0-03
>0-5

Total 137 4-5256

DISCUSSION

No qualitative differences could be detected in the infective behaviour of elemen-
tary bodies issuing from large or small doses of influenza viruses in the allantois.
The question put in the introduction can thus be answered in the negative.

Admittedly, the accuracy of the titrations is such that minor differences would
pass unnoticed; but whatever their absolute magnitude, these differences are
negligible in relation to the striking discrepancy between infective and haemag-
glutinating units characteristic of the von Magnus phenomenon. The main con-
clusion, then, is that the infective fraction of the yield after concentrated inocula
is indistinguishable from standard passage virus, while the rest of the particles
present do not contribute to the outcome of infectivity tests. This evidence runs
counter to Fulton's suggestion of uniformly 'avirulent' virus, and such a presump-
tion should not be invoked to account for the observations.

The discard of one hypothesis tends to lend support, by default, to the contend-
ing alternative. We should bear in mind though that information is restricted to
the infective fraction, i.e. to the 1 in 100 minority, and has no bearing whatsoever
on those particles which do not go on multiplying. Thus our ignorance of what the
non-infective majority is has not been lessened, and for this reason the theoretical
implications of Fulton's hypothesis remain as stimulating as before. Indeed, the
idea of an imperfect cycle of multiplication is bound to have more general appeal,
and will certainly not prejudice our eventual understanding of the phenomenon.
The notion of an unfinished cycle, implicit in the term 'incomplete virus', is all too
restrictive and sets artificial and unjustifiable limits to our thinking and experi-
mentation. For the time being it is perhaps safest to call the minor portion of the
yield 'infective' and the major one 'non-infective' virus. These names cover what
has been actually observed; if found to be objectionably simple, they can be
replaced by more appropriate terms at a later date, as our knowledge deepens.

Although the comparison of infectivity curves was undertaken with a special
aim in view, several points of concomitant information bearing on the more general
problem of infectivity have emerged. The first of these is the nature of virus-host
interaction. In the simplest case, and some of the phage-bacterium relationships
belong to this class, infection depends only on the probability of having a virus
in the inoculum; the response curve here is the Poissonian, defined by a single
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parameter. At the next order of complexity not all the cells are susceptible and
the success of infection is reduced in proportion; the probability distribution, how-
ever, is still Poissonian, although the parameter defining it is here a product of
virus concentration and host susceptibility, and the two cannot be separated with-
out independent further information. The behaviour of myxoma virus (Fenner &
Woodroofe, 1953) is a good case in point. With influenza viruses the situation is
even more involved. The Poisson distribution does not fit the infectivity data, as
is clear from the results of Moran's test. On the other hand, both tests give evi-
dence not only that some host cells are less susceptible than others, but that the
degree of this insusceptibility varies from egg to egg. While the distribution of this
'host resistance' remains unknown, as it is at present, the dose-response curve
cannot be defined in exact terms. All one can say is that it is asymmetric about its
median (cf. Table 5: difference between upper and lower quartiles), and that its
slope in the central portion shows considerable variation among strains.

The differences among strains are clearly demonstrable by the non-parametric
method (cf. Table 5), but no more than suggestive when evaluated by Moran's
test (cf. Table 7). The latter, a test for goodness of fit, is sensitive to discrepancies
over the whole of the dose-response curve. With groups as small as in our infect-
ivity titrations, the expectations at the flat ends of the curve will be small, and this
is bound to increase variation between replicates. It is this inflated variance which
tends to mask interstrain differences. The non-parametric method, restricted to
the central portion of the curves, is free from this additional variation, and hence
better suited to work on small samples. Indeed, a discriminant function derived
for the strains showed only minimal improvement over the i?-values on their own
(variance ratio 2-41, as against 2-32), and was definitely inferior to comparisons
based on the quartiles (cf. Table 5).

The strains can thus be ordered in a gradient according to the size of their
cumulative quartiles, i.e. the central slope of their infectivity curves. With the
appropriate tests of significance this value may serve as a statistical measure of
how sensitive a particular strain is to variations in host resistance; or, conversely,
as a measure of virulence, provided we accept overcoming of host resistance as one
possible definition of virulence. In either case, and whether comparisons of dif-
ferent strains or different virus preparations are to be based on these criteria, it
should be borne in mind that the methods have been proposed mainly for their
simplicity, and that they are only approximate and essentially indirect. Their use-
fulness will cease as soon as the true nature of the infectivity curve of influenza
viruses has been elucidated.

SUMMARY

Two new statistical methods—one parametric, the other non-parametric—are
developed to compare the slopes of quantal infectivity curves.

Ten influenza strains were examined with the aid of these tests, and the results
show that virus yielded by the von Magnus phenomenon (i.e. containing 'incom-
plete ' particles) and standard infective virus do not differ in the slope of their
infectivity curves.
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It is concluded that the von Magnus phenomenon yields a mixture of infective
and non-infective particles; on this evidence Fulton's suggestion of uniformly
changed virulence is untenable.

I am greatly indebted to Prof. P. A. P. Moran for helpful discussions of theory,
and frequent corrections of statistical technique.

APPENDIX: A MATHEMATICAL MODEL OF VIRUS-CELL INTERACTION

BY S. FAZEKAS DE ST GROTH and P. A. P. MOHAN

The interaction of a virus particle and a cell may or may not result in infection,
that is, in the multiplication of the virus inside the cell. In what follows we shall
enumerate and define the variables which enter into this process; construct
a general theoretical model; and examine—in the particular case of influenza
virus—what is the minimum of assumptions compatible with existing empirical
knowledge.

Definitions

Whether a virus particle infects a cell or not is determined by the properties of
both the particle and the cell. We suppose that in the simplest case these properties
can be described by a single quantity for the virus and similarly for the cell.

Infectivity is the potency of a virus particle to multiply in cells. This potency is
measured by the probability, pt, that a given particle, i, will multiply when applied
to fully susceptible cells. Infectivity may vary from particle to particle, and the
probability density function of its distribution isfip^, with a mean value over all
particles, p.

Susceptibility is the power of a cell to support viral multiplication. We measure
the susceptibility of a cell j by the probability, s^, of its being infected on coming
into contact with a fully infective virus. Susceptibility may vary from cell to cell
with a probability density function g{Sj), and its mean value over the cells is s.

If a particle, i, of infectivity pit comes into contact with a cell, j , of suscepti-
bility Sj, we suppose that the probability of infection occurring is determined solely
by Pi and s3-; we take this probability of infection to be a function

the interaction function. Clearly:

j) = 0 F{pi,l)=Pi

General hypothesis

Let c be the average concentration of virus per standard inoculum. The proba-
bility of exactly r particles in such an inoculum is

r\
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These particles have infectivities ply p2, ..., pr. The probability that a particular
particle does not infect is

p f p g ( ) p (1)
OJ 0

and the probability that r particles do not infect is Pr. Thus the probabihty that
there are r particles and they do not infect is

Hence the probability that the host remains uninfected on receiving a standard
inoculum with an average multiplicity of c virus particles in it will be

= e-* + e-° (e c P - l )
_ g-C(l-P)

= exp {-c[\]\lF^> s)f(p)g(s)dpdsjj. (3)

This is the zero term of a Poisson distribution; the bracketed part, corresponding
to the effective proportion, will be referred to below as the virulence integral or
virulence, for short.

Equation (3) describes the case when the distribution of cellular susceptibility
does not vary from host to host. In the general case, however, inter-host variation
may occur. Let therefore gk(s) be the probabihty distribution of cell susceptibility
within the kth host (i.e. in the kth set of cells). Then the probability of no infection
becomes the average over all k's of

exp ( - c^JF(p, S) f(p) gk(s) dp dsj. (4)

The term f' f V(p, s)f(p) gk{s) dp ds = V
J oJ a

is a number depending on k, and represents the virulence of the virus for the kth
host. If the distribution of V amongst host systems is h( V), the probability of no
infection becomes ~r

P o = e-^rh{V)dV. (5)
Jo

Accordingly, the infectivity curve (c, Po) will be a function of the distributions
of viral infectivity and cellular susceptibility, and of the interaction function. This
is the general case.

Special hypotheses

H. I and II. Under the boundary conditions where either the virus is 'incom-
plete' (^ = 0), or the cells 'insusceptible' (s — 0),

P0=h (6)
since F(0, s) = F{p, 0) = 0.
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H. III. In the simplest non-zero case, where 'complete' virus (p=l) enters
a system of susceptible cells (s= 1),

P0 = e-c, (?)
and from such tests the number of particles could be determined directly. It has
been shown, however, that the relation between influenza virus particles and in-
fective units is not constant (reviews: von Magnus, 1954; Schlesinger, 1953), and
can be varied experimentally over a thousand-fold range. Hence H. I l l cannot
hold in general.

H. IV and V. If the virus particles are uniformly or variably less infective, than

'complete' virus \0<p=pi< 1, or 0 < p = f(p)pdp<l, respectively), and the

cells are fully susceptible (s = 1), the response curve will be still Poissonian, and

P0 = exp (-<?#(?, l)) = e-* (8)

or P0 = exv\^-cjJ(p,l)f(p)dpj=e-<v. (9)

In this case the response curve will give no direct information about the number
of particles inoculated.

H. VI and VII. If uniformly or variably less susceptible cells

= fy< 1, or 0 < s = g(s) s ds< 1, respectively)

come into contact with 'complete' virus (p = l), the situation is analogous to
H. IV and V, and P0 = exp (-cF(l, s)) = e~ci, (10)

/ f1 ;\
or P0=exp I —c F(l, s) g(s) ds\ = e~°s. (11)

\ J o /
H. VIII. If uniformly less infective virus meets uniformly less susceptible cells,

H. IX and X. If either infectivity or susceptibility is distributed, and the other
constant, the probability of no infection becomes

P0 = exp \-c\ F(p, s)f(p) dp), (13)
\ Jo /

or P0 = exp I — c F(p, s) g(s) ds\, respectively. (14)

H. XI. If variably less infective virus attacks variably less susceptible cells,
Eq. (3) will obtain.

Hypotheses IV-XI postulate infectivity curves with a single parameter, c.
These Poissonian curves differ from each other and from the curve of H. I l l
(Eqn. 7) only by a constant, i.e. they have different means but the same shape
on a (log c, Po) plot. As it has been shown that the most carefully obtained
(c, Po) curves are not fitted by the negative exponential (Moran, 1954) and that
this holds for standard infectivity tests on most of the adapted strains of in-
fluenza virus (Fazekas de St Groth & Cairns, 1952), the assumptions underlying
the above hypotheses are not sufficient.
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As a consequence a further postulate will have to be incorporated into the model,
namely the variation from host to host of the distribution of cellular susceptibility.
The general case was given by Eqn. (5); for discussion of special hypotheses the
value of V, the virulence integral, need be considered only. Virulence, as here
defined, is a complex function of the two independent distributions f(p) ('infect-
ivity) and g(s) ('susceptibility'), and of the joint 'interaction function' F(p, s).

H. XII. Virus particles are complete (p = 1), cells are of uniformly intermediate
susceptibility within any one host, but susceptibility varies from host to host. The
situation within any host is as postulated by H. VI, and thus the virulence for
the kth. host will be

ak)=8k. (15)

Analogously, by adding the postulate of inter-host variation to H. VII-XI, we
can derive the following virulence integrals:

H. XIII. Vk = [ V ( l , a) gk{s) ds = sk; (16)
Jo

H.XIV. Vk = F(p,sk); (17)

H. XV. Vk= f V(p, sk)f(p) dp; (18)
Jo

H. XVI. Vk= f V(p, s) gk(s) ds; (19)
Jo

H. XVII. Vk=n 1F(p, s) f(p) gk{8) dp ds. (20)
J

Hypotheses XII-XVII define (c, Po) curves, all of which are flatter than the
negative exponential. These curves differ from each other in shape, the latter being
determined by the distribution amongst hosts of the virulence integral, which is
different for each hypothesis. However, the shape of these response curves will
vary with infectivity only if F(p, s) +ps.

H. XVIII. If we assume F(p, s)=ps, the general formula (Eqn. 20) becomes

J OJ 0

= Pf(p)dp sgk(s)ds
Jo Jo

= P-5*. (21)

and the shape of the (c, Po) curve will depend only on the variation from host to
host of sk, the average cellular susceptibility. This would imply an infectivity curve
flatter than e~c, but independent of any variation in the virus and characteristic of
and constant for a particular type of host. Since it is common knowledge (Andrewes,
Laidlaw & Smith, 1934; Sherp, Flosdorf & Shaw, 1938; Burnet, 1941a, b, 1943;
Burnet & Bull, 1943; Burnet, Beveridge & Bull, 1944; Knight, 1944; Knight &
Stanley, 1944; Panthier, Cateigne & Hannoun, 1948; Fazekas de St Groth &
Cairns, 1952) that non-adapted strains of influenza virus give flat infectivity curves
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('patchy titrations', 'bad end-points', in biological parlance), while later passages
of the same virus give steeper curves ('clear-cut end-points') in the same host,
H. XVIII can be dismissed as contrary to established facts.

Discrimination between the hypotheses of von Magnus and of Fulton

Virus yielded after very concentrated inocula may give lower median infectivity
than could be expected from the number of particles present.

H. 'v. M.' von Magnus assumes that the yield is a mixture of 'complete' and
'incomplete' virus, i.e the particles are of two kinds, a fraction n with an infect-
ivity of p = 1 and the rest, (1 — n), with infectivity p = 0. Formally expressed this
yields a virulence integral

8)7T} gk(s) ds

= n F(l, s) gk(s) ds, since F(0, s) = 0
Jo

= nsk. (22)

The corresponding infectivity curves will have the same shape whatever the
average infectivity of the particles; variations in n can alter the position only of
the (c, Po) curves.

H. 'F.' Fulton assumes that the yield is uniform and less virulent. Thus the
value of Vk will be as postulated by H. XVII (Eqn. 20), and may be simplified
further by restricting assumptions to give H. XIV, H. XV or H. XVI. The shape
of these curves will vary, and will depend in every instance on the distributions of
infectivity and susceptibility—that is, on a property of the virus and a property
of the cell— as well as on their interaction, F(p, s). Accordingly, a change in the
average behaviour of the virus will alter both the shape and the position of the
(c, Po) curve.

Let the average infectivity in von Magnus's hypothesis equal the average in-
fectivity in Fulton's hypothesis, i.e. n = p, throughout. Then the discrimination
between the two hypotheses under different modifying assumptions (cf. H. XIV-
XVII) is based on the following inequalities:

(a) if both infectivity and susceptibility are constant

p.sk*F{p,8k); (23)

(6) if infectivity is constant and susceptibility distributed

{p)gk{) (24)
o

(c) if infectivity is distributed and susceptibility constant

(25)
o

(d) if both infectivity and susceptibility are distributed

\ , s)f(p)gk{s)dpds. (26)
oj o
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It is also evident that under the boundary conditions where all particles are
infective (p=l), the difference between the two hypotheses disappears, since
both reduce to either H. XII or H. XIII, and their virulence integrals become
identical, sk.
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