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When inertial particles are dispersed in a turbulent flow at sufficiently high concentrations,
the continuous and dispersed phases are two-way coupled. Here, we show via laboratory
measurements how, as the suspended particles modify the turbulence, their behaviour is
also profoundly changed. In particular, we investigate the spatial distribution and motion
of sub-Kolmogorov particles falling in homogeneous air turbulence. We focus on the
regime considered in Hassaini & Coletti (J. Fluid Mech., vol. 949, 2022, A30), where
the turbulent kinetic energy and dissipation rate were found to increase as the particle
volume fraction increases from 10−6 to 5 × 10−5. This leads to strong intensification of the
clustering, encompassing a larger fraction of the particles and over a wider range of scales.
The settling rate is approximately doubled over the considered range of concentrations,
with particles in large clusters falling even faster. The settling enhancement is due in
comparable measure to the predominantly downward fluid velocity at the particle location
(attributed to the collective drag effect) and to the larger slip velocity between the particles
and the fluid. With increasing loading, the particles become less able to respond to the
fluid fluctuations, and the random uncorrelated component of their motion grows. Taken
together, the results indicate that the concentrated particles possess an effectively higher
Stokes number, which is a consequence of the amplified dissipation induced by two-way
coupling. The larger relative velocities and accelerations due to the increased fall speed
may have far-reaching consequences for the inter-particle collision probability.
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1. Introduction

In particle-laden turbulent flows, the dispersed and continuous phases can have a
significant effect on each other’s dynamics. This situation, usually termed two-way
coupling, is common and has been the focus of much of the recent research in the field
(Poelma & Ooms 2006; Balachandar & Eaton 2010; Kuerten 2016). Indeed, the portion of
the parameter space where the dynamics can be considered one-way coupled is limited: the
particle size dp will be smaller than the Kolmogorov scale η, and the solid volume fraction
φV and mass fraction φm will be below threshold levels for highly dilute suspensions
(Brandt & Coletti 2022). The drift due to gravitational acceleration or other body forces
will also be relatively small, such that the particle Reynolds number Rep (based on the
particle size and its slip velocity relative to the fluid) does not result in sizeable wakes.
The above conditions are rarely met when the particle-to-fluid density ratio ρp/ρf is of
solid–gas mixtures, especially in terrestrial gravity. Usually, two-way coupling has been
defined by and investigated for the back-reaction of the particles onto the fluid flow (Hwang
& Eaton 2006; Tanaka & Eaton 2010; Zhao, Andersson & Gillissen 2013; Richter &
Sullivan 2014; Saito, Watanabe & Gotoh 2019; Hassaini & Coletti 2022). However, the
mutual transfer of momentum and energy between the phases implies that the particle
behaviour may also be modified, as compared to a hypothetical one-way coupled system of
analogous properties. Such modified behaviour of the particles is the focus of the present
study.

Perhaps the two most remarkable behaviours of particles in turbulence, and certainly
the ones that have attracted the most attention from researchers, are inertial clustering
and modified settling. When the response time of small inertial particles τp is comparable
to the Kolmogorov time scale τη (i.e. when the Stokes number Stη = τp/τη is of order
unity), their instantaneous spatial distribution becomes highly non-homogeneous (Wang
& Maxey 1993; Eaton & Fessler 1994; Monchaux, Bourgoin & Cartellier 2012). The
resulting clusters exhibit a range of spatial and temporal scales (Yoshimoto & Goto 2007;
Gustavsson & Mehlig 2016; Baker et al. 2017; Liu et al. 2020). The mechanistic origin
of clusters, ascribed originally to the centrifuging action of turbulent vortices (Squires
& Eaton 1991b), remains debated and is likely dependent on the specific combination
of parameters (Goto & Vassilicos 2008; Bragg & Collins 2014; Brandt & Coletti 2022).
When two-way coupling is at play, the phenomenon can be transformed at various levels.
Gualtieri et al. (2013) considered homogeneous shear turbulence laden with inertial
point-particles at concentrations sufficient to produce two-way coupling. They found
that the clusters were more isotropic and smeared compared to their one-way coupled
counterparts. Uhlmann & Chouippe (2017) considered homogeneous isotropic turbulence
laden with particles larger than the Kolmogorov scales. These modified the local flow field,
and their mild tendency to cluster was not associated with intense vortices. Capecelatro,
Desjardins & Fox (2018) analysed particle-laden vertical channel flows over a wide range
of concentrations. They observed how, at large enough mass loadings, clusters were not
caused by shear-driven turbulence, but rather emerged from a regime in which energy
dissipation is due to inter-phase drag, similar to cluster-induced turbulence (Capecelatro,
Desjardins & Fox 2014).

Particle-laden turbulent flows are also known to display significant alterations of the
gravitational settling rate, with respect to the academic case of a particle falling in
quiescent fluid (whose terminal velocity equals τpg, with g the gravitational acceleration).
Already in one-way coupled regimes, multiple mechanisms may either increase or
decrease the average vertical velocity (Nielsen 1993; Wang & Maxey 1993; Aliseda
et al. 2002; Good et al. 2014; Petersen, Baker & Coletti 2019). The most commonly
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Two-way coupling of particles in turbulence

observed mechanism is the preferential sweeping of the particles by downward gusts.
The mechanism is revealed by the correlation between particle position and downward
fluid velocity fluctuations, as theorized by Maxey (1987), observed numerically by
Wang & Maxey (1993), and measured experimentally by Petersen et al. (2019). Under
two-way coupled regimes, the particle fall speed is usually found to be augmented
further. Bosse, Kleiser & Meiburg (2006) attributed the enhanced settling to a collective
action of the particles dragging the surrounding fluid downwards. Monchaux & Dejoan
(2017) confirmed this view, and additionally reported that two-way coupling disrupted
preferential concentration in high-strain regions and so preferential sweeping; thus its role
in determining the settling rate was considered marginal. Tom, Carbone & Bragg (2022),
on the other hand, while recognizing the collective drag effect of the particles on the fluid,
argued that preferential sweeping remained the main mechanism of settling enhancement,
but on coarse-grained scales. They interpreted the weaker correlation between particle
position and high-strain regions in light of the crossing trajectories effect, by which a
fast-falling dispersed phase decorrelates from the local fluid flow (Csanady 1963; Wang &
Stock 1993; Berk & Coletti 2021).

The majority of the above-mentioned studies used numerical simulations. The classic
point-particle approach has been the most commonly adopted, in which the particles are
treated as material points exchanging momentum with the fluid according to simplified
expressions for the inter-phase forces. Various issues are associated with this method,
including the back-projection of the forces on the computational grid and the definition
of the undisturbed fluid velocity in classic drag formulations (Eaton 2009; Balachandar
& Eaton 2010; Brandt & Coletti 2022). Advanced strategies, introduced in the last
decade to alleviate these issues, lead to better agreement with observations and higher
fidelity simulations (Capecelatro & Desjardins 2013; Gualtieri et al. 2015; Horwitz &
Mani 2016; Ireland & Desjardins 2017; Balachandar, Liu & Lakhote 2019). Moreover,
the role of effects usually neglected for small particles, such as torque and lift, has
proven to be significant (Andersson, Zhao & Barri 2012; Costa, Brandt & Picano
2020). One-to-one quantitative comparisons with experiments demonstrate the need for
continuous improvements (Eaton 2009; Wang et al. 2019). Particle-resolved simulations,
on the other hand, capture the details of the inter-phase exchanges without modelling
the fluid dynamic forces (Tenneti & Subramaniam 2014). The tremendous increase in
high-performance computing in recent years enables the application of this method
to increasingly large numbers of particles and Reynolds numbers, leading to valuable
insights (see, among many others, Lucci, Ferrante & Elghobashi 2010; Garcia-Villalba,
Kidanemariam & Uhlmann 2012; Cisse, Homann & Bec 2013; Uhlmann & Doychev 2014;
Fornari, Picano & Brandt 2016; Lin et al. 2017; Schneiders, Meinke & Schröder 2017;
Uhlmann & Chouippe 2017; Mehrabadi et al. 2018). The calculations, however, become
exceedingly expensive for decreasing particle sizes and increasing Rep. Thus systems
featuring sub-Kolmogorov solid particles in air, such as the one considered in the present
study, remain out of reach for high-Reynolds-number flows.

Recently, we presented an experimental study of microscopic particles settling in
homogeneous air turbulence, in which the loading was varied systematically in the range
φV = 10−6–5 × 10−5 (Hassaini & Coletti 2022). Unlike previous studies focused on
massively inertial particles, we observed the turbulent kinetic energy to increase greatly
with particle loading, being more than doubled at the highest concentrations. We attributed
this behaviour to the potential energy released by the particles into the fluid, also increasing
the turbulent dissipation rate. The energy was distributed more homogeneously across the
scales compared to unladen turbulence, which was associated with the enhancement of
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the inter-scale energy transfer. As the attention was directed entirely on the carrier phase,
we did not analyse the behaviour of the dispersed phase. Here, we focus on the spatial
distribution and motion of the particles in these experiments, revealing the dramatic impact
of two-way coupling on the intensity of clustering and on the settling rate. The paper
is organized as follows. Section 2 describes the experimental methodology. Section 3
presents the results in terms of particle spatial distribution (§ 3.1) and motion (§ 3.2). And
§ 4 summarizes the findings and draws conclusions.

2. Experimental methodology

The experiments are carried out in a zero-mean-flow facility described extensively and
characterized in Carter et al. (2016) and Carter & Coletti (2017, 2018). Briefly, this consists
of a 5 m3 chamber where randomly actuated jets generate a region of homogeneous
air turbulence, whose intensity is adjusted by varying the firing time of the jets. It
was utilized to investigate particle-laden turbulence in Petersen et al. (2019), Berk &
Coletti (2021) and Hassaini & Coletti (2022). Here, glass micro-spheres (density ρp =
2500 kg m−3) are released at controlled rates via an adjustable hourglass, and enter the
chamber after falling through a 3 m chute connected to its ceiling. As quantified in the
above-mentioned studies, the apparatus possesses features that make it especially suitable
to investigate the interaction of heavy particles with homogeneous turbulence. The region
of quasi-homogeneous turbulence at the centre of the chamber is several times larger
than the integral scale, which is O(0.1 m), with small mean velocity (especially in the
vertical direction) and weak mean velocity gradients. The turbulence can be forced to
Reynolds numbers sufficient to develop a self-similar cascade in the sense of Kolmogorov
(1941). The considered particles reach terminal velocity well before entering the chamber
and spreading in the homogeneous turbulence region, where they display homogeneous
statistics over scales larger than the integral scale (Petersen et al. 2019).

The experimental conditions were reported in Hassaini & Coletti (2022) and are
summarized briefly here. Two particle diameters are considered, dp = 32 and 52 µm,
falling in air turbulence at Taylor micro-scale Reynolds numbers Reλ = 152 and 289,
respectively. These result in Stokes numbers Stη = 0.3 and 2.6, and comparable settling
velocity parameter Svη = τpg/uη ≈ 3 in both cases. The simultaneous variation of Reλ
and Stη is a consequence of working under fixed gravity. As both these parameters are
expected to influence the clustering and settling dynamics (Sumbekova et al. 2017; Tom
& Bragg 2019), isolating their respective effects is not trivial. As both cases show similar
behaviours, the comparison indicates that the conclusions that we will draw hold over the
present range of parameters. The volume fraction and mass fraction are varied to span
the transition from one-way coupling to two-way coupling (Balachandar & Eaton 2010;
Brandt & Coletti 2022). For Stη = 0.3, five cases between Φv = 10−6 and Φv = 4 × 10−5

are considered, while for Stη = 0.3, six cases between Φv = 10−6 and Φv = 5 × 10−5 are
considered. At these volume fractions, the interparticle distance is larger than 10dp even
considering the increase in concentration within clusters (Petersen et al. 2019). Therefore,
hydrodynamic interactions between particles are deemed negligible. Table 1 summarizes
the flow conditions, where the unladen turbulence properties are used as baseline. In
table 2, we report the normalized turbulent kinetic energy (TKE) and the large-scale
anisotropy ratio over the considered range of particle loading. The turbulence modification
by the particles, in particular the substantial increase of TKE, is addressed in detail in
Hassaini & Coletti (2022). The analysis conducted in that study, based on an energy budget
inspired by Hwang & Eaton (2006), indicated that the increase in TKE is rooted in the
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dp τp Rep Stη Svη u′
1 u′

1/u′
3 L1,1 η Reλ φV,max φm,max

(µm) (ms) (m s−1) (mm) (mm)

32 7.4 0.15 0.3 2.8 0.15 1.16 79 0.58 152 4 × 10−5 8.4 × 10−2

52 17 0.56 2.6 3.5 0.39 1.21 120 0.31 289 5 × 10−5 1.5 × 10−1

Table 1. Particle properties and turbulence statistics (for the unladen flow case) for both investigated
configurations. Here, dp and τp are the particle diameter and response time (calculated using the
Schiller–Naumann correlation; see Clift, Grace & Weber 2005); Rep is the particle Reynolds number based
on the still-air terminal velocity; Stη and Svη are the Stokes number and settling velocity parameter based on
Kolmogorov scales; u′

1 and u′
3 are the r.m.s. fluid velocity fluctuations in the horizontal and vertical directions,

respectively; L1,1 is the integral scale of the turbulence in the horizontal direction; η is the Kolmogorov
length scale; Reλ is the Taylor micro-scale Reynolds number of the turbulence; and φV,max and φm,max are
the maximum volume and mass fraction of the particles. The minimum volume and mass loadings in the
experiments were 10−6 and 2 × 10−3, respectively.

Φv 1 × 10−6 4 × 10−6 1 × 10−5 2 × 10−5 4 × 10−5 5 × 10−5

Stη = 0.3 TKE/TKEΦv=0 1.12 1.26 1.33 1.39 1.65 —
u′

1/u′
3 1.05 1.07 1.06 1.14 1.16 —

Stη = 2.6 TKE/TKEΦv=0 1.14 1.27 1.7 1.9 2.25 2.5
u′

1/u′
3 1.1 1.16 1.12 1.17 1.36 1.38

Table 2. The normalized turbulent kinetic energy (TKE) and the large-scale anisotropy ratio over the
considered range of particle loadings.

gravitational settling: the particles release their potential energy into the flow, increasing its
dissipation rate while not significantly altering its integral time scale. The presence of the
particles causes the large-scale eddies to become elongated vertically, and redistribute the
energy more homogeneously across the scales compared to the single-phase turbulence.
The analysis of the inter-scale energy transfer rate suggested that such redistribution is
associated with an enhanced direct cascade. We do not derive specific values of the
Kolmogorov scales based on the dissipation rate estimated in the particle-laden turbulence.
Those values would imply the validity of a universal sub-range in which the Kolmogorov
(1941) theory applies, whereas the small-scale turbulence dynamics is known to be heavily
modified by the particles (Tanaka & Eaton 2010; Schneiders et al. 2017; Hassaini & Coletti
2022).

The key non-dimensional parameters in the previous numerical and experimental
studies, and in the present one, are listed in table 3. The list, which is not meant to
be exhaustive, includes studies whose range of parameters is especially relevant to the
present work: in those experiments, the particles were negatively buoyant and smaller than
or comparable to the Kolmogorov scales, and modified the turbulence measurably, while
the simulations used the point-particle approach and included the two-way coupling and
gravity. Among the experiments, only Yang & Shy (2005) focused on parameters similar
to those in our study, and also found turbulence to be augmented by the particles. They did
not, however, characterize the effect of two-way coupling on clustering or settling velocity.

A vertical plane at the centre of the chamber is illuminated by an Nd:YLF laser
pulsed at 4 kHz and synchronized with two CMOS cameras. These cover a larger field
of view (FOV) that captures the integral scales and the large-scale organization of the
particles, and a smaller FOV nested in the larger one, to resolve the Kolmogorov scales
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Field of view Resolution PIV vector spacing
(mm × mm) (pixel mm−1) (mm)

Small FOV 39 × 26 33 0.36
Large FOV 128 × 96 10 1.2

Table 4. Imaging properties for both fields of view.

and distinguish the closely clustered particles. We will discuss results from both FOVs,
whose main imaging parameters are summarized in table 4, as they yield complementary
information on the highly multi-scale processes in object. The particle volume fraction
is evaluated via direct counting of the particles in the illuminated volume (see Fong,
Amili & Coletti (2019), where the approach was validated with a known particle mass
loading). A phase-separation algorithm allows us simultaneous characterization of both
dispersed phase and carrier phase by particle image velocimetry (PIV) and particle
tracking velocimetry (PTV), respectively. The PIV measurements were reported in detail
in Hassaini & Coletti (2022); here, we will discuss them inasmuch as they pertain to the
particle transport. The PTV measurements follow the same procedure as in Petersen et al.
(2019) and Berk & Coletti (2021) to locate the particles and reconstruct their trajectories
projected on the planar FOV, with a temporal resolution sufficient to obtain velocities
and accelerations. To calculate the local slip velocity between fluid and particles, the
fluid velocity from the small FOV is evaluated at the particle locations using weighted
linear interpolation of the four neighbouring velocity vectors; a comparison with cubic
and spline interpolation shows no significant difference (Berk & Coletti 2021). In fact, a
linear interpolation is more suitable to evaluate the fluid velocity at the particle location:
compared to nonlinear interpolation schemes, this provides a better estimate of the
undisturbed fluid velocity at the particle location, which in turn defines the slip velocity
relevant to the drag force formulation (Horwitz & Mani 2020).

For each considered set of conditions, we analyse 10 independent runs of 43 000 images,
i.e. about 500 integral time scales. The dominant source of uncertainty is the finite
sample size. Convergence tests show that each run is well converged for all considered
observables (as expected, since each image in the large FOV contains O(103) particles),
while run-to-run variation is larger. In the following, where appropriate, the standard
deviation of the various runs will be used to indicate error bars in the plots. For an in-depth
discussion of the measurement uncertainties, we refer to the above-mentioned studies that
used the same set-up and techniques.

3. Results

In the following, x1 indicates the horizontal direction parallel to the jet axes and to the
imaging plane, x2 is horizontal and perpendicular to x1, and x3 is vertical and pointing
downwards; the respective velocity components are U1, U2 and U3. The fluctuating
velocities in the ith direction are denoted by ui = Ui − Ūi, where the overbar indicates
spatio-temporal average. Root-mean-square (r.m.s.) fluctuations are indicated with a
prime. The subscript p refers to quantities related to the particles, f to the fluid, and
f | p to fluid properties interpolated at the particle location. Throughout the section, for
clarity and brevity, we will display selected cases, more often focusing on the Stη = 2.6
case (which was studied over a somewhat wider range of loadings) and its vertical
component of motion; when not specified otherwise, these will be representative of
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Figure 1. Radial distribution functions (RDFs) for (a) both FOVs of the case Stη = 0.3, φV = 4 × 10−5, and
(b) the large FOV of the case Stη = 2.6. (c) The characteristic clustering length normalized by the Kolmogorov
length scale as a function of volume fraction for the cases Stη = 0.3 (black squares) and Stη = 2.6 (red circles).

all considered conditions. Comparisons will be drawn with various previous studies,
the majority of which are numerical simulations. Often, such comparisons can be only
qualitative, due to differences in the input parameters, in particular Reλ. Nevertheless,
clear trends will be highlighted that are deemed to depend weakly on the precise set of
parameters.

3.1. Particle spatial distribution
We first consider the radial distribution function (RDF), which describes the scale-by-scale
concentration in the area surrounding a generic particle compared to a uniform distribution
(Sundaram & Collins 1997). For two-dimensional fields such as those obtained by planar
imaging, this is defined as

g(r) = (Nr/Ar)/(Ntot/Atot), (3.1)

where r is the generic inter-particle separation, Nr is the number of particles within an
annulus of area Ar, and Ntot is the total number of particles within the planar domain of
area Atot. Details of the implementation are described in Petersen et al. (2019), including
potential sources of bias. In particular, values of g(r) at separations below the illuminated
volume thickness (∼6η) are affected by projection biases (Holtzer & Collins 2002). In
figure 1(a), we plot RDFs from both small and large FOV for the case Stη = 0.3, φV =
4 × 10−5. For r/η < 5, the data from the small FOV depart sharply from the exponential
decay displayed at larger separation, while for r/η > 8, the RDFs from both FOVs are
in good agreement. We therefore use RDFs from the large FOV to illustrate the effect
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Figure 2. (a) PDF of the Voronoï cell areas normalized by the mean value for the case Stη = 2.6, compared
to the distribution found in a random spatial distribution (dashed black line). (b) Standard deviation of
such distributions for the case Stη = 0.3, with filled and empty symbols indicating small and large FOVs,
respectively. (c) Fraction of clustered particles for the cases Stη = 0.3 and 2.6.

of increasing φV for the case Stη = 2.6 (figure 1b), with the case Stη = 0.3 displaying
analogous trends.

As is apparent in figure 1(b), with increasing particle loading, clustering is more intense
and extends over larger scales. For a quantitative assessment, we consider the classic fit
proposed by Reade & Collins (2000):

g(r/η) = 1 + c0(r/η) − c1 exp(−c2r/η). (3.2)

The length scale Lc = η/c2 defines the extent of the exponential decay, which dominates
the behaviour at large separations (Reade & Collins 2000). Therefore, this is taken as a
measure of the scale over which clustering occurs. It is obtained by a least squares fit and
shown in figure 1(c) as a function of φV , displaying an increasing trend for both considered
Stη values. As expected, the more inertial particles, which respond to larger eddies, cluster
over larger scales. This is in keeping with the theoretical work of Goto & Vassilicos (2006)
and Yoshimoto & Goto (2007), and with simulations from Bec et al. (2010) and Ireland,
Bragg & Collins (2016a). The difference between the particle types is likely magnified by
the effect of gravity, which is expected to enhance clustering for Stη > 1 and attenuate it
for Stη < 1 (Bec, Homann & Ray 2014; Gustavsson, Vajedi & Mehlig 2014; Ireland, Bragg
& Collins 2016b; Baker et al. 2017).

The particle spatial distribution is characterized further by Voronoï tessellation, in
which every particle is inscribed in a polygonal cell whose size represents the inverse
of the local concentration (Monchaux, Bourgoin & Cartellier 2010). Figure 2(a) shows
the probability density functions (PDFs) of the Voronoï cell areas A for the case
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Figure 3. PDFs of the normalized cluster area for the case Stη = 0.3 in (a) the small FOV and (b) the large
FOV. The dashed lines indicate a −2 power-law decay.

Stη = 2.6 at the various φV . The broadening of the distributions, signalling more
inhomogeneous concentration fields, confirms that clustering is intensified with increasing
volume fraction. This is quantified in figure 2(b), where the standard deviation of such
distributions, σA, is normalized by the expected value for particles distributed according to
a random Poisson process, σRPP ∼ 0.53 (Monchaux et al. 2010). Again, the augmentation
of clustering at larger particle loadings is dramatic, and the effect is not significantly
dependent on the size of the FOV. The latter, however, influences the quantitative values,
because spatial resolution and imaging window size impact the detection of individual
particles and clusters. Additionally, this trend is captured by considering the number Nc of
particles belonging to individual clusters, compared to the total number of particles Ntot
imaged in each case (figure 2c). Individual clusters are defined by the contiguous set of
Voronoï cells smaller than a threshold corresponding to the intersection between observed
and random distributions (see Baker et al. (2017) and Petersen et al. (2019) for details).
The ratio Nc/Ntot approximately doubles over the considered range of φV .

Figures 3(a) and 3(b) display the PDFs of the cluster area Ac for the case Stη = 0.3,
as captured in the small and large FOVs, respectively. Both views exhibit a power-law
behaviour over multiple decades, with a slope close to −2 as reported previously
(Monchaux 2012; Baker et al. 2017; Petersen et al. 2019). The small FOV indicates a
prevalent cluster area Ac = 10η–60η, with a tendency for the size ranges to reach smaller
values at higher concentrations. Besides being a consequence of two-way coupling, this
is possibly also due to the fact that sparser particle fields can probe only coarser scales –
a source of bias in the Voronoï method (Monchaux 2012). Indeed, this tendency is also
apparent in the large FOV, where the spatial resolution is lower and the peak of the PDF
would suggest clusters twice as large compared to the small FOV. On the other hand,
the small FOV imposes a cut-off to the maximum detectable cluster size, while the large
FOV allows us to capture the stretching of the power-law distributions to much greater
Ac. These extend to O(104η2) as φV increases, i.e. reaching the integral scales. Combined,
the measurements from both FOVs overcome each other’s limitations, and indicate that
self-similar clusters occur over a range of scales that grows with particle loading.

The observed intensification of clustering at larger volume fractions contrasts with
results from previous numerical studies. Monchaux & Dejoan (2017) found that for Stη
and Svη comparable to our experiments, clustering as quantified by Voronoï tessellation
was less intense with increasing φV . In similar regimes, Rosa et al. (2022) found that
the RDFs evaluated at the particle radius (specifically relevant for collisions) had a
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Figure 4. (a) Mean fall speed of the particles, normalized by the still-air terminal velocity τpg, for the case
Stη = 2.6. (b) Mean fall speed partitioned between contributions of the vertical slip velocity and the vertical
fluid velocity at the particle location. (c) Comparison between the mean vertical fluid velocity and the mean
vertical fluid velocity at the particle location.

non-monotonic behaviour, first increasing and then decreasing with growing particle
concentration. Both simulations used a point-particle approach. The extensive laboratory
study from Sumbekova et al. (2017) did report a moderate tendency of clustering to be
enhanced at higher volume fractions. This, however, was overshadowed by the dominant
effect of Reλ. Their study featured polydisperse droplets, thus a direct comparison with
the present experiments is not straightforward. The physical explanation for the amplified
clustering that we observe, and its larger spatial extent at higher loadings, lies in the
turbulence modification described in Hassaini & Coletti (2022). We will discuss this point
in the following.

3.2. Particle motion
We first consider the mean vertical velocity of the particles Ūp,3 normalized in figure 4(a)
by the still-air terminal velocity τpg. The settling rate increases substantially with volume
fraction; for Stη = 2.6, the vertical velocity doubles over the considered range of loadings.
Globally, the settling enhancement is comparable to the numerical simulations of Bosse
et al. (2006), Monchaux & Dejoan (2017) and Tom et al. (2022) over similar ranges of
particle inertia and concentration (though at much lower Reλ), while Rosa et al. (2022)
found smaller settling enhancement. To quantify the role of the different mechanisms at
play, we consider the slip velocity Uslip = Up − Ufp, i.e. the particle velocity relative to the
surrounding flow. This follows the definition of slip velocity used, e.g. in Berk & Coletti
(2021), though the opposite sign convention is also used in the literature. In figure 4(b), the
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Figure 5. Cluster fall speed (normalized by the still-air terminal velocity) as a function of their size, for the
case Stη = 2.6.

mean settling velocity for the case Stη = 2.6 is thus decomposed as Ūp,3 = Ūslip,3 + Ūfp,3;
the case Stη = 0.3 yields analogous trends. Both terms are seen to grow significantly
over the considered range of φV . In one-way coupled systems, Ūfp,3 encapsulates the
contribution of preferential sweeping, while in the presence of two-way coupling, it also
includes the effect of the particles dragging the local fluid downwards. Discriminating
between the effects is not strictly possible in an experimental setting, where the abstraction
of pure one-way coupling cannot be made. We note, however, that in the considered
case, preferential sweeping is negligible at the lower loadings (consistent with previous
measurements in the same set-up; Petersen et al. 2019). Therefore, we speculate that
collective drag is the main contributor to Ūfp,3 at the higher considered volume fractions,
as in Bosse et al. (2006) and Monchaux & Dejoan (2017).

Remarkably, the contribution of Ūslip,3 to the vertical velocity also grows significantly
with φV . This is in contrast with the observation by Monchaux & Dejoan (2017) that the
local slip velocity tends to vanish at the larger particle loadings. In other studies where
settling in quiescent fluids was enhanced by collective drag, the slip velocity was found
to remain close to the terminal velocity of an isolated particle. This was the case in the
particle-resolved simulations of Uhlmann & Doychev (2014) and in the recent experiments
of Zürner et al. (2023). In the particle-resolved turbulence simulations of Chouippe &
Uhlmann (2019), the vertical slip was slightly smaller than the single-particle terminal
velocity, but this was attributed to the tendency of the particles to be in each other’s
wake, as is typical of their regime (Rep = O(102), two orders of magnitude larger than
here). In the present situation, the increase of Ūslip,3 is interpreted as a consequence of
the amplified turbulent activity at the higher φV : the more concentrated dispersed phase
excites small-scale turbulent fluctuations (Hassaini & Coletti 2022), whose time scales
become shorter; these cannot readily be followed by the inertial particles, causing them to
lag further the fluid motion and increasing the instantaneous slip velocity.

In the present regimes, the falling particles do not cause a significant global downward
motion of the fluid. This is verified in figure 4(c), where Ūslip,3 is shown to increase weakly
with φV , remaining small with respect to all relevant velocity scales of the system. This
is important in order to be able to compare our results to numerical simulations, in which
Ūslip,3 = 0 is imposed by a vertical pressure gradient to prevent the kinetic energy from
diverging (Bosse et al. 2006; Monchaux & Dejoan 2017; Tom et al. 2022).
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Figure 6. PDFs of the particle Reynolds number for the cases (a) Stη = 0.3 and (b) Stη = 2.6.

The substantial increase in settling rate with increasing particle loading applies also
to the clusters. In figure 5, we plot the cluster settling velocity Ūc,3 for the case Stη =
2.6, obtained by averaging the vertical velocity of all particles belonging to clusters in a
given size range. This is normalized by τpg, and plotted against the cluster area Ac (in
Kolmogorov units). We observe a substantial increase in settling velocity with cluster size,
especially for Ac > 100η2. This was noted also in Petersen et al. (2019), but the respective
roles of collective drag and preferential sweeping could not be clearly discerned. Here, we
observe a systematic increase of settling velocity with volume fraction, which suggests that
collective effects play an important role over the present range of loading. It is remarkable
that the larger clusters at φV = 5 × 10−5 fall almost four times faster than the still-air,
single-particle terminal velocity.

Beside the vertical velocity, the slip velocity generally increases with increasing volume
fraction. This is shown in figure 6, plotting the PDF of the particle Reynolds number
Rep = Uslipdp/ν estimated based on the in-plane slip velocity Uslip =

√
U2

slip,1 + U2
slip,3.

As expected, the values remain well below the vortex-shedding regime. Therefore, the
turbulence modification is due to the local enhancement of dissipation around the particles
and by their collective action, rather than by the injection of energetic wakes (Hassaini &
Coletti 2022). However, with increasing φV , one observes a significant probability of Rep
exceeding unity by a wide margin – a situation that complicates the applicability of the
point-particle approach. We also remark that Rep is here underestimated systematically
as the out-of-plane velocity component is not measured. Finally, we note that the particle
Reynolds numbers based on the terminal velocity (Rep = 0.15 and 0.56 for the cases Stη =
0.3 and 2.6, respectively) are similar to the mean of the Rep distributions based on the slip
velocity. Therefore, basing the particle response time on the latter would lead to similar
values, as the far tails of the PDF would have limited statistical significance.

So far, we have shown how, at increasing loading, the particles tend to cluster over larger
ranges of scales and to slip away more from the local fluid. Both such observations imply
that with larger φV , the particles become more inertial with respect to the fluid motion, or
in other words, that their effective Stη becomes larger. The particle response is not expected
to change significantly with φV , except for slight adjustments due to the increase of Rep and
the consequent correction of τp (see Clift et al. 2005). On the other hand, the total turbulent
dissipation (which includes the dissipation in the boundary layer around each particle) is
approximately doubled over the considered range of volume fractions compared to the
single-phase turbulence, as shown in Hassaini & Coletti (2022). By Kolmogorov scaling,
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Figure 7. The r.m.s. velocity fluctuations of the particles (a) normalized by that of the fluid in the unladen
case and (b) at the corresponding volume fraction. Data for the case Stη = 2.6.
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Figure 8. (a) Autocorrelation function and (b) second-order velocity structure function for the particles in the
case Stη = 2.6.

this produces small-scale motions of shorter time scale, which in turn amplifies the lag
between fluid and particles. This view is supported by the following analysis of the particle
fluctuating velocity.

In figure 7(a), the vertical component of the particle r.m.s. fluctuation, u′
p,3, is

normalized by the fluid counterpart for the unladen case, u′
f ,30. At φV = O(10−6), for

which the particle dynamics can be considered approximately one-way coupled, the
particle fluctuations are slightly weaker than the fluid fluctuations, as expected in this
range of Stη and Svη (Good et al. 2014). With higher loadings, the particle fluctuating
energy grows larger in response to the strong turbulence enhancement caused by the
two-way coupling (Hassaini & Coletti 2022). On the other hand, normalizing u′

p,3 by the
fluid fluctuation at the corresponding volume fraction, u′

f ,3, returns the opposite trend.
Clearly, the more concentrated particles are less and less capable of responding to the
turbulence augmented by their very presence; this is again consistent with the notion
that their effective inertia grows at higher loadings. Additionally, the larger settling rate
magnifies the decorrelation from the local flow structures, which also contributes to a
weaker response of the particles to the fluid fluctuating energy (Wang & Stock 1993; Berk
& Coletti 2021).
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Two-way coupling of particles in turbulence

The particle response to the underlying turbulence can be described further by
two-point statistics. The Eulerian velocity correlation is plotted in figure 8(a), which
gives information on the spatial coherence of the particle motion (Fevrier, Simonin &
Squires 2005). As in Fong et al. (2019), we write it as a correlation coefficient between
the longitudinal velocity fluctuations of particles m and n, separated by a vector r, and
normalized by the velocity variance:

Ruu(r) = umun | x = xm
p ; x + r = xn

p

u2
(3.3)

Here, x is a spatial location within the FOV, xi
p is the position of the particle i, and the

fluctuating velocities are projected along r. The coefficient does not approach unity for
vanishingly small separations, indicating that a sizeable fraction of the particle velocity
is spatially uncorrelated. This ‘random uncorrelated motion’, rooted in the memory of
interactions with distant eddies, represents a larger fraction of the total for more inertial
particles (Fevrier et al. 2005; Wilkinson & Mehlig 2005; Bragg & Collins 2014; Fong
et al. 2019). For particles of non-negligible inertia, such a component of the motion is
considered among the main causes of small-scale clustering (Gustavsson & Mehlig 2016).
Here, the correlation coefficient is lower for higher loading and also decays more rapidly
with increasing φV . Therefore, despite the clusters stretching over larger scales, the particle
motion becomes less spatially coherent. This is further evidence that the particles acquire
a larger effective Stη at higher loadings.

Similar considerations apply to the relative particle velocity, quantified in figure 8(b) by
the second-order longitudinal structure function S2(r) = [u(x + r) − u(x)]2, where again
we take the components of the fluctuating velocities along the separation vector r. We
note that the finite thickness of the laser sheet leads to an overestimation of the relative
velocity over the separations r � 6η (Dou et al. 2018), but this may not overshadow
the trend. For tracers, S2 scales as r2 and r2/3 in the dissipative and inertial range,
respectively (Kolmogorov 1941). For heavy particles, due to the above-mentioned memory
effect and lack of spatial correlation, the relative velocities between close particles
increase, and S2(r) progressively deviates from the r2 scaling at small separations; see
numerical simulations by Bec et al. (2010) and Ireland et al. (2016a,b), among others,
and experimental measurements by Dou et al. (2018) and Berk & Coletti (2021). Here,
we observe a systematic increase in relative velocity with volume fraction. This is again
in line with the notion that the particles have higher Stη. This in turn may cause higher
collision frequency (Sundaram & Collins 1997), though the present measurements do not
have sufficient spatio-temporal resolution to quantify such an effect.

Finally, we consider the particle acceleration, whose PDF is plotted in figure 9(a). We
display the vertical component, the horizontal one behaving similarly. For all considered
cases, the mean acceleration is small, as the particles have reached terminal velocity
before entering the FOV. The distributions display the familiar exponential tails signalling
intermittency, which is, however, modulated by inertial filtering (Ayyalasomayajula et al.
2006; Bec et al. 2006). Normalizing the acceleration PDF by its r.m.s. fluctuations reduces
the spread of the distributions but does not lead to a collapse, unlike in Qureshi et al.
(2007), where dilute neutrally buoyant particles of varying size were considered. The
acceleration variance is presented in figure 9(b) for both values of Stη, as a function of
φV . The values are normalized by those predicted by the model of Berk & Coletti (2021)
(see their (4.12)), who expanded on the theory of Csanady (1963) to derive expressions
for the time scale of the flow experienced by heavy particles. At the lowest volume
fraction, the measured values agree closely with the theory, which applies to one-way
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Figure 9. (a) PDF of the vertical particle accelerations for the case Stη = 2.6, normalized by the Kolmogorov
acceleration. (b) The r.m.s. particle acceleration normalized by the theoretical prediction of Berk & Coletti
(2021) for the cases Stη = 0.3 and 2.6.

coupled systems. With increasing loading, the particles exhibit a substantial increase
of acceleration variance. This is seemingly in contrast with the idea that the particles
are effectively more inertial in the more concentrated regime, as argued above. The
contradiction is resolved by recognizing that the acceleration is dominated by the other
major consequence of two-way coupling, namely the settling enhancement. This intensifies
the crossing trajectories effect, which causes particles to experience quickly changing flow
conditions (Squires & Eaton 1991a; Elghobashi & Truesdell 1992; Wang & Stock 1993).
Thus, as the particles fall faster, their effective Svη increases, in turn augmenting their
acceleration variance (Ireland et al. 2016b; Berk & Coletti 2021). In addition to this effect,
the enhanced turbulence intensity caused by the particles themselves also contributes to
augmenting their acceleration.

4. Conclusions

We have analysed the behaviour of heavy particles in homogeneous turbulence, with Stη
and Svη of order unity, increasing the volume fraction systematically from φV = 10−6

to φV = 5 × 10−5 to isolate the effect of two-way coupling on the spatial organization
and motion of the dispersed phase. We find that both clustering and settling are strongly
enhanced when the loading is increased. In particular, both RDFs and the Voronoï
tessellation method show that with increasing φV , particle clustering is intensified at
all scales. Combining two nested FOVs, we find that the more concentrated particles
form self-similar clusters whose size range reaches deeper into the dissipative range and
stretches further over the integral scales. The particle settling velocity is approximately
doubled over the considered range of volume fractions. This is due, in approximately equal
measure, to two factors: an increased association of the particle location with downward
fluid velocity, and a larger slip velocity between the particles and the fluid. The former may
be caused by both preferential sweeping and collective drag. While we cannot discriminate
conclusively between these two effects, the fact that preferential sweeping is not significant
in the most dilute regime suggests that collective drag plays a dominant role. The extended
scales of the cluster and the increased slip velocity suggest that the particles attain an
effectively larger Stη as a consequence of the turbulence modification. This is confirmed
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Two-way coupling of particles in turbulence

by the behaviour of the particle fluctuating energy, which becomes a smaller fraction of
the turbulent kinetic energy (TKE) as the loading is increased.

These findings can be understood in light of the effect that the particles themselves have
on the underlying turbulence, which we investigated recently in Hassaini & Coletti (2022).
There, we demonstrated and quantified how the dispersed phase enhances the TKE and
its dissipation rate by releasing potential energy into the fluid, exciting in particular the
smallest scales of the fluid motion. This yields faster dissipative time scales, which the
particles are less able to follow. Indeed, the two-point particle velocity statistics indicate
how at higher concentrations, the uncorrelated component of the particle motion becomes
larger and comparable to the correlated one. Likewise, the relative particle velocity at
small separations increases. This is consequential for the collision probability, although
the latter will depend on short-range interactions (Bragg et al. 2022) that are not resolved
here.

In Hassaini & Coletti (2022), we estimated that the overall dissipation rate was
approximately doubled over the present range of particle loading, which would imply
an increase of about 40 % of the effective Stη and a decrease of about 20 % of Svη.
The same study, however, demonstrated how the turbulence is altered in qualitatively
different manners at the different scales. Therefore, it is not straightforward to condense
the multifaceted changes in particle–turbulence interaction in the value of the effective Stη
and Svη.

We confirm that φV = O(10−6) is a robust threshold for the emergence of two-way
coupling (Elghobashi 1994), not only from the standpoint of turbulence modification
but also in terms of particle behaviour. This is verified only at the present high density
ratios, typical of solid–gas systems; for solid–liquid suspension, a criterion remains
to be determined univocally (Brandt & Coletti 2022). Indeed, the threshold is more
likely to be determined by the mass fraction φm, which governs the momentum transfer.
A clear distinction between the effects of φV and φm can be discerned only by changing
the solid-to-fluid density ratio, which is outside the scope of our study. In the future, this
could be achieved by contrasting, e.g. plastic particles against metallic ones, or resorting
to adjustable soap bubbles as in Qureshi et al. (2008).

The increase of the effective Stη alone does not explain the increase in Ūslip,3. Clearly,
gravity breaks the symmetry in the distribution of the vertical slip velocity Uslip,3 as
it does for Ufp,3: both have non-zero mean whose magnitude increases with volume
fraction. Tom et al. (2022) found in their numerical simulations that heavy particles
are often found in high-strain regions of the velocity field coarse-grained at scales
corresponding to the particle response time. This was proposed as a spatially filtered
version of preferential sweeping: the particles are swept downwards by eddies more
energetic than the Kolmogorov-size vortices. According to this view, preferential sweeping
(here promoted by two-way coupling) may play a role in the increase of downward slip
velocity with volume fraction: the more energetic eddies sweeping down the particles may
lead to larger slip velocities, as we observe. As the particles take a finite time to adjust to
the local flow conditions, this can result in globally enhanced settling velocities.

The present findings provide indications for the mechanistic interpretation of the
complex particle-turbulence interplay, also in regard to aspects that have remained elusive,
such as the origin of clustering (Brandt & Coletti 2022). In this regard, we note how, while
the trends for both considered particle sizes are similar, clustering is more intense for
Stη > 1. This does not support the notion that particle accumulation is driven mainly by
the centrifuging mechanism; this applies strictly for St � 1, and under relatively weak
gravitational drift (Maxey 1987). Mechanisms that can account for significant inertia
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and crossing trajectories are more likely to cause the observed trends. In particular, the
path-history effect (Bragg & Collins 2014) is consistent with our observations, especially
considering the association of clustering with the uncorrelated motion of the dispersed
phase.

These results can also inform numerical models with various degrees of fidelity, as
it is possible presently to realize two-way coupled point-particle simulations in the
considered range of Reλ and φV . Of particular interest is the fact that the increase
of φV is associated to a significant probability of Rep exceeding unity by a wide
margin – a situation for which the applicability of the point-particle approach needs to
be tested systematically. Finally, we note that the planar imaging technique adopted here
has allowed for relatively high concentrations, which would have been challenging to
achieve with classic reconstruction algorithms for volumetric imaging. Recent advances in
three-dimensional Lagrangian particle tracking, however, allow for accurate measurements
at comparably dense concentrations (Discetti & Coletti 2018; Schröder & Schanz 2023).
Their application in the considered regimes is warranted, as this would reveal the effect
of two-way coupling on other relevant observables, such as the Lagrangian dispersion
(Bourgoin 2015) and the lifetime of clusters (Liu et al. 2020).
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