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Abstract

Lattices of radicals have been extensively studied, for example in the class of associative rings, leading to
some interesting results. In this paper we investigate the lattice L of all radicals in the class of all finite
groups. We also consider some of its important sublattices. In particular, we prove that the lattice L is
closed to being modular, the lattice Lh of all hereditary radicals is a Boolean algebra, and there exists a
natural, useful projection of the lattice L onto Lh.
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1. Preliminaries

All groups considered in this paper are finite. Let G be a group. Then it is well known
(see [2, 10]) that every minimal subnormal subgroup of G is a simple group, while
every minimal normal subgroup of G is a direct power of a simple group. Hence,
every composition factor of G is a simple group, while every chief factor of G is a
direct power of a simple group. By the celebrated Jordan–Hölder theorem, to any
group G a composition length λ(G) is assigned.

In the sequel F will denote the class of all finite groups. All classes of groups
considered are subclasses of F, are closed under taking isomorphic images and contain
the trivial group 1. Our universal class F contains, up to isomorphism, only ℵ0 objects,
thus only 2ℵ0 subclasses. Hence the subclasses form a set, say 2F, and it is a Boolean
algebra under natural inclusion of classes, with distinguished elements (1) and F.
Further every subset of 2F will be considered as ordered by inclusion, often indicated
as inequality.

If X is a family of groups, then we use (X) to denote the smallest class of groups
containing X. Hence every group from (X) is either isomorphic to a group from X, or
is trivial.
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We will use here some standard operators with values in classes of groups. Let X be
a family of groups. Then QX denotes the homomorphic closure of X, HX denotes
the class of all groups isomorphic to subnormal subgroups of groups from X and
EX = XX denotes the class of all extensions of groups from X by groups from X. By
ĒX we denote the smallest class containing X and closed under extensions. We have
ĒX =

⋃∞
n=1 E

nX. This means that G ∈ ĒX if and only if G has a subnormal series with
all factors in X.

In line with terminology used in radical theory, let us agree that a class X
is hereditary if X =HX. An easy consequence of the isomorphism theorems and
finiteness of our groups is the following lemma.

L 1.1. Let C be a class of groups.

(i) If C is hereditary, then EC, EC and QC are also hereditary.
(ii) If C is closed under homomorphisms, then EC and EC are also closed under

homomorphisms.
(iii) If 1 , C is either closed under homomorphisms or is hereditary, then C contains

a simple group.

All radicals in this paper are understood in the sense of Kurosh and Amitsur.
They will be considered in the class F. One can find the basics on such radicals
in, for example, [7]. One can also adopt results on radicals from some other universal
classes [3, 4, 16], but keeping in mind Lemma 1.1(iii) and the Jordan–Hölder Theorem.
However, let us recall some basic results, for completeness.

A class R of groups is a radical class or simply a radical if it has the following
properties.

(I) R = QR.
(II) For every group G, the join R(G) = 〈H CG | H ∈ R〉 is in R.
(III) R

(
G/R(G)

)
= 1 for every group G.

The subgroup R(G) is called the R-radical (a radical) of G and G/R(G) is called
an R-semisimple (semisimple) image of G. In this way to any radical class R there
corresponds the semisimple class

SR = {G | R(G) = 1}. (1.1)

As an immediate consequence we obtain the following well-known property. Let R
be a radical class. ThenR(G) is a characteristic subgroup of G for any group G. Thus,
if N CG then R(N) CG and R(N) 6 R(G). In particular, the class SR is hereditary.

E 1.2. Let C be a hereditary class of groups and letUC be the class of all groups
G having no homomorphisms onto a nontrivial C-group. It follows immediately from
the definition that the classUC is a radical class. This class is called the upper radical
determined by C, because it is the largest among radicals R with C ⊆ SR.

Note thatUC-groups are groups equal to their C-residuals. However, for a group G
the radicalUC(G) need not be equal to the C-residual of G.
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Our groups are finite. Hence (see [7]) we have the following theorem.

T 1.3. Let C be a class of groups.

(i) C is a radical class if and only if C = QC = EC.
(ii) C is an R-semisimple class for a radical class R if and only if C =HC = EC.

Further, for any family of groups C, we will consider the following classes:
the lower radical class LC containing C, the lower hereditary radical class LhC

containing C and the lower semisimple class, sayMC, containing C. Here, according
to radical tradition, the lower means the smallest.

With the help of intersection of classes and Theorem 1.3 we immediately obtain
that, for any family C, the classes LC, LhC andMC exist. However, more useful is the
following effective description of these classes.

T 1.4. Let C be a family of groups. Then:

LC = ĒQC, LhC = ĒQHC, and MC = ĒHC.

2. Some connections with simple groups

In the sequel S will denote the family of all simple groups. If T ⊆S is any family
of simple groups then (T) will be called a class of simple groups.

As a slight modification of results from [7] we have the following characterisation
of hereditary radical classes, semisimple classes closed under homomorphisms and
radical semisimple classes.

T 2.1. Let R be a class of groups. Then the following conditions are
equivalent:

(i) R is a hereditary radical;
(ii) R is the lower radical of a hereditary class;
(iii) R is the lower radical of a class of simple groups;
(iv) R = ET where T is the class of all simple R-groups;
(v) R is a radical and semisimple class;
(vi) R =HR = QR = ER;
(vii) R is a semisimple class closed under homomorphisms.

In connection with the above theorem let us agree that a radical R is cohereditary
if its semisimple class S(R) is closed under homomorphisms. With the help of
Theorem 2.1 and Lemma 1.1 cohereditary radicals can be characterised in the
following way.

T 2.2. Let R be a class of groups. Then R is a cohereditary radical if and only
if S(R) is a hereditary radical class. In particular, upper radicals for classes of simple
groups are cohereditary.
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The classes (1) and F are trivial radicals. There are also other natural, useful
examples of radicals.

E 2.3. The class D of all solvable groups is a hereditary radical class. Hence it
is also a semisimple class closed under taking quotient images. Further, D is the lower
radical of the class of all simple abelian groups.

On the other hand, the class N of all nilpotent groups is neither radical nor
semisimple, because it is not closed under extensions.

E 2.4. Let π be a set of prime numbers. Then the class Fπ of all π-groups is
a hereditary radical class. Hence it is also a semisimple class closed under taking
quotient images. Further, Fπ is the lower radical of all simple π-groups.

E 2.5. The class P of all perfect groups (groups G with G = G′) is a radical
class. One can check thatP =U(D), so that it is the upper radical of all simple abelian
groups. The class P is not a hereditary radical class, but is cohereditary.

Further, the (regular) wreath product (see [2, 12]) will be a helpful construction.
This construction is defined as follows. Let A, B be groups and let AB = F be the
group of all functions from B to A with natural pointwise multiplication. Then F is the
direct product of |B| isomorphic copies of A. Now let b ∈ B. If f ∈ F, define σb( f ) = f b

by
f b(x) = f (xb−1) for all x ∈ B.

The set of automorphisms {σb : b ∈ B} is a group isomorphic to B in a natural way. We
shall identify these groups. The wreath product W = A o B of A by B is the semidirect
product of F by this group of automorphisms; that is, W = BF with the relations

b f cg = bc f cg for all b, c ∈ B and f , g ∈ F.

One can check that if 1 , N CW, then N ∩ F , 1. As a consequence one can obtain
that if A is simple and either is nonabelian, or |A| and |B| are coprime, then F is a
minimal normal subgroup of A o B.

As a consequence of the above result and properties of radicals, we obtain the
following useful observation.

L 2.6. Let A, B be groups and R be a radical class.

(i) If A, B ∈ R, then A o B ∈ R.
(ii) If A, B ∈ SR, then A o B ∈ SR.
(iii) If A ∈ R and B ∈ SR, then R(A o B) is the base group of A o B.
(iv) If R is hereditary and 1 , A ∈ SR, then A o B ∈ SR.
(v) Let A ∈ SR be simple and B ∈ R. If either A is nonabelian, or |A| and |B| are

coprime, then either A o B ∈ SR or A o B ∈ R.

P. Claims (i)–(iv) follow easily from the definition of radicals. Now let A and B
satisfy one of the assumptions of (v), G = A o B and F be the base group of G. Using
the assumption, we already know that F is a minimal normal subgroup of G.

https://doi.org/10.1017/S0004972712000056 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972712000056


[5] On lattices of radicals of finite groups 499

If R(G) , 1 then R(G) ∩ F , 1. By minimality of F in G, we know that F ⊆ R(G).
Thus G/R(G) is a homomorphic image of an R-group G/F ' B. This means that
R(G) = G. �

As a consequence we obtain the following lemma.

L 2.7. LetT be a nontrivial (or proper) subclass of the classS. Then the radicals
LT andU(S \ T) are different.

P. Let L(T) = L and U(S \ T) = U. Clearly L ≤ U. By assumption on T there
are simple groups B ∈ T, and A ∈S \ T. Let G = A o B. By Lemma 2.6(iv) we have
L(G) = 1, because L is hereditary and A < L.

On the other hand, one can check that U(G) , 1, because U is cohereditary by
Theorem 2.2, and G has a homomorphic image isomorphic to B ∈ T. Hence, L , U. �

T 2.8. Let R be a hereditary and cohereditary radical. Then R is trivial.

P. Assume that R is hereditary and cohereditary, but is nontrivial. By
Theorem 2.1 there is a nontrivial class T of simple groups such that R =LT. On the
other hand, by the definition and Theorem 2.2, R =UT′, for a nontrivial class T′ of
simple groups, because R is cohereditary. One can check that T′ =S \ T. Hence,
LT =U(S \ T), contradicting the preceding lemma. �

3. The lattice of all radicals

In several universal classes radicals are not sets. However they are considered as
lattices. Such lattices have been extensively studied, for example, in the class of all
associative rings and in its subclasses (see [4, 13, 15, 17] and references therein). This
approach has been fruitful for both ring theory and lattice theory.

In this section we will deal with the class, and in fact the set, L of all radical classes
in F, ordered by inclusion. For the notation and terminology on lattices used below
we refer the reader to [5]. As expected, we have the following theorem.

T 3.1. The set L forms a complete lattice, and for any collection {Ri | i ∈ I} of
radicals,

inf
i∈I
Ri =

⋂
i∈I

Ri and sup
i∈I
Ri =L

(⋃
i∈I

Ri

)
= Ē

(⋃
i∈I

Ri

)
.

If {Ri} is a chain then supi∈I Ri =
⋃

i∈I Ri. The lattice L is lower and upper continuous,
but is not a sublattice of 2F.

P. The first claim is obvious from the definition. The formula for upper bounds
of chains follows, because every group has, up to isomorphism, only finitely many
sections. The other claims are consequences of general properties of constructions for
lower radicals. �
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The set M of all semisimple classes in F is also a complete lattice under inclusion,
with operations given for any family {Xi | i ∈ I} of semisimple classes by the formulas

inf
i∈I
Xi =

⋂
i∈I

Xi and sup
i∈I
Xi =M

(⋃
i∈I

Xi

)
= Ē

(⋃
i∈I

Xi

)
.

If {Xi} is a chain then, as in the preceding theorem, supi∈I Xi =
⋃

i∈I Xi.

By formula (1.1), Example 1.2 and Theorem 1.3 there is a Galois correspondence
between radical and semisimple classes.

T 3.2. The operator S defines a natural dual isomorphism between the lattice
L and the lattice M. Moreover, S−1 =U.

This theorem allows us to concentrate mainly on radical classes (as in [15]), and we
will also do so here.

T 3.3. For the lattice L the following statements hold.

(1) Every atom in L is the lower radical determined by a simple group and every
lower radical determined by a simple group is an atom in L. Hence L is atomic.

(2) Every coatom in L is the upper radical determined by a simple group and every
upper radical determined by a simple group is a coatom in L. Hence L is
coatomic.

(3) L is not atomistic.
(4) L is not coatomistic.
(5) Hereditary radicals and cohereditary radicals are distributive elements in L.

P. (1) and (2) are easy consequences of Lemma 1.1(iii) and Theorem 1.4.
(3) By (1) and Theorem 2.1, every atom in L is hereditary. Thus the join of any

family of atoms is hereditary too. On the other hand, there exist proper nonhereditary
radicals by Theorem 2.8 and Lemma 2.7. Hence L is not atomistic.

(4) By (2) and Theorem 2.2, every coatom in L is cohereditary. Thus the intersection
of any family of coatoms in L is cohereditary. On the other hand, with the help of
Theorem 2.8 and Lemma 2.7, there are hereditary radicals which are not cohereditary.
Hence L is not coatomistic.

(5) Let R be a hereditary radical and X, Y be arbitrary radicals. By induction on
the composition length λ(G) of a group G, one can show that if G ∈ (R ∧ (X ∨ Y))
then G ∈ ((R ∧ X) ∨ (R ∧ Y)). This gives the crucial inclusion of classes for the case
of hereditary R.

The case where R is cohereditary can be proved by analogous considerations on the
level of semisimple classes and then translated to L by the Galois correspondence (see
Theorem 3.2). �

In the sequel let B = 2S denote the Boolean algebra of all subclasses of our class S
of simple groups.
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T 3.4. The lattice L is complemented. More precisely, if R is a radical class
then a radical class C is its complement in L if and only if C ∩S is a complement of
R ∩S in B. Thus every proper radical is not a modular element in L. In particular, L
is not a modular lattice.

P. Let R be a radical and let T = R ∩S be the class of all simple R-groups. Also
let C be a radical such that S \ T is the class of all simple C-groups, for example
C =L(S \ T). As a consequence of Lemma 1.1(iii) and Theorem 3.3,

R ∧ C = (1) and R ∨ C = F.

Hence, C is a complement of R in L.
Similar arguments can be applied in the proof that complements should have the

desired form.
Now letM be a nontrivial radical, T =M ∩S, U be the upper radical determined by

T and L be the lower radical determined by S \ T. Then, by the first part of the proof,
L ≤ U, both radicals are complements of M in L and are different, by Lemma 2.7.
From these properties,

L ∨ (M ∧ U) = L while (L ∨M) ∧ U = U , L.

Hence,M is not a modular element of L and L is not a modular lattice. �

From [14] and references therein, we know that several families of formations of
finite groups are modular lattices. We will now show that the lattice L satisfies a
weaker condition.

A lattice L is called balanced if, for all x, y, z ∈ L,

x ∧ y ∧ z = x ∧ y = (x ∨ y) ∧ z = 0⇒ (y ∨ z) ∧ x = 0;

L is strongly balanced if each of its intervals is a balanced lattice. It is easy to check
that modular lattices are strongly balanced. Balanced and strongly balanced lattices
are interesting in their own right, as a generalisation of modular lattices. They are
also basic, if one is going to apply the uniform dimension to lattices of subgroups
(see [1, 8, 11]), or to other not necessarily modular lattices [9]. For example, this
notion is applicable to sublattices of our lattice L and to their duals, because of the
following result.

T 3.5. The lattice L and its dual are strongly balanced.

P. Let X, Y and Z be radicals, and put C = X ∧ Y ∧ Z. Assume that

C = X ∧ Y = (X ∨ Y) ∧ Z.

From these equalities one can obtain, even at lattice level, that

C = X ∧ Z = Y ∧ Z.
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Now let G ∈ (Y ∨ Z) ∧ X. By induction on λ(G) we will show that G ∈ C. Certainly
G ∈ X. If G = 1 then obviously G ∈ C. Let G , 1. Then by Theorems 1.4 and 3.1, either
Y(G) or Z(G) , 1. For example, let H = Y(G) , 1. Then λ(G/H) < λ(G) so, by the
induction assumption, G/H ∈ C.Hence G/H ∈ Y and G ∈ Y. Therefore G ∈ X ∧ Y = C.
The case Z(G) , 1 can be considered in an analogous way. Hence in both cases G ∈ C.
This, by definition, means that L is strongly balanced.

Working with semisimple classes one can prove in an analogous way that M, hence
also the dual of L, is a strongly balanced lattice. �

4. Some sublattices

We will now discuss two subsets of L: the set Lh of all hereditary radicals,
and the set Lch of all cohereditary radicals, with order given by inclusion. Simple
considerations and Theorems 1.4, 2.1 and 2.2 together yield the following theorem.

T 4.1. The sets Lh and Lch are complete sublattices of L.

Now let us focus on simple groups. As earlier, let B be the Boolean algebra of all
classes of simple groups. For a subclass T ⊆S let U′T =U(S \ T). The following
theorem is a consequence of Theorems 2.1 and 2.2.

T 4.2. The operators L and U′ restricted to B give lattice isomorphisms of B
onto Lh, and Lch, respectively. Hence, Lh and Lch are complete Boolean algebras and
are isomorphic in a natural way.

C 4.3. Intervals in Lh and in Lch are atomistic, coatomistic, and complete
Boolean algebras.

Let R be a radical. Denote by τ(R) the largest hereditary radical contained in R
and by υ(R) the smallest cohereditary radical containing R. The existence of τ and υ
is a consequence of Theorem 4.2. Using also some earlier results one can obtain the
following theorems.

T 4.4. The formula R→ τ(R) gives a projection of the complete lattice L
onto Lh. Under this projection, for every R1, R2 ∈ L, τ(R1) = τ(R2) if and only if
R1 ∩S = R2 ∩S.

T 4.5. The formula R→ υ(R) gives a projection of the complete lattice L onto
Lch.Under this projection, for every R1, R2 ∈ L, υ(R1) = υ(R2) if and only if R1 ∩S =

R2 ∩S. In particular, τ and υ define the same congruence on L and, for every
radical R, τ(R) ≤ R ≤ υR. Moreover, [τ(R), υ(R)] ∩ Lh = τ(R) and [τ(R), υ(R)] ∩
Lch = υ(R).

From the above results, we know that with any radical R we have associated a
‘small’ interval [τ(R), υ(R)] 3 R and this interval is uniquely determined by a subclass
T ⊆S. Due to Lemma 2.7 and Theorem 4.2, we know that for every proper radical
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this subclass is proper in S and the associated interval contains at least two elements.
We will show that, in fact, this interval is infinite.

T 4.6. If T ⊂S is a nontrivial class of simple groups then the interval
[LT,U′T] has infinite height and infinite width.

P. Let LT = L andU′T = U.

Case 1. S \ T contains an infinite sequence of nonabelian groups, say A1, A2, . . . .
Let B ∈ T be any simple group. For every i ≥ 1, let Gi = Ai o B, Li =L(T ∪Gi) and
Ri =L(T ∪ Ai). Then L < Li < U, because L is hereditary and U is cohereditary. Also
Li ≤ Ri, for every i ≥ 1. Radicals Ri belong to Lh; hence, by Theorem 3.3(5),

L ≤

( i∨
j=1

L j

)
∧ Li+1 ≤

( i∨
j=1

R j

)
∧ Ri+1 = L.

From the above formula one can easily obtain the infinite width and infinite height of
our interval.

Case 2. S \ T contains an infinite sequence of abelian groups. In this case, after
choosing B ∈ T we are able to take different, simple abelian groups A1, A2, . . . with
Ai and B having coprime orders for every i ≥ 1. Using arguments as above, we also
obtain the desired conclusion.

Case 3. Let A ∈S \ T and let us have an infinite sequence of groups B1, B2, . . . ∈ T
with orders coprime to |A|. For every i ≥ 1, let Gi = A o Bi, Li =L(T ∪Gi) and Ri =∨i

j=1 L j. Then, for every i ≥ 1,

L < Li < Ri < U and Li ,L.

Assume that, for some i ≥ 1, Li+1 = Ri. Then, in particular, Gi+1 contains a subnormal
subgroup either from the class T or from the set {G1, . . .Gi}. The first case is
impossible, by our assumption on orders of A and B j. The second is also impossible,
by comparing composition factors. Hence Li+1 , Ri.

From the above consideration one can easily obtain that radicals Li form an infinite
antichain, while radicals Ri form an infinite chain in our interval [L, U].

Now it is easy to see that the three cases considered above give the proof of the
theorem. �

Another natural ‘small’ interval related to a subclass T of simple groups could be of
the form [LT,L(T ∪ A)], where A is a simple group outside of T. In the lattice Lh this
interval has only two elements. However, in many cases we can show that this interval
is infinite in L.

E 4.7. Let T ⊂S be a nontrivial class of simple groups, A ∈S \ T be
nonabelian and B ∈ T. Put G1 = A o B, and let Gn+1 = A oGn for n ≥ 1. Let us consider
radicals L = L0 =LT and as Ln let us take the lower radical determined by L and Gn
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for n ≥ 1. Let us also take V =L(T ∪ A). By definition Gn is a homomorphic image of
Gn+1. Hence we have inequalities

L = L0 ≤ L1 ≤ L2 ≤ · · · ≤V. (4.1)

Using Lemma 2.6(v) and arguments as in the proof of Lemma 2.7, we can in fact say
that L0 , L1, because G1 < L0 and A is nonabelian.

Assume that Gn+1 ∈ Ln for some n > 1 and that n is minimal with this property. By
Lemma 2.6(v), Gn+1 is L-semisimple. Thus, by definition, Gn+1 contains a subnormal
subgroup H isomorphic to a homomorphic image of Gn, since Gn+1 is not an L-group.
Hence H contains B as a composition factor. On the other hand, the only subnormal
subgroup of Gn+1 with B as a composition factor has to be isomorphic to Gn+1, which
is impossible. In this way we have proved that in the sequence (4.1) all inequalities are
strict and our interval [L,V] has infinite height.

Now, our groups Gn and radicals Rn depend also on B ∈ T. Hence, we can denote
them by LB,n instead of Ln.

Under this notation one can prove that if B ; B′, with B, B′ ∈ T, then the radicals
defined by these groups with the help of the same A ∈S \ T are distinct. The same
holds for sequences based on B′ and A. Hence, if T is infinite, then the interval under
consideration also has infinite width.

E 4.8. Let T be a class of simple groups, let p be an odd prime number and let
A = Cp ∈S \ T. Denote by L the lower radical determined by T and let U =L(T ∪ A).
If the class T contains infinitely many groups B with orders coprime to p then one can
check that the interval [L, U] is of infinite height and width. This situation can happen
in the following cases:
• T contains an infinite number of simple abelian groups;
• p = 3 and T contains infinitely many Suzuki groups S z(q) (see [6]);
• p > 3 and T contains infinitely many groups PSL(2, q), where q is not congruent

to 0, 1 or −1 modulo p (see [6]).

The following proposition is a consequence of the above examples.

P 4.9. Let T ,S be an infinite class of simple groups. Then, up to some
exceptions, there exists A ∈S \ T such that the interval [LT,L(T ∪ A)] has infinite
height and infinite width.

P. If there exists a nonabelian group A ∈S \ T then we are in the case of
Example 4.7.

If every simple group outside of T is abelian, and for some Cp outside of T there
exist infinitely many groups in T with orders not divisible by p, then we can apply
Example 4.8. �

P. Let T ⊆S be a proper subclass and A ∈S \ T. Describe the intervals
[LT,U′T] and [LT,L(T ∪ A)] as lattices.
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R. Most of the above results can be repeated in the case of the subclass
ET ⊂ F = ES, where T ⊆S is any subclass of simple groups. Many results on lattices
of radicals from this paper can be formulated and proved in a categorical language,
by adding to axioms in [16] some finiteness conditions, similar to the Jordan–Hölder
theorem. These conditions should however be stronger than those from [17].
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[1] C. Bagiński and A. Stocka, ‘Finite groups with L-free lattices of subgroups’, Illinois J. Math. 52
(2008), 887–900.

[2] K. Doerk and T. Hawkes, Finite Soluble Groups (Walter de Gruyter, Berlin–New York, 1992).
[3] B. J. Gardner, Radical Theory, Pitman Research Notes in Mathematics, 198 (Longman Sci. &

Tech, 1989).
[4] B. J. Gardner and R. Wiegandt, Radical Theory of Rings, Monographs and Textbooks in Pure and

Applied Mathematics, 261 (Marcel Dekker, New York, 2004).
[5] G. Grätzer, General Lattice Theory, 2nd edn (Birkhäuser, Basel, 1998).
[6] B. Huppert and N. Blackburn, Finite Groups III (Springer, Berlin, 1982).
[7] J. Krempa and I. Malinowska, ‘On Kurosh-Amitsur radicals of finite groups’, An. Ştiinţ. Univ.
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