Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T07:37:32.319Z Has data issue: false hasContentIssue false

Materials and manufacturing renaissance: Additive manufacturing of high-entropy alloys

Published online by Cambridge University Press:  19 June 2020

Jinyeon Kim
Affiliation:
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York14850, USA
Akane Wakai
Affiliation:
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York14850, USA
Atieh Moridi*
Affiliation:
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York14850, USA
*
a)Address all correspondence to this author. e-mail: moridi@cornell.edu
Get access

Abstract

The disruptive potential of additive manufacturing (AM) relies on its ability to make customized products with considerable weight savings through geometries that are difficult or impossible to produce by conventional methods. Despite its versatility, applications of AM have been restricted due to the formation of columnar grains, resulting in solidification defects and anisotropy in properties. To achieve fine equiaxed grains in AM, alloy design and solidification conditions have been optimized in various alloy systems. In this review paper, the microstructure of high-entropy alloy (HEA) parts produced by selective laser melting and powder-based directed energy deposition is investigated. Solidification maps based on laser process parameters (as opposed to most commonly used solidification velocity and temperature gradient) are constructed by compiling available literature for single-phase face-centered cubic, body-centered cubic, and multiphase HEAs. These maps could guide printing of HEAs and provide an insight into the design of novel HEAs for AM.

Type
REVIEW
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bleck, W.: New Methods in Steel Design. Keynote Lect. Eur. Steel Technol. Appl. Days, ESTAD, Düsseldorf, Deutschl. 15 (2015).Google Scholar
Yeh, J., Chen, S., Lin, S., Gan, J., Chin, T., Shun, T., Tsau, C., and Chang, S.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).CrossRefGoogle Scholar
Cantor, B., Chang, I.T.H., Knight, P., and Vincent, A.J.B.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375, 213 (2004).CrossRefGoogle Scholar
Tasan, C.C., Deng, Y., Pradeep, K.G., Yao, M.J., Springer, H., and Raabe, D.: Composition dependence of phase stability, deformation mechanisms, and mechanical properties of the CoCrFeMnNi high-entropy alloy system. JOM 66, 1993 (2014).CrossRefGoogle Scholar
Deng, Y., Tasan, C.C., Pradeep, K.G., Springer, H., Kostka, A., and Raabe, D.: Design of a twinning-induced plasticity high entropy alloy. Acta Mater. 94, 124 (2015).CrossRefGoogle Scholar
Lu, W., Liebscher, C.H., Dehm, G., Raabe, D., and Li, Z.: Bidirectional transformation enables hierarchical nanolaminate dual-phase high-entropy alloys. Adv. Mater. 30, 1804727 (2018).CrossRefGoogle ScholarPubMed
Gludovatz, B., Hohenwarter, A., Thurston, K.V.S., Bei, H., Wu, Z., George, E.P., and Ritchie, R.O.: Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat. Commun. 7, 10602 (2016).CrossRefGoogle ScholarPubMed
Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and O, R.: Ritchie: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).CrossRefGoogle ScholarPubMed
Yao, M.J., Pradeep, K.G., Tasan, C.C., and Raabe, D.: A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scr. Mater. 72, 5 (2014).CrossRefGoogle Scholar
Li, Z., Pradeep, K.G., Deng, Y., Raabe, D., and Tasan, C.C.: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534, 227 (2016).CrossRefGoogle ScholarPubMed
Miracle, D.B. and Senkov, O.N.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).CrossRefGoogle Scholar
Tsai, M.H. and Yeh, J.W.: High-entropy alloys: A critical review. Mater. Res. Lett. 2, 107 (2014).CrossRefGoogle Scholar
Ye, Y.F., Wang, Q., Lu, J., Liu, C.T., and Yang, Y.: High-entropy alloy: Challenges and prospects. Mater. Today 19, 349 (2016).10.1016/j.mattod.2015.11.026CrossRefGoogle Scholar
Guo, S. and Liu, C.T.: Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog. Nat. Sci. Mater. Int. 21, 433 (2011).CrossRefGoogle Scholar
Sohn, S.S., Kwiatkowski da Silva, A., Ikeda, Y., Körmann, F., Lu, W., Choi, W.S., Gault, B., Ponge, D., Neugebauer, J., and Raabe, D.: Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion. Adv. Mater. 31, 1807142 (2019).CrossRefGoogle ScholarPubMed
Li, Z. and Raabe, D.: Strong and ductile non-equiatomic high-entropy alloys: Design, processing, microstructure, and mechanical properties. JOM 69, 2099 (2017).CrossRefGoogle ScholarPubMed
Laplanche, G., Kostka, A., Reinhart, C., Hunfeld, J., Eggeler, G., and George, E.P.: Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi. Acta Mater. 128, 292 (2017).CrossRefGoogle Scholar
Zhang, Z., Sheng, H., Wang, Z., Gludovatz, B., Zhang, Z., George, E.P., Yu, Q., Mao, S.X., and Ritchie, R.O.: Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy. Nat. Commun. 8, 14390 (2017).CrossRefGoogle ScholarPubMed
Gali, A. and George, E.P.: Tensile properties of high- and medium-entropy alloys. Intermetallics 39, 74 (2013).CrossRefGoogle Scholar
Tsai, K.-Y., Tsai, M.-H., and Yeh, J.-W.: Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater. 61, 4887 (2013).CrossRefGoogle Scholar
Tong, Z., Ren, X., Jiao, J., Zhou, W., Ren, Y., Ye, Y., Larson, E.A., and Gu, J.: Laser additive manufacturing of FeCrCoMnNi high-entropy alloy: Effect of heat treatment on microstructure, residual stress and mechanical property. J. Alloys Compd. 785, 1144 (2019).CrossRefGoogle Scholar
Oh, H., Ma, D., Leyson, G., Grabowski, B., Park, E., Körmann, F., and Raabe, D.: Lattice distortions in the FeCoNiCrMn high entropy alloy studied by theory and experiment. Entropy 18, 321 (2016).CrossRefGoogle Scholar
Wang, F.J., Zhang, Y., and Chen, G.L.: Atomic packing efficiency and phase transition in a high entropy alloy. J. Alloys Compd. 478, 321 (2009).CrossRefGoogle Scholar
Zhang, K.B., Fu, Z.Y., Zhang, J.Y., Wang, W.M., Wang, H., Wang, Y.C., Zhang, Q.J., and Shi, J.: Microstructure and mechanical properties of CoCrFeNiTiAlx high-entropy alloys. Mater. Sci. Eng. A 508, 214 (2009).CrossRefGoogle Scholar
Li, B.S., Wang, Y.P., Ren, M.X., Yang, C., and Fu, H.Z.: Effects of Mn, Ti and V on the microstructure and properties of AlCrFeCoNiCu high entropy alloy. Mater. Sci. Eng. A 498, 482 (2008).CrossRefGoogle Scholar
Peyrouzet, F., Hachet, D., Soulas, R., Navone, C., Godet, S., and Gorsse, S.: Selective laser melting of Al0.3CoCrFeNi high-entropy alloy: Printability, microstructure, and mechanical properties. JOM 71, 3443 (2019).CrossRefGoogle Scholar
Zhou, P.F., Xiao, D.H., Wu, Z., and Ou, X.Q.: Al0.5FeCoCrNi high entropy alloy prepared by selective laser melting with gas-atomized pre-alloy powders. Mater. Sci. Eng. A 739, 86 (2019).CrossRefGoogle Scholar
Niu, P.D., Li, R.D., Yuan, T.C., Zhu, S.Y., Chen, C., Wang, M.B., and Huang, L.: Microstructures and properties of an equimolar AlCoCrFeNi high entropy alloy printed by selective laser melting. Intermetallics 104, 24 (2019).CrossRefGoogle Scholar
Wang, W.-R., Wang, W.-L., Wang, S.-C., Tsai, Y.-C., Lai, C.-H., and Yeh, J.-W.: Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics 26, 44 (2012).CrossRefGoogle Scholar
Zhou, Y.J., Zhang, Y., Wang, Y.L., and Chen, G.L.: Solid solution alloys of AlCoCrFe NiTix with excellent room-temperature mechanical properties. Appl. Phys. Lett. 90, 181904 (2007).CrossRefGoogle Scholar
Tong, C.-J., Chen, M.-R., Yeh, J.-W., Lin, S.-J., Chen, S.-K., Shun, T.-T., and Chang, S.-Y.: Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 1263 (2005).CrossRefGoogle Scholar
Manzoni, A., Daoud, H., Völkl, R., Glatzel, U., and Wanderka, N.: Phase separation in equiatomic AlCoCrFeNi high-entropy alloy. Ultramicroscopy 132, 212 (2013).CrossRefGoogle ScholarPubMed
Welk, B.A., Williams, R.E.A., Viswanathan, G.B., Gibson, M.A., Liaw, P.K., and Fraser, H.L.: Nature of the interfaces between the constituent phases in the high entropy alloy CoCrCuFeNiAl. Ultramicroscopy 134, 193 (2013).CrossRefGoogle ScholarPubMed
Tong, C.-J., Chen, Y.-L., Yeh, J.-W., Lin, S.-J., Chen, S.-K., Shun, T.-T., Tsau, C.-H., and Chang, S.-Y.: Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 881 (2005).CrossRefGoogle Scholar
Bewlay, B.P., Lewandowksi, J.J., and Jackson, M.R.: Refractory metal-intermetallic in-situ composites for aircraft engines. JOM 49, 44 (1997).CrossRefGoogle Scholar
Senkov, O.N., Gorsse, S., and Miracle, D.B.: High temperature strength of refractory complex concentrated alloys. Acta Mater. 175, 394 (2019).CrossRefGoogle Scholar
Senkov, O.N., Miracle, D.B., Chaput, K.J., and Couzinie, J.-P.: Development and exploration of refractory high entropy alloys—A review. J. Mater. Res. 33, 3092 (2018).CrossRefGoogle Scholar
Greer, J.R. and Park, J.: Additive manufacturing of nano- and microarchitected materials. Nano Lett. 18, 2187 (2018).CrossRefGoogle ScholarPubMed
Cui, H., Hensleigh, R., Chen, H., and Zheng, X.: Additive manufacturing and size-dependent mechanical properties of three-dimensional microarchitected, high-temperature ceramic metamaterials. J. Mater. Res. 33, 360 (2018).CrossRefGoogle Scholar
Yang, Y., Li, X., Chu, M., Sun, H., Jin, J., Yu, K., Wang, Q., Zhou, Q., and Chen, Y.: Electrically assisted 3D printing of nacre-inspired structures with self-sensing capability. Sci. Adv. 5, eaau9490 (2019).CrossRefGoogle ScholarPubMed
Frazier, W.E.: Metal additive manufacturing: A review.J. Mater. Eng. Perform.23, 1917 (2014).CrossRefGoogle Scholar
Guo, N. and Leu, M.C.: Additive manufacturing: Technology, applications and research needs.Front. Mech. Eng. 8, 215 (2013).CrossRefGoogle Scholar
Gorsse, S., Hutchinson, C., Gouné, M., and Banerjee, R.: Additive manufacturing of metals: A brief review of the characteristic microstructures and properties of steels, Ti-6Al-4 V and high-entropy alloys. Sci. Technol. Adv. Mater. 18, 584 (2017).CrossRefGoogle Scholar
Sames, W.J., List, F.A., Pannala, S., Dehoff, R.R., and Babu, S.S.: The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 61, 315 (2016).CrossRefGoogle Scholar
Haines, M., Plotkowski, A., Frederick, C.L., Schwalbach, E.J., and Babu, S.S.: A sensitivity analysis of the columnar-to-equiaxed transition for Ni-based superalloys in electron beam additive manufacturing. Comput. Mater. Sci. 155, 340 (2018).CrossRefGoogle Scholar
Dass, A. and Moridi, A.: State of the art in directed energy deposition: From additive manufacturing to materials design. Coatings 9, 418 (2019).CrossRefGoogle Scholar
Moridi, A., Demir, A.G., Caprio, L., Hart, A.J., Previtali, B., and Colosimo, B.M.: Deformation and failure mechanisms of Ti–6Al–4 V as built by selective laser melting. Mater. Sci. Eng. A 768, 138456 (2019).CrossRefGoogle Scholar
Herzog, D., Seyda, V., Wycisk, E., and Emmelmann, C.: Additive manufacturing of metals. Acta Mater. 117, 371 (2016).10.1016/j.actamat.2016.07.019CrossRefGoogle Scholar
Kumar, S., Choudhary, A.K.S., Singh, A.K., Gupta, A.K., Kumar, S., Choudhary, A.K.S., Singh, A.K., and Gupta, A.K.: A comparison of additive manufacturing technologies. Int. J. Innov. Res. Sci. Technol. 3, 6 (2016).Google Scholar
DebRoy, T., Wei, H.L., Zuback, J.S., Mukherjee, T., Elmer, J.W., Milewski, J.O., Beese, A.M., Wilson-Heid, A., De, A., and Zhang, W.: Additive manufacturing of metallic components – Process, structure and properties. Prog. Mater. Sci. 92, 112 (2018).CrossRefGoogle Scholar
Dobbelstein, H., Gurevich, E.L., George, E.P., Ostendorf, A., and Laplanche, G.: Laser metal deposition of compositionally graded TiZrNbTa refractory high-entropy alloys using elemental powder blends. Addit. Manuf. 25, 252 (2019).Google Scholar
Martin, J.H., Yahata, B.D., Hundley, J.M., Mayer, J.A., Schaedler, T.A., and Pollock, T.M.: 3D printing of high-strength aluminium alloys. Nature 549, 365 (2017).CrossRefGoogle ScholarPubMed
Collins, P.C., Brice, D.A., Samimi, P., Ghamarian, I., and Fraser, H.L.: Microstructural control of additively manufactured metallic materials. Annu. Rev. Mater. Res. 46, 63 (2016).CrossRefGoogle Scholar
Rappaz, M., Drezet, J.-M., and Gremaud, M.: A new hot-tearing criterion. Metall. Mater. Trans. A 30, 449 (1999).CrossRefGoogle Scholar
Coniglio, N. and Cross, C.E.: Initiation and growth mechanisms for weld solidification cracking. Int. Mater. Rev. 58, 375 (2013).CrossRefGoogle Scholar
Lewandowski, J.J., and Seifi, M.: Metal additive manufacturing: A review of mechanical properties. Annu. Rev. Mater. Res. 46, 151 (2016).CrossRefGoogle Scholar
Li, B., Qian, B., Xu, Y., Liu, Z., and Xuan, F.: Fine-structured CoCrFeNiMn high-entropy alloy matrix composite with 12 wt% TiN particle reinforcements via selective laser melting assisted additive manufacturing. Mater. Lett. 252, 88 (2019).CrossRefGoogle Scholar
Bermingham, M.J., StJohn, D.H., Krynen, J., Tedman-Jones, S., and Dargusch, M.S.: Promoting the columnar to equiaxed transition and grain refinement of titanium alloys during additive manufacturing. Acta Mater. 168, 261 (2019).CrossRefGoogle Scholar
Easton, M.A. and StJohn, D.H.: A model of grain refinement incorporating alloy constitution and potency of heterogeneous nucleant particles. Acta Mater. 49, 1867 (2001).CrossRefGoogle Scholar
Yang, K.V., Shi, Y., Palm, F., Wu, X., and Rometsch, P.: Columnar to equiaxed transition in Al-Mg(-Sc)-Zr alloys produced by selective laser melting. Scr. Mater. 145, 113 (2018).CrossRefGoogle Scholar
Liu, S., Zhu, H., Peng, G., Yin, J., and Zeng, X.: Microstructure prediction of selective laser melting AlSi10Mg using finite element analysis. Mater. Des. 142, 319 (2018).CrossRefGoogle Scholar
Wang, Z., Palmer, T.A., and Beese, A.M.: Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing. Acta Mater. 110, 226 (2016).CrossRefGoogle Scholar
Wu, X., Liang, J., Mei, J., Mitchell, C., Goodwin, P.S., and Voice, W.: Microstructures of laser-deposited Ti–6Al–4V. Mater. Des. 25, 137 (2004).CrossRefGoogle Scholar
Spittle, J.A.: Columnar to equiaxed grain transition in as solidified alloys. Int. Mater. Rev. 51, 247 (2006).CrossRefGoogle Scholar
Kurz, W., Bezencon, C., and Gäumann, M.: Columnar to equiaxed transition in solidification processing. Sci. Technol. Adv. Mater. 2, 185 (2001).CrossRefGoogle Scholar
Kobryn, P.A. and Semiatin, S.L.: Microstructure and texture evolution during solidification processing of Ti–6Al–4V. J. Mater. Process. Technol. 135, 330 (2003).CrossRefGoogle Scholar
Blecher, J.J., Palmer, T.A., and DebRoy, T.: Solidification map of a nickel-base alloy. Metall. Mater. Trans. A 45, 2142 (2014).CrossRefGoogle Scholar
Rosenthal, D.: The theory of moving source of heat and its application to metals. Trans. ASME 43, 849 (1946).Google Scholar
Cline, H.E. and Anthony, T.: Heat treating and melting material with a scanning laser or electron beam. J. Appl. Phys. 48, 3895 (1977).CrossRefGoogle Scholar
Picasso, M., Marsden, C.F., Wagniere, J.D., Frenk, A., and Rappaz, M.: A simple but realistic model for laser cladding. Metall. Mater. Trans. B 25, 281 (1994).CrossRefGoogle Scholar
Nordin, M.C., Edwards, G.R., and Olson, D.L.: The Influence of Yttrium Microadditions on Titanium Weld Metal Cracking Susceptibility and Grain Morphology (Center for Welding Research, Colorado School of Mines, Golden, CO, 1985).Google Scholar
Gäumann, M., Henry, S., Cléton, F., Wagniere, J.-D., and Kurz, W.: Epitaxial laser metal forming: Analysis of microstructure formation. Mater. Sci. Eng. A 271, 232 (1999).CrossRefGoogle Scholar
Promoppatum, P., Yao, S.C., Pistorius, P.C., and Rollett, A.D.: A comprehensive comparison of the analytical and numerical prediction of the thermal history and solidification microstructure of Inconel 718 products made by laser powder-bed fusion. Engineering 3, 685 (2017).CrossRefGoogle Scholar
Rodriguez, E., Mireles, J., Terrazas, C.A., Espalin, D., Perez, M.A., and Wicker, R.B.: Approximation of absolute surface temperature measurements of powder bed fusion additive manufacturing technology using in situ infrared thermography. Addit. Manuf. 5, 31 (2015).Google Scholar
Kenel, C., Grolimund, D., Fife, J.L., Samson, V.A., Van Petegem, S., Van Swygenhoven, H., and Leinenbach, C.: Combined in situ synchrotron micro X-ray diffraction and high-speed imaging on rapidly heated and solidified Ti–48Al under additive manufacturing conditions. Scr. Mater. 114, 117 (2016).CrossRefGoogle Scholar
Murphy, R.D. and Forrest, E.C.: A Review of In-Situ Temperature Measurements for Additive Manufacturing Technologies (Sandia National Lab. SNL, Albuquerque, NM, USA, 2016).Google Scholar
Price, S., Lydon, J., Cooper, K., and Chou, K.: Experimental temperature analysis of powder-based electron beam additive manufacturing, In 24th Annu. Int. Solid Free. Fabr. Symp. Austin, TX, 2013; pp. 162–173.Google Scholar
Günther, J., Brenne, F., Droste, M., Wendler, M., Volkova, O., Biermann, H., and Niendorf, T.: Design of novel materials for additive manufacturing – Isotropic microstructure and high defect tolerance. Sci. Rep. 8, 1298 (2018).CrossRefGoogle ScholarPubMed
Qian, L., Mei, J., Liang, J., and Wu, X.: Influence of position and laser power on thermal history and microstructure of direct laser fabricated Ti–6Al–4 V samples. Mater. Sci. Technol. 21, 597 (2005).CrossRefGoogle Scholar
Manvatkar, V., De, A., and DebRoy, T.: Heat transfer and material flow during laser assisted multi-layer additive manufacturing. J. Appl. Phys. 116, 124905 (2014).CrossRefGoogle Scholar
Gu, D., Hagedorn, Y.-C., Meiners, W., Meng, G., Batista, R.J.S., Wissenbach, K., and Poprawe, R.: Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium. Acta Mater. 60, 3849 (2012).CrossRefGoogle Scholar
Li, R., Niu, P., Yuan, T., Cao, P., Chen, C., and Zhou, K.: Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical property. J. Alloys Compd. 746, 125 (2018).CrossRefGoogle Scholar
Guo, J., Goh, M., Zhu, Z., Lee, X., Nai, M.L.S., and Wei, J.: On the machining of selective laser melting CoCrFeMnNi high-entropy alloy. Mater. Des. 153, 211 (2018).CrossRefGoogle Scholar
Zhu, Z.G., Nguyen, Q.B., Ng, F.L., An, X.H., Liao, X.Z., Liaw, P.K., Nai, S.M.L., and Wei, J.: Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting. Scr. Mater. 154, 20 (2018).CrossRefGoogle Scholar
Brif, Y., Thomas, M., and Todd, I.: The use of high-entropy alloys in additive manufacturing. Scr. Mater. 99, 93 (2015).CrossRefGoogle Scholar
Sun, Z., Tan, X.P., Descoins, M., Mangelinck, D., Tor, S.B., and Lim, C.S.: Revealing hot tearing mechanism for an additively manufactured high-entropy alloy via selective laser melting. Scr. Mater. 168, 129 (2019).CrossRefGoogle Scholar
Zhu, Z.G., An, X.H., Lu, W.J., Li, Z.M., Ng, F.L., Liao, X.Z., Ramamurty, U., Nai, S.M.L., and Wei, J.: Selective laser melting enabling the hierarchically heterogeneous microstructure and excellent mechanical properties in an interstitial solute strengthened high entropy alloy. Mater. Res. Lett. 7, 453 (2019).CrossRefGoogle Scholar
Peyrouzet, F., Hachet, D., Soulas, R., Navone, C., Godet, S., and Gorsse, S.: Selective Laser Melting of Al0.3CoCrFeNi high-entropy alloy: Printability, microstructure, and mechanical properties. JOM 71, 3443 (2019).CrossRefGoogle Scholar
Luo, S., Gao, P., Yu, H., Yang, J., Wang, Z., and Zeng, X.: Selective laser melting of an equiatomic AlCrCuFeNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical behavior. J. Alloys Compd. 771, 387 (2019).CrossRefGoogle Scholar
Karlsson, D., Marshal, A., Johansson, F., Schuisky, M., Sahlberg, M., Schneider, J.M., and Jansson, U.: Elemental segregation in an AlCoCrFeNi high-entropy alloy – A comparison between selective laser melting and induction melting. J. Alloys Compd. 784, 195 (2019).CrossRefGoogle Scholar
Zhang, H., Xu, W., Xu, Y., Lu, Z., and Li, D.: The thermal-mechanical behavior of WTaMoNb high-entropy alloy via selective laser melting (SLM): Experiment and simulation. Int. J. Adv. Manuf. Technol. 96, 461 (2018).CrossRefGoogle Scholar
Zhang, H., Zhao, Y., Huang, S., Zhu, S., Wang, F., and Li, D.: Manufacturing and analysis of high-performance refractory high-entropy alloy via selective laser melting (SLM). Materials (Basel) 12, 720 (2019).CrossRefGoogle Scholar
Zhou, R., Liu, Y., Zhou, C., Li, S., Wu, W., Song, M., Liu, B., Liang, X., and Liaw, P.K.: Microstructures and mechanical properties of C-containing FeCoCrNi high-entropy alloy fabricated by selective laser melting. Intermetallics 94, 165 (2018).CrossRefGoogle Scholar
Wu, W., Zhou, R., Wei, B., Ni, S., Liu, Y., and Song, M.: Nanosized precipitates and dislocation networks reinforced C-containing CoCrFeNi high-entropy alloy fabricated by selective laser melting. Mater. Charact. 144, 605 (2018).CrossRefGoogle Scholar
Park, J.M., Choe, J., Kim, J.G., Bae, J.W., Moon, J., Yang, S., Kim, K.T., Yu, J.H., and Kim, H.S.: Superior tensile properties of 1% C-CoCrFeMnNi high-entropy alloy additively manufactured by selective laser melting. Mater. Res. Lett 8, 1 (2019).CrossRefGoogle Scholar
Fujieda, T., Chen, M., Shiratori, H., Kuwabara, K., Yamanaka, K., Koizumi, Y., Chiba, A., and Watanabe, S.: Mechanical and corrosion properties of CoCrFeNiTi-based high-entropy alloy additive manufactured using selective laser melting. Addit. Manuf. 25, 412 (2019).Google Scholar
Yao, H., Tan, Z., He, D., Zhou, Z., Zhou, Z., Xue, Y., Cui, L., Chen, L., Wang, G., and Yang, Y.: High strength and ductility AlCrFeNiV high entropy alloy with hierarchically heterogeneous microstructure prepared by selective laser melting. J. Alloys Compd. 813, 152196 (2020).CrossRefGoogle Scholar
Ashby, M.F.: Materials selection in mechanical design. Metall. Ital. 86, 475 (1994).Google Scholar
Dobbelstein, H., Thiele, M., Gurevich, E.L., George, E.P., and Ostendorf, A.: Direct metal deposition of refractory high entropy alloy MoNbTaW. Phys. Procedia 83, 624 (2016).CrossRefGoogle Scholar
v Müller, A., Schlick, G., Neu, R., Anstätt, C., Klimkait, T., Lee, J., Pascher, B., Schmitt, M., and Seidel, C.: Additive manufacturing of pure tungsten by means of selective laser beam melting with substrate preheating temperatures up to 1000°C. Nucl. Mater. Energy 19, 184 (2019).CrossRefGoogle Scholar
Iveković, A., Omidvari, N., Vrancken, B., Lietaert, K., Thijs, L., Vanmeensel, K., Vleugels, J., and Kruth, J.-P.: Selective laser melting of tungsten and tungsten alloys. Int. J. Refract. Met. Hard Mater. 72, 27 (2018).CrossRefGoogle Scholar
Korchuganov, A.V., and Lutsenko, I.S.: Molecular dynamics research of mechanical, diffusion and thermal properties of CoCrFeMnNi high-entropy alloys.AIP Conf. Proc. 2053, 040046.(2018).CrossRefGoogle Scholar
ASM Material Data Sheet: Ti-6Al-4V (Grade 5, Annealed). Available at: http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MTP641 (accessed June 8, 2020).Google Scholar
ASM Material Data Sheet: Inconel 625. Available at: http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=NINC33 (accessed June 8, 2020).Google Scholar
Nie, P., Ojo, O.A., and Li, Z.: Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel-based superalloy. Acta Mater. 77, 85 (2014).CrossRefGoogle Scholar
ASM Material Data Sheet: AISI Type 316L Stainless steel (Annealed bar). Available at: http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MQ316Q (accessed June 8, 2020).Google Scholar
ASM Material Data Sheet: AISI Type 304 Stainless steel. Available at: http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=mq304a (accessed June 8, 2020).Google Scholar
Hunt, J.D.: Steady state columnar and equiaxed growth of dendrites and eutectic. Mater. Sci. Eng. 65, 75 (1984).CrossRefGoogle Scholar
Davies, G.J. and Garland, J.G.: Solidification structures and properties of fusion welds. Int. Metall. Rev. 20, 83 (1975).CrossRefGoogle Scholar
Chew, Y., Bi, G.J., Zhu, Z.G., Ng, F.L., Weng, F., Liu, S.B., Nai, S.M.L., and Lee, B.Y.: Microstructure and enhanced strength of laser aided additive manufactured CoCrFeNiMn high entropy alloy. Mater. Sci. Eng. A 744, 137 (2019).CrossRefGoogle Scholar
Gao, X. and Lu, Y.: Laser 3D printing of CoCrFeMnNi high-entropy alloy. Mater. Lett. 236, 77 (2019).CrossRefGoogle Scholar
Haase, C., Tang, F., Wilms, M.B., Weisheit, A., and Hallstedt, B.: Combining thermodynamic modeling and 3D printing of elemental powder blends for high-throughput investigation of high-entropy alloys – Towards rapid alloy screening and design. Mater. Sci. Eng. A 688, 180 (2017).CrossRefGoogle Scholar
Laurent-Brocq, M., Akhatova, A., Perrière, L., Chebini, S., Sauvage, X., Leroy, E., and Champion, Y.: Insights into the phase diagram of the CrMnFeCoNi high entropy alloy. Acta Mater. 88, 355 (2015).CrossRefGoogle Scholar
Ocelik, V., Janssen, N., Smith, S.N., and De Hosson, J.T.M.: Additive manufacturing of high-entropy alloys by laser processing. JOM 68, 1810 (2016).CrossRefGoogle Scholar
Borkar, T., Gwalani, B., Choudhuri, D., Mikler, C.V., Yannetta, C.J., Chen, X., Ramanujan, R.V., Styles, M.J., Gibson, M.A., and Banerjee, R.: A combinatorial assessment of AlxCrCuFeNi2 (0 < x < 1.5) complex concentrated alloys: Microstructure, microhardness, and magnetic properties. Acta Mater. 116, 63 (2016).CrossRefGoogle Scholar
Choudhuri, D., Alam, T., Borkar, T., Gwalani, B., Mantri, A.S., Srinivasan, S.G., Gibson, M.A., and Banerjee, R.: Formation of a Huesler-like L21 phase in a CoCrCuFeNiAlTi high-entropy alloy. Scr. Mater. 100, 36 (2015).CrossRefGoogle Scholar
Strutt, P.R., Polvani, R.S., and Ingram, J.C.: Creep behavior of the Heusler type structure alloy Ni2AlTi. Metall. Trans. A 7, 23 (1976).CrossRefGoogle Scholar
Joseph, J., Jarvis, T., Wu, X., Stanford, N., Hodgson, P., and Fabijanic, D.M.: Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted AlxCoCrFeNi high entropy alloys. Mater. Sci. Eng. A 633, 184 (2015).CrossRefGoogle Scholar
Tang, Z., Gao, M.C., Diao, H., Yang, T., Liu, J., Zuo, T., Zhang, Y., Lu, Z., Cheng, Y., Zhang, Y., Dahmen, K.A., Liaw, P.K., and Egami, T.: Aluminum alloying effects on lattice types, microstructures, and mechanical behavior of high-entropy alloys systems. JOM 65, 1848 (2013).CrossRefGoogle Scholar
Kunce, I., Polanski, M., and Bystrzycki, J.: Microstructure and hydrogen storage properties of a TiZrNbMoV high entropy alloy synthesized using Laser Engineered Net Shaping (LENS). Int. J. Hydrog. Energy 39, 9904 (2014).CrossRefGoogle Scholar
Li, X.: Additive manufacturing of advanced multi-component alloys: Bulk metallic glasses and high entropy alloys. Adv. Eng. Mater. 20, 1700874 (2018).CrossRefGoogle Scholar
Katakam, S., Joshi, S.S., Mridha, S., Mukherjee, S., and Dahotre, N.B.: Laser assisted high entropy alloy coating on aluminum: Microstructural evolution. J. Appl. Phys. 116, 104906 (2014).CrossRefGoogle Scholar
Li, Z., Ludwig, A., Savan, A., Springer, H., and Raabe, D.: Combinatorial metallurgical synthesis and processing of high-entropy alloys. J. Mater. Res. 33, 3156 (2018).CrossRefGoogle Scholar
Zhao, J.-C., Jackson, M.R., and Peluso, L.A.: Determination of the Nb–Cr–Si phase diagram using diffusion multiples. Acta Mater. 51, 6395 (2003).CrossRefGoogle Scholar
Han, S.M., Shah, R., Banerjee, R., Viswanathan, G.B., Clemens, B.M., and Nix, W.D.: Combinatorial studies of mechanical properties of Ti–Al thin films using nanoindentation. Acta Mater. 53, 2059 (2005).CrossRefGoogle Scholar
Gokuldoss, P.K., Kolla, S., and Eckert, J.: Additive manufacturing processes: Selective laser melting, electron beam melting and binder jetting-selection guidelines. Materials 10, 672 (2017).CrossRefGoogle ScholarPubMed
Ravi, G.A., Qiu, C., and Attallah, M.M.: Microstructural control in a Ti-based alloy by changing laser processing mode and power during direct laser deposition. Mater. Lett. 179, 104 (2016).CrossRefGoogle Scholar
Shah, K., Pinkerton, A.J., Salman, A., and Li, L.: Effects of melt pool variables and process parameters in laser direct metal deposition of aerospace alloys. Mater. Manuf. Process. 25, 1372 (2010).CrossRefGoogle Scholar
Ning, F., Hu, Y., Liu, Z., Cong, W., Li, Y., and Wang, X.: Ultrasonic vibration-assisted laser engineered net shaping of Inconel 718 parts: A feasibility study. Procedia Manuf. 10, 771 (2017).CrossRefGoogle Scholar
Chen, X., Sparks, T., Ruan, J., and Liou, F.: Study of ultrasonic vibration laser metal deposition process. In ASME/ISCIE 2012 Int. Symp. Flex. Autom. ISFA, American Society of Mechanical Engineers (ASME), St. Louis, MO, 445 (2012).Google Scholar
Cong, W. and Ning, F.: A fundamental investigation on ultrasonic vibration-assisted laser engineered net shaping of stainless steel. Int. J. Mach. Tools Manuf. 121, 61 (2017).CrossRefGoogle Scholar
Parimi, L.L., Ravi, G., Clark, D., and Attallah, M.M.: Microstructural and texture development in direct laser fabricated IN718. Mater. Charact. 89, 102 (2014).CrossRefGoogle Scholar
Liu, X.W., Liu, L., Liu, G., Wu, X.X., Lu, D.H., Yao, J.Q., Jiang, W.M., Fan, Z.T., and Zhang, W.B.: The role of carbon in grain refinement of cast CrFeCoNi high-entropy alloys. Metall. Mater. Trans. A 49, 2151 (2018).CrossRefGoogle Scholar
Liu, X.W., Laplanche, G., Kostka, A., Fries, S.G., Pfetzing-Micklich, J., Liu, G., and George, E.P.: Columnar to equiaxed transition and grain refinement of cast CrCoNi medium-entropy alloy by microalloying with titanium and carbon. J. Alloys Compd. 775, 1068 (2019).CrossRefGoogle Scholar
Shukla, S., Wang, T., Frank, M., Agrawal, P., Sinha, S., Mirshams, R.A., and Mishra, R.S.: Friction stir gradient alloying: A novel solid-state high throughput screening technique for high entropy alloys. Mater. Today Commun. 23, 100869 (2020).CrossRefGoogle Scholar