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Maximizing the Index of Trees with Given
Domination Number

Guangquan Guo and Guoping Wang

Abstract. The index of a graph G is the maximum eigenvalue of its adjacency matrix A(G). In this
paper we characterize the extremal tree with given domination number that attains the maximum
index.

1 Introduction

Suppose that G = (V, E) is a simple graph on n vertices and that A(G) is the adja-
cency matrix of G. Since A(G) is symmetric, we can write its eigenvalues as ρ1(G) ≥
ρ2(G) ≥ · · · ≥ ρn(G), where ρ1(G) is also the spectral radius (or index) of G. If G is
connected, then, by the Perron–Frobenius Theorem, ρ1(G) is simple and has a unique
positive unit eigenvector x(G) =

(
xv1 (G), xv2 (G), . . . , xvn (G)

)
T , where xvi (G) corre-

sponds to the vertex vi (i = 1, 2, . . . , n). We shall refer to such an eigenvector as the
principal eigenvector of A(G).

The investigation on the index of graphs is an important topic in the theory of
graph spectra. Recently, the problem concerning graphs with maximal index of a
given class of graphs has been studied by many authors. J. Guo and S. Tan [2] studied
the index of trees. B. Wu, E. Xiao and Y. Hong [5] obtained the index of trees on n
vertices with k pendant vertices. J. Guo and J. Shao [3] characterized the index of trees
with fixed diameter. G. Xu [6] determined the index of trees with perfect matchings.

A subset S of V is a dominating set of G if for each v ∈ V\S, there exists a vertex
u ∈ S such that v is adjacent to u. If u ∈ S then u is a dominating vertex. The
domination number of G is the minimum cardinality of a dominating set of G. In [1],
L. Feng, G. Yu and Q. Li studied the Laplacian spectral radius of trees on n vertices
with domination number γ, where n = kγ, k ≥ 2 is an integer, and determined the
extremal tree that attains the minimal Laplacian spectral radius when γ = 2, 3, 4.

In this paper we characterize the extremal tree with given domination number
that attains the maximum index.
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2 Main Results

Throughout this paper we write ρ(G) for ρ1(G), and let NG(v) denote the set of neigh-
bors of vertex v in graph G and γ(G) denote the domination number of G.

Lemma 2.1 [5] Let u and v be two vertices of graph G. Suppose v1, v2, . . . , vs ∈
NG(v)\NG(u). Let G be the graph obtained from G by deleting the edges vvi and adding
uvi (1 ≤ i ≤ s). If xu(G) ≥ xv(G), then ρ(G) > ρ(G).

Lemma 2.2 Suppose that G0 is a connected graph with at least two vertices and that
u ∈ V (G0). Let G and G∗ be the graphs shown in Figure 1, where t ≥ 0, s ≥ 1. Then
ρ(G) ≤ ρ(G∗), with equality if and only if G ∼= G∗.
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Figure 1: G and G∗.

Proof We can easily observe that

G−
∑

2≤i≤s
vv1i −

∑
1≤i≤t

vv2i +
∑

2≤i≤s
uv1i +

∑
1≤i≤t

uv2i

and
G−

∑
z∈NG0 (u)

uz +
∑

z∈NG0 (u)
vz

are both isomorphic to G∗. Therefore, whether xu(G) ≥ xv(G) or xv(G) ≥ xu(G), we
always have ρ(G) < ρ(G∗) by Lemma 2.1.
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Figure 2: Tt1,t2,...,tr
v1 ,v2,...,vr and T∗.

A pendant vertex of a graph is a vertex that only has one neighbor, and a pendant
edge of a graph is an edge one of whose ends is a pendant vertex. In what follows we
let Tt1,t2,...,tr

v1,v2,...,vr
be one of the trees as in Figure 2, where

∑
1≤i≤r ti = n − r, and let T∗

denote the tree obtained from the star K1,r−1 by attaching one pendant edge to each
pendant vertex of K1,r−1 and attaching n− 2r + 1 pendant edges to the center vertex
v1 of K1,r−1 as in Figure 2. If T r

n is the set of trees on n vertices with γ(T) = r, then
it is obvious that T∗ ∈ T r

n and Tt1,t2,...,tr
v1,v2,...,vr

⊂ T r
n .
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Lemma 2.3 Let T∗ and Tt1,t2,...,tr
v1,v2,...,vr

be the graphs as above, where ti ≥ 1 (i =
1, 2, . . . , r). If T ∈ Tt1,t2,...,tr

v1,v2,...,vr
, then ρ(T) ≤ ρ(T∗), with equality if and only if T ∼= T∗.

v
1

v
r-2 v

r-1
v

r

Figure 3: T1.

Proof In T, by transferring all but one pendant edge from vr to vr−1, we obtain a
graph T1 as in Figure 3. In T1, by transferring all pendant paths but one pendant
edge from vr−1 to vr−2, we obtain a graph T2. Continuing this process the resulting
graph will be isomorphic to T∗. By Lemma 2.2, we know that ρ(T) < ρ(T∗).

Suppose that G is a connected graph and that e = uv is a non-pendant edge of G
with NG(u)∩NG(v) = ∅. Then we call the process of deleting the edge e, identifying u
with v and adding a pendant edge to u (= v) the DIA-transformation of G for uv, and
denote by DIAuv(G) the resulting graph.

Lemma 2.4 ([4]) Let G be a connected graph and let e = uv be a non-pendant edge
of G with NG(u) ∩ NG(v) = ∅. Then ρ(G) < ρ

(
DIAuv(G)

)
.

Lemma 2.5 Suppose that 1 ≤ r ≤ 3. If T ∈ T r
n , then ρ(T) ≤ ρ(T∗), with equality

if and only if T ∼= T∗.

Proof If T ∈ T 1
n , then T ∼= K1,n−1. It is easily seen that T 2

n contains only the
following three classes of the trees T2

1 ,T
2
2 and T2

3 as in Figure 4.
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Figure 4: T2
i (i = 1, 2, 3).

It is clear that if T2
i+1 ∈ T2

i+1, then there must be some T2
i ∈ T2

i such that
DIAuv(T2

i+1) ∼= T2
i (i = 1, 2). Thus, we have ρ(T2

i+1) < ρ(T2
i ) by Lemma 2.4

(i = 1, 2). From Lemma 2.3 we know that if T ∈ T2
1 , then ρ(T) ≤ ρ(T∗). Therefore,

for any T ∈ T 2
n , ρ(T) ≤ ρ(T∗), with equality if and only if T ∼= T∗.

We can see that T 3
n contains only the following nine classes of the trees in Figure 5:

T3
1 , T3

2 , T3
3 , T3

4 , T3
5 , T3

6 , T3
7 , T3

8 , and T3
9 .
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We can easily see that the following three results are true:

(i) if T3
i ∈ T3

i , then there must be some T3
i−1 ∈ T3

i−1 such that DIAui vi (T3
i ) =

T3
i−1 (i = 5, 6, 8, 9);

(ii) if T3
i ∈ T3

i , then there must be some T3
2 ∈ T3

2 such that DIAui vi (T3
i ) = T3

2

(i = 3, 4);
(iii) if T3

i ∈ T3
i , then there must be some T3

1 ∈ T3
1 such that DIAui vi (T3

i ) = T3
1

(i = 2, 7).
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Figure 5: T3
i (1 ≤ i ≤ 9).

Thus, by Lemma 2.4, we know that if T ∈ T3
i (2 ≤ i ≤ 9), then there must be

some T̃ ∈ T3
1 such that ρ(T) ≤ ρ(T̃). Whereas, for any T ∈ T3

1 , ρ(T) ≤ ρ(T∗) by
Lemma 2.3, we have that if T ∈ T3

i (1 ≤ i ≤ 9), then ρ(T) ≤ ρ(T∗), with equality if
and only if T ∼= T∗.

Theorem 2.6 If T ∈ T r
n , then ρ(T) ≤ ρ(T∗), with equality if and only if T ∼= T∗.

Proof If 1 ≤ r ≤ 3, then by Lemma 2.5, the result is true. So assume r ≥ 4. Now we
choose T0 ∈ T r

n such that ρ(T0) is as large as possible. Let S be one of the minimum
dominating sets of T0. Then we can require that S contains no pendant vertex, since
otherwise we can use its neighbor instead of it. Next we use five facts to characterize S
and thus determine that the tree T0 is isomorphic to T∗.

Fact 1 If v ∈ S, then v is adjacent to at least one pendant vertex.

Suppose on the contrary that there is u ∈ S such that NT0 (u) contains no pendant
vertex. Then there must exist a vertex w ∈ NT0 (u)\S since otherwise S\u is a smaller
dominating set of T0. Let T′ = DIAuw(T0). Then, by Lemma 2.4, ρ(T0) < ρ(T′).
Since S is clearly also a dominating set of T′, we have γ(T′) ≤ r. Suppose that S′

is one of the minimum dominating sets of T′. Then |S′| = γ(T′). If |S′| = r, then
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T′ ∈ T r
n , which contradicts the maximality of ρ(T0); if |S′| ≤ r − 2, then since

S′ ∪{w} is a dominating set of T0 with |S′ ∪{w}| ≤ r− 1, we obtain a contradiction
with the fact that γ(T0) = r. Now we suppose that γ(T′) = r − 1.

Let T1 and T2 be two components of T0\uw as in Figure 6.

T′

T2T1

T0

T2T1

w u(=w)u

Figure 6: T0 and T′.

Since the neighbor of a pendant vertex must be a dominating vertex, we have
w = u ∈ S′, and so |S′ ∩V (T1)| = |S ∩V (T1)|. Thus,∣∣S′ ∩ (V (T2)\w

) ∣∣ = ∣∣S ∩ (V (T2)\w
) ∣∣ − 1.

This shows that S =
(

S ∩ V (T1)
)
∪
(

S′ ∩ (V (T2)\w)
)
∪ {w} is another min-

imum dominating set of T0 containing u, whereas |NT0 (u)\S| < |NT0 (u)\S|. If
NT0 (u)\S = ∅, then S\u is also a dominating set of T0, which contradicts the mini-
mality of S; otherwise, continuing the above process we will obtain a minimum dom-
inating set S̃ of T0 containing u such that NT0 (u)\S̃ = ∅. This implies that S̃\u is also
a dominating set of T0, which contradicts the minimality of S.

Fact 2 If v ∈ S, then NT0 (v) only consists of pendant and dominating vertices.

Set N = {y ∈ V (T0) | y is adjacent to a pendant vertex}. Since the neighbor of a
pendant vertex must be a dominating vertex, N ⊆ S. By Fact 1, we know that S ⊆ N.
Thus, we have N = S.

Suppose for a contradiction that u ∈ NT0 (v) is neither a dominating vertex nor a
pendant vertex. Let T′ = DIAvu(T0) and

N ′ = {z ∈ V (T′) | z is adjacent to a pendant vertex}.
Then it is clear that N = N ′. Let S′ be one of the minimum dominating sets of T′

containing no pendant vertex. Then N ′ ⊆ S′. So far, we obtain that S ⊆ S′, that
is, γ(T′) ≥ γ(T0). It has been shown in the proof of Fact 1 that γ(T′) ≤ γ(T0).
Therefore, γ(T′) = γ(T0), which implies that T′ ∈ T r

n . By Lemma 2.4, we have
ρ(T0) < ρ(T′), which contradicts the maximality of ρ(T0).

Fact 3 There is a unique vertex v1 in S such that |NT0 (v1) ∩ S| ≥ 3, and any other
vertex u in S satisfies |NT0 (u) ∩ S| ≤ 2.

If each vertex v ∈ S satisfies |NT0 (v) ∩ S| ≤ 2, then, by Fact 2, T0 is isomorphic to
some tree in Tt1,t2,...,tr

v1,v2,...,vr
. Whereas by Lemma 2.3, ρ(T0) < ρ(T∗), this contradicts the

maximality of ρ(T0). Thus, there must be one vertex v1 such that |NT0 (v1) ∩ S| ≥ 3.
Suppose on the contrary that there is another vertex v2 ∈ S such that |NT0 (v2) ∩

S| ≥ 3. Let PT0 (v1, v2) be the path between v1 and v2 in T0. If xv1 (T0) ≥ xv2 (T0), then
we can choose vertex u ∈

(
NT0 (v2)∩ S

)
\V
(

PT0 (v1, v2)
)

and let T = T0− v2u + v1u;
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and otherwise we choose vertex u ∈
(

NT0 (v1) ∩ S
)
\V
(

PT0 (v1, v2)
)

and let T =

T0− v1u + v2u. Obviously, T ∈ T r
n , and by Lemma 2.1 we have ρ(T0) < ρ(T), which

contradicts the maximality of ρ(T0).

Fact 4 Let v1 be the vertex in Fact 3. If v ∈ S\{v1}, then dT0 (v1, v) = 1.

We choose v2 ∈ S such that dT0 (v1, v2) is maximum. Then |NT0 (v2) ∩ S| = 1. Let
PT0 (v1, v2) = v1w1 · · ·wd−1v2 be the path between v1 and v2 in T0. Then, by Fact 2,
we can determine that for each i, wi ∈ S.

If dT0 (v1, v2) ≥ 2, then in T0, by transferring all but one pendant edge from v2 to
wd−1, we obtain a graph T1

0 . In T1
0 , by transferring all pendant paths but one pendant

edge from wd−1 to wd−2, we obtain a graph T2
0 . Continuing this process results in a

graph isomorphic to T∗. By Lemma 2.2, we know that ρ(T0) < ρ(T∗). Note that
T∗ ∈ T r

n . This contradicts the maximality of ρ(T0).

Fact 5 Let v1 be the vertex in Fact 3. If v ∈ S\{v1}, then NT0 (v) contains only one
pendant vertex.

Suppose on the contrary that there is a vertex v2 ∈ S\{v1} such that NT0 (v2) con-
tains at least two pendant vertices. By transferring all but one pendant edge from v2

to v1, we get a tree T. Clearly,T ∈ T r
n . By Lemma 2.2, we have ρ(T0) < ρ(T). This

contradicts the maximality of ρ(T0).

From the above five facts, we can determine that T0
∼= T∗, as acquired.

It is well known that ρn(G) = −ρ(G) if and only if G is a bipartite graph. Thus,
by Theorem 2.6, we obtain the following.

Theorem 2.7 If T ∈ T r
n , then ρn(T) ≥ ρn(T∗), with equality if and only if T ∼= T∗.
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