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The Jacobi-Perron algorithm and the

algebra of recursive sequences

A.G. Shannon and Leon Bernstein

This paper shows the existence of a one-to-one correspondence
between a certain class of square matrices of arbitrary order
and a related extension field. The elements of these matrices
are obtained from certain basic linear recursive sequences by

means of & generalization of the euclidean algorithm.

1. Introduction

Ward [6] established the existence of a one-to-one correspondence
between a certain class of square matrices of order three (with elements
from the field F of the coefficients of the auxiliary polynomial F(zx)
of a third order recurrence relation) and the field F(a) formed by the
adjunction to F of a root a of F(x) =0 . It is assumed throughout
the paper that F(x) is irreducible in F .

In this paper Ward's results are generalized to sequences of arbitrary
order. The elements of the class of square matrices of arbitrary order are
related to certain basic linear recursive sequences by means of a Jacobi-

Perron algorithm for these elements.

Jacobi-Perron algorithms are generalizations of the euclidean
algorithm and a definition is formulated in Section 5. This particular
algorithm is shown to be periodic, which fact means that the central result
can also be proved by the extensive theory developed in recent years by

Bernstein [2, and elsewhere], to whom the name of the algorithm is due.
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2. Basicdefinitions

We define r 'basic" sequences of order r , {Uéz)} ,

g=1, 2, ..., r , by the recurrence relation

(r) _ ¥ J+1 (r)
(2.1) Ug iy = j£1 (-1) Pr’jUé,n+p_j (n>r)
and the initial terms
(2.2) K)o s

8,n 8,n
(the Kronecker delta), where the Prj are arbitrary integers. The

U(r)

on } also satisfies this recurrence

"primordial" sequence of order »r , {

relation, but has initial terms given by

Uéfi =0, n<1,
(r) _ ¥ m-1 <4 <
(2.3) Up.m = jzl o, 5 1<nsorp.,

where the o, ; are the roots of the auxiliary equation associated with
>

the recurrence relation (2.1).

The first result of interest is

(r) _ § (r)
(2.4) U n = jzl Us ege1

The proof of this follows from (3.1) and Theorem 1. below.

3. Matrices

(r)

Let Mn denote the square matrix of order r
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) ) e
1 ntl "2+l "7 Tp.n+d
U(r) U(r) yir)
(3.1) (r) - | 1,42 T2.ne2 77 r n+2
y{r) (r) o)
l n+r 2,n+1= AR n+r_|
Thus Mér) = Ir , the unit matrix of order r , and
Mi") = : M,
0 0 0 ... 1
n+l
(-1) Pr,r Pr,l

for convenience. Properties (3.2) to (3.5) are easily proved by induction:

(3.2) Mr(lfi = m’(f) = o,
(r),(r) (r) (r) r)
(3.3) M, M= Mr‘nm >
L) M(l") _ f ( )j"‘lP M(I‘)
(3. ntr i1 -1 r,j ntrn-j ?
(r) _ (r),,(r) S
(3.5) u" = gluafnal’ 1snsr.

(r)

(3.2) shows that M, is a particular solution of the matrix difference

equation of order one

(3.6) R, =m .
and (3.4) shows that Mr(l") is a particular solution of

Q = lf (l)'ﬁ»l

L r,j n-g

THEOREM 1. The characteristic function of the matriz Mf,’" is
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r T m+1 r-m
A= 1 (1Y s(e, ny, m)X s
m=1

where s8(r, n, m) is the symmetric function of the roots & of the

auxiliary equation of (2.1) taken m at a time:

s(r,n,m)=2an T (U
.1 Pady .4,

Proof. Suppose that the roots, arj , of the auxiliary equation

associated with the recurrence relation (2.1) are distinct, where
r
F(x)EII [:o-a. =0 .
1

Then the matrix M has »r linearly independent eigenvectors; that is,

there are r distinct roots of the auxiliary equation

0 = det(M-AI) .
“‘This follows because
A -1 o . 0
0 A -1
det (AI-M) =
0 0 0 -1
r
(-1) L A Pr,l

A[A"'l-z» PR ] + (-1)7P
r,1 r

r . .
Ao Y (-1)e AT
# r,d

F(x) ,

so that the eigenvalues of M are the roots, a.r P of the auxiliary
>

equation associated with the recurrence relation. Thus there exists a non-

singular matrix X :

* = i " . -
M dlag(ar,l’ ar,2’ ? ar,QJ
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n
|

MA= = (M*)2
: 2 2 2
dlag[ar,l, ar,2, ooy ar,r]

= x Lfx

- x'lMé")x .
from (3.2). Similarly,
Mx-n = diag[a:’l, a;’z, ceny a?’,r]
= X lM,(f)x .
which implies that the eigenvalues of M’ir) .a.re a:t,j (d=1, ..., ») .

The result then follows from the definition of the characteristic

polynomial of the matrix Mér) .

THEOREM 2.

A
nm+ZA (rm=1)1ZA ]
s(r, n, m) = ] (-1) AilAal... [T Pr:zj

in which Zj)\j =nm.

Proof. For ease of notation we write

T d . [= o
8m_.7'=1 ar’j - o,mi)

and we express 8(r, n, m) in terms of 8,

r
n n - n 1.en 2.1.3# 3
log{[l-ar,lm] [1—(:1.’2::] } = ,jzl [ar’amzar,jx o, T+
or
log(1-8(r, n, 1)x+s(r, n, 2)a® - R -8, - 1‘,32”.1:2 - -;s3nx3 - ...
or
@ (- -]
1- 7 (-1)™(r, n, md" = exp(— ) s”mxm/rm] .
m=1 =1
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Expansion of the right-hand side, the use of the rultinomial theorem and

comparison of coefficients yield

Z{g+1)A, ghighzghs

s(r, n, m) =} (-1) J)\}\r;&‘n3n
; 141272373 AplAa1Ast...

in which m = Zj)\j .

Now MacMahon [5] has shown that

Z(j+l)>\j sa‘lsé‘zsé ves

1)‘12)‘2

P =7 (-1)
r,m 3 3...)1!)\2!)\3!

miiA 12!EA
m = I (1) Atdal. ]_rPJ

in which Zj)\j = m , from which the required result follows.

THEOREM 3. Swppose the eigenvalues of M can be ordered so that

o, 1 corresponds to the eigenvalue of maximum modulus:
>
lar,]_l > |ar’2[ z |a, 3| . -Iar,rl , then
(r) /
lim Ur ntl »,1

N+

(r)

Proof. The eigenvectors xJ. (=1, ..., r) are linearly

independent because the ap P are distinct. 8o we can find constants
k]

by,j By,;#0)
r
NN SRNCON
3:7 i= 1”17 2
where
o) o [yl ) e !
n,J roa+g’ roatd+l® T Trondger-1l]
Set

7,1° qn , 22 Tt nr

Q’(lr) - [q(r') (r) (r)] i
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so that
-t
- 1#aT)
= M'q;
and
)t
= iil by %

since the Otr ¥ are the eigenvalues of M .

T
If x; = [’”11:’ Tpos wees xm.] , then

r
n+l
(r) b, . o + b, (o ./o )" g,
Uy neivk Yy 1,571,k 2, it rst rsd 1,k
UZI‘) r,1 r )n
j+k- . + . Lo /o .
r k-1 by .1k iza bv,,,y( il % 1) T %
- 0O
> ar,l as n N
since Iur,i/ar,ll <1 for =2, ..., . In particular,
(r) (r)
i = 0 .
z_l,f: Ur',n+l Ur,n r,l

THEOREM 4. detq”) = (-1 1280 pere

[ (r) (r) (r) ]
Ur,n+1 Uz-,n+2 tt Ur SN4T
(r) (r) (r)
Qr(‘r) = Ur,n+2 Ur,n+3 T Ur e+l
U(r) (r) (r)
L rutr  routr+tl 77 r,n+2r-1]

Proof. We use induction on n .
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(r) (r) (r)
Upy Upp e Uy
(r) (r) (r)
U U Lo U
detQér) _ |'r,2 r,3 r,r+l
r (r) (r)
Ur,r Ur,r+1 Ur,21=-1
0 0 1
(r)
0 0 Ur,r+l
(r) (r)
1 Ur,r-+1 ‘e UI‘,ZI”—J_
= (-2 s,
1 .
(r) o] (r) | 7% g+l (r)
Up’nj,l (-1) Pr’rup,n + jzl (-1) Pr,jUr,mr-j
-1 .
(r) ™ g T i, (r)
-1 e, U DS 1 Cy T/ ,
de’tQ’(f) _ | rmt2 P,rUrAtl oo r,J ratr-g+1
1 .
(r) r+l (r) S 51 (r)
Ur,n+r oo (22) Pr,r patr-1 M jzl (-1) Pr,jUr,n+2r-j—l
(r) (r) (r)
Ur,n+1 Ur,n+2 e Ur,n
(r) o) o)
(_l)r+lp N ryn+2 rn+3 000 r,n+l
r,r
o) o) (r)
r,nér rontr+l r,n+r-1
(r) (r)
Ur,n Ur,n+l
() y(r)
= (_l)p—l(_l)rﬂp r,n+l r,nt2
r,r
(r) (r)
Ur,n+1‘-l Ur,n+r
_ 2r (r)
= (-1) Pr,rdeth_l .
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(r)

detq, P aeto'?)

r,r n-1

detQ(P)

Pi,r n-2
P
r

,rdeth

- (_l)r(r-l)/zpn
r,r°

as required.

THEOREM 5. A vector solution of the linear diophantine equation

(r (r) (r) -
Ur,n+1xl + Ur*',n+2x2 MERE routr 1
is given by the formula
x = (_l)m+1+r(p-l)/2p—n (m=1, 2 r)
m r,r m,r > Tttt ?

where the Bm p are the cofactors of the elements in the mth rows of the

k]

(r)

determinant Qnr .

Proof.
(r) m+l _ (r)
mzl Ur,n+m(_l) Bm,r = Qet@)
- (_l)r(r-l)/zpn
r,r '
Thus
T ) mel+r(r-1)2_-n
I v (-1) P =1,
ey Tomtm r,r m,r
and so
z = (_1)m+1+r(r-1)/2P-n B
m r,r m,r
r
o (r) -
satisfies Z Ur,n+mxm =1.
m=1

4. Fields

The most general solution of (3.6) is
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WO,O Wl,O WI‘-l,O

WO »1 Wl 1 e WI’—l >1
(h_l) QO = Rp = ’

WO,r-l Wl,r-l Wr*—l,r—l
where WO,O’ ey Wr-—l,r—l are elements of F . Then from (3.3)
and (3-)4)3

_ o (7)
(Lk.2) Rm+n = Mn Rm N
r .

. = _ J+l
(k.3) R o jgl (-1) L A

From (4.2) and (4.3) we obtain:
THEOREM 6. The sequence of matrices {Rn} i8 a particular solution
of the matrix difference equation (3.6), where the value of Ro i8 given

by (b.1), if and only if

WO N Wl A * Wr—l M
Rn WO ?n+1 Wl 2 5 R Wr-l S+l i
WO ntr-1 Wl otr-1 7 Wr-l n+r-1
where the initial values of {Ws,n} > (8=0,1, ..., 1), are given by
Wy or oos ¥g py v

We shall now esteblish an isomorphism between F(&) and a certain

class of matrix with elements in F .

THEQREM 7. The class M of all matrices of the form

https://doi.org/10.1017/50004972700042519 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700042519

Recursive sequences 271

R=2W.Mj,

where Wy, W. are any elements of F , forms a field which is

1> cees Wr—l
simply isomorphic with the field F(a) obtained by adjoining a rocot o of
F(z) =0 to F.

Proof. It is clear from (3.1) and (3.2) that any matrix R of M

can vanish when and only when Wo, W.

(EREEE W vanish.

r-1

M is obviously closed under addition and subtraction; by (3.4) and
(3.2)

r .
Mp= z (—l)J+lPr
1 ’

JYa
J

so that M is closed under multiplication. Furthermore, multiplication is

commutative, and distributive with respect to addition.

Any element p of the field F(a) may be put in the unique canohnical

form
r-1 .
p= Z W.(XJ s
g=o 7
where the Wj are elements of F. Set M and F(a) into one-to-one

correspondence by pairing the elements @ and R for which the WJ. have

the seme values; we write then p VR . Then if pl ~v R

L s P VR

2 3
02 Y R2 , it is easily verified that
+ . . . . + +
PLEP, VR Ry 0t P, VE Ry py(ey2e,) v R (RyR,)
Furthermore, if pp' =1, p~R, p' ~“R' , then RR' =I . Hence M
forms a field simply isomorphic with F(a) .

THEOREM 8. The characteristic equation of any matriz R of M is
the same as the equation which the corresponding element p of F(a)

satisfies in F .

Proof. This follows from Theorem T since p and R have the same

canonical form.
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We write N(p) for the norm of any number p of F(a) , so that from

Theorem 8:
if R~ p , then determinent of R = N(p)
if R~ p # 0 , then adjoint of R ~ N(p)/p since
adjR = FldetR when R is non-singular.

THEOREM 9. Any matrix of order r with elements in F 1is
commutative with M <iff it lies in the field M.

Proof. If a matrix of order r with elements in F 1lies in the
field M then it is commutative with M from Theorem 3. If L is a

matrix of order »r over F commutative with M then

(4.14) M=m , M =ML, ..., Y=Y

There exists a non-singular matrix X which transforms M into the
diagonal form M* as in Theorem 1. By (4.4), X 'LX = L* must also be in

diagonal form. . OtmrI are the diagonal elements of M* from

o o
rl’ r2°

Theorem 1. Suppose that Brl’ Br?’ N are the diagonal elements of

rr
L* .
Now the traces of L*, M*L*, M"2L*, ... are the same as the traces of

L, ML, MzL, ... so that

Tk

.Z arjerj =I{k), k=0,1,2, ..., =1,

J=1
where the I(k) are elements of F . Solving these equations for R

rj
(=1, 2, ..., r) , we find that as in Jarden [4],

Z krj’ i=1,2, ..., 7,
k4

where the Wk are elements of F . Thus
r-1 k
L*= ] WM
=0
and

https://doi.org/10.1017/50004972700042519 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700042519

Recursive sequences 273

L= xprxt

r-1
) WkM*k s
k=0

as required.
THEOREM 10. Let {Rn} denote the sequence of matrices defined in
Theorem 6. Then a necessary and sufficient condition that {Rn} should

lie in M 1is that the sequences {W__}, m=0,1, ..., -2, be

myn

commected by the relations

(4.5) W el

myn+g =¥

m=-1,n+j-1 F

1 r,r-m r-1 ,n+j-1 °

m=0,1, ..., 2 ; 4 =0, $1, 2, ... .

Proof. With the definition of matrix multiplication it is easily seen
that

R M= MR
n n
when and only when the relations (L4.5) hold. The result then follows from
Theorem 9.
Let {Rn} now denote a sequence of matrices the elements of which
satisfy (4.5). Then
r
R =} I(k)M,‘("’) ,
k=0

where the I(k) , k=0,1, ..., =1 , lie in F . By comparing the

elements in the first row of both sides of this identity, we find from the

initiel values MmT), (¥, M?) | that
0 1 1
) = W
so that
r

(r)

R = ) W, M

n =0 ko k

We next examine the sequences {Wm n} which are generalizations of
s
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the second order sequence {wn} studied in detail by Horadam [3, and

elsewhere].

5. Jacobi-Perron algorithm

It follows from Theorem 10 that, if we extend (4.5) so that it is
valid for m=r - 1 , then

(1Y

Wr—j,n+l - (Wr-j+l,n+l/wr-l,n] (-1) Pr,j j=1 »

W 1 = H £

r-l,n+l (Wru2 ,n/Wp—l,n)_(_l) Prl

We set
(n) _ (n) _ J

(5.1) @51 = W gy 808 B0 = (F1)P

. {n) _ . o
so that if aj =0 for g =r, then

(n+1) _ [ (n) ,(n) (n) (n)

(5.2) aj—l = aj 'bj a; - 1
We use the notation En—l to denote the (n-1)-dimensional euclidean

vector space of (n-1)-tuples of real numbers (n = 2) . We shall use the

notation of Bernstein [2],

[a(k) aék), crey a(k)

n—l] - 2R ¢ 5,

1
(k)

for a; €R, 12=1, ..., n-1, and k a non-negative rational integer.

Following Bernstein [2] we define the transformation

T En-l > En—l .
Let
(k)y _ (&) _ [,(K) (k)
fl@™’) =p'" = by™’s «es b, J| €E,
be any vector function on En—l with values in En-l such that

aJ(_k) # bik) ; then
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(k) _ [ (R)_ ()7 (R)_, (k) (x)_, (k)
a 'T = a; —bl a, —b2 s nees @ —bn
(k) .
We call f(a ) a T-function.
We further define a Jacobi-Perron Algorithm (JPA) of the vector
a(o) as a sequence {a(k)} of vectors in En-l , 1f there exists a
T-transformation of En—l into En-l such that for every k ,
(5.3) K)o (k1)
Thus
P VR e O
and
@K = gt (o2 1 o) L)
and

and in particular

0k - (k)

(0)

The JPA of a is called periodic if there exist non-negative

integers
(5.4) L,120; M,m_>.l:TM+v=Tv (v=10r,L+, ...)
minL =1 , minM=m .

THEOREM 11. The JP4 of a'0) ¢ E_ is periodic if and only if

there exist integers L 20, M=21: for minL =1 aid minM=m ,

(5.5) pm0) L) (0,0, L)
Proof. If (5.4) holds, then a(m+v) = a(v) , a(m+v+l) - a(v+l) for
v=1, and b(m+v) = b(v) from (5.2) for v =1, I+1, ... . This proves

necessity. To prove sufficiency, suppose (5.5) holds. Then from Theorem

1 of Bernstein [2],
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(n) _ . (r) (r) -
(5.6) 2" = 1in Us,j/Ul,j (n=0,1, ...) .

The right hand side of (5.6) is independent of n , so that

sl e
g ’

and

") o Glm)

N s =0, 1, -..) .

The complete proof of Bernstein's Theorem 1 is too long to adapt and
produce here. It involves, in analogy to the convergence of continued
fractions, definitions of continued fractions and P-boundedness of

T-functions. Indeed for n = 2 , En—l becomes the real number space and

the JPA becomes the algorithm of continued fractions.

Bernstein has also proved that if the JPA of #xn - 1 numbers

(n = 2) becomes periodic, then these numbers all belong to an algebraic

(0)

number field of degree = mn ; that is, the components of a are all
algebraic numbers of degree =n . We have thus established the following
theorem:

THEOREM 12. a(k) belongs to an algebraic nunber field of degree

The existence of Theorems 11 and 12 mean that Theorem 7 can also be
proved by a study of the characteristic equation of the periodic JPA

along the lines of Chapter 6 of Bernstein [2]. Theorem 7 can be used to

establish identities for the {U;r;} .

k]

It is of interest to note in conclusion that the r basic sequences
satisfy the requirements of Bell [1] for a fundamental basis of order »r

of the recurrence relation (2.1).
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