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The Jacobl-Perron algorithm and the

algebra of recursive sequences

A.G. Shannon and Leon Bernstein

This paper shows the existence of a one-to-one correspondence

between a certain class of square matrices of arbitrary order

and a related extension field. The elements of these matrices

are obtained from certain basic linear recursive sequences by

means of a generalization of the euclidean algorithm.

1. Introduction

Ward [6] established the existence of a one-to-one correspondence

between a cer ta in class of square matrices of order three (with elements

from the f ie ld F of the coefficients of the auxil iary polynomial F(x)

of a th i rd order recurrence re la t ion) and the f ie ld F(a) formed by the

adjunction to F of a root a of F(x) = 0 . I t i s assumed throughout

the paper that F(x) i s i r reducible in F .

In t h i s paper Ward's resu l t s are generalized to sequences of a rb i t ra ry

order. The elements of the class of square matrices of a rb i t ra ry order are

re la ted t o certain basic l inear recursive sequences by means of a Jacobi-

Perron algorithm for these elements.

Jacobi-Perron algorithms are general izat ions of the euclidean

algorithm and a definit ion i s formulated in Section 5. This pa r t i cu la r

algorithm is shown to be per iodic , which fact means that the centra l r e su l t

can also be proved by the extensive theory developed in recent years by

Bernstein [2 , and elsewhere], to whom the name of the algorithm is due.
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262 A.G. Shannon and Leon Bernstein

2. Basic-definitions

We define r "basic" sequences of order r ,

8=1,2, ..., r , by the recurrence relation

3=1

and the initial terms

(2.2) U{r) = 6
8 ,n s,n

(the Kronecker delta), where the P . are arbitrary integers. The

"primordial" sequence of order r , lu \ also satisfies this recurrence

relation, but has initial terms given by

«l
o'l'O. n < 1 ,

(2-3) U{
Q

r)
n= I cT1 , 1 « n fir-.,

J=l

where the a . are the roots of the auxiliary equation associated with

the recurrence relation (2.1).

The first result of interest is

(2.i+) i/i = y v. .
0 ,n .L. o ,n+j-l

3~l

The proof of this follows from (3.1) and Theorem 1. below.

3. Matrices

(r)
Let M denote the square matrix of order r
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(3.1) AT

(r)
2,n+l
(p)

2,w+2
( P )

r,n+2

U

2,n+r
. . . £T

Thus
(r)

= J , the unit matrix of order r , and

0

0

(-DM+1P.

1 0 . . . 0
0 1 . . . 0

0 0 . . . 1

p

for convenience. Properties (3.2) to (3.5) are easily proved by induction:

(3.2)

(3.3)
(r) (r) (r) (r) i r )
n m m n m+n '

(3.1+)

(3.5)

n+r

r

I (-:

* S = 1 "EM-l - x s n -r
t/~*-L

\(3.2) shows that M\ is a particular solution of the matrix difference

equation of order one

(3.6) nn+1 = mn ,

and (3.U) shows that M i s a par t icular solution of

a m I ( -D J ' + 1 P .n . .
n fix r,3 n-3

THEOREM 1. The characteristic function of the matrix ATr'
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X - I (-1) s(r, n, m)X ,
7 7 ! = 1

where 8(r, n, m) is the syrrmetric function of the roots a . of the
rQ

auxiliary equation of (2.1) taken m at a time:

n n nsir, n, m) = I a . a

Proof. Suppose that the roots, a • , of the auxiliary equation
rj

associated with the recurrence relation (2.1) are distinct, where

F{x) i TT (»-«•) = 0 .

Then the matrix M has r linearly independent eigenvectors; that i s ,
there are r distinct roots of the auxiliary equation

0 = det(W-XJ) .

This follows because

det(XJ-M) =

-1 0

X -1

0 0

= X

0

0

-1

+ (-l)PPr,r

3=1 '°

= F(X) ,

so that the eigenvalues of M are the roots, a . , of the auxiliary
*> 3

equation associated with the recurrence relation. Thus there exists a non-

singular matrix X :

M* =
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M*2 i (M*f

from (3.2). Similarly,

-1 (r)

which implies that the eigenvalues of M are a . (j = 1, . . . , r)

The result then follows from the definition of the characteristic
(r)polynomial of the matrix M

THEOREM 2 .

tn which Zj\. = ran .
3

Proof. For ease of notation we write

and we express e(r, n, m) in terms of a .

or

or

log(l-a(r, n, l)xfs(r, n, 2)x2 - . . . ) = -e^x - -zS^x2 - -^s^x3 - .

00 , 00 ,

1 - I (-I)"* 8(r, n, m)xm = expl- J s^'^/mn
w=l w=l •*
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Expansion of the right-hand side, the use of the multinomial theorem and

comparison of coefficients yield

. ( , . . . . , . r (-i

in which m = T.JX . .
0

Now MacMahon [5] has shown that

lAl2A

P = y (_i) <J ——,—
**»"! n A l o A 2 , A 3 . ,

and

y , >m+EX (m-l)!ZX -i—r j
m *• Xi 1 X 2 1 . . . r,j

in which ZjX . •- m , from which the required result follows.
0

THEOREM 3. Suppose the eigenvalues of M can be ordered so that

a , corresponds to the eigenvalue of maximum modulus:

K , i l > lar ,2 ' ~ K , 3 l - ••• - iar ,rl ' then

Proof. The eigenvectors X. ( j = 1, . . . , r) are l inear ly
0

independent because the a. . are distinct. So we can find constants

b. . (2>, . t 0] :

1 \ V 1 \

where

,(r)(r) = [ (P) (P) (P
n,3 lr,n+j' r,n+j+l' '"' r .

Set
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so that

and

X »* .̂«««
since the a . are the eigenvalues of M .

I f X . = [> . , x ., . . . , x.] , t h e n
U It- tl> it-

+ % bi iK> i/<Xri=2 i,3 r,i r
, 1 ?
' fc .a; , + \ b. .(a . /a J

^=2

a n as
r l

since |ci ./a , | < 1 for i = 2 r . In particular,

THEOREM 4 . d e t r ) where

Proof. We use

=

ur,n+l

UM

[u{rlr l

induction on

v(r)
r,M+2

UM

r,«+3

r,M+r+l '"

n .

y(r)

r,n+2r-l_
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det«;

,M

r,n+2

r,n+r

r,r r,r+l

0 0

U

r,r
(r)
r,r+l

U
( r )

U

r,2r-l

1

(r)
r,r+l

"r,r+l . . . U
(r)

, r 2 2 .

..s r-1
p u
r,r r,n

r-l

3=1

r,r r,n+r-l
3=1

u { r ) . , u<
r,n+2

r,n+2 r,n+3

r,n

(r)U

r,n+r r,n+r+l ''' r,n+r-1

VM U<*> . .

r,r
r,n+l r,n+2

y V

r,n+r-1 r,n+r

-,3 r,n+r-o+l

>,j r,n+2r-j-l\
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*0

- ( 1 } ^r,r '

as required.

THEOREM 5. A vector solution of the linear diophantine equation

is given by the formula

^ . H r ' ^ I ^ V , C-1.8 r).

wher« the B^ are t/te oofactors of the elements in the mth rows of the

determinant Qn

Proof.

Thus

and so

n B =
r,r m,r

x { x ) p n
m r,r m,r

satisfies j ^ uQ^ = 1 .

4. Fields

The most genera l s o l u t i o n of (3 .6 ) i s
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where the elements of the matrix fy. are arbitrary. Let

fi = Rn n

be a particular solution obtained by putting

(k.l)

where WQ ..

and (3-M,

(it.2)

0,0 wl,0 • " "r-1,0

^ 0 , 1 Wl,l • " Wr-l,l

,r-\

are elements of F . Then from ( 3 . 3 )

i ? = M R ,

(k.3)

From ( U . 2 ) a n d ( U . 3 ) we o b t a i n :

THEOREM 6. The sequence of matrices {R } is a particular solution

of the matrix differenoe equation (3.6),, where the value of RQ is given

by C+.l), if and only if

R

0,n
W
r-l,n

0,n+l l.w+1 " • r-l,n+l

^l.n+r-1 " • Wr-l,n+r-l

where the initial values of {w } , (s = 0, 1, , 2*-l) , are given by
8 $•*

w „ , . . . , w
8,0 e , r - l

We shall now establish an isomorphism between F(ot) and a certain

class of matrix with elements in F .

THEOREM 7. The class M of all matrices of the form
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r-1
R = I ,

3=0 3

where WQ, W., , W are any elements of F , forms a field which is

simply isomorphia with the field F(a) obtained by adjoining a root a of

F(x) = 0 to F .

Proof. I t i s c l e a r from (3 .1) and (3 .2 ) t h a t any mat r ix R of M

can vanish when and only when WQ, W',..., W van ish .

M i s obviously c losed under a d d i t i o n and s u b t r a c t i o n ; by ( 3 . M and

(3 .2 )

if = I (-lf+1P IT* ,
,7=1 P'°

so that M is closed under multiplication. Furthermore, multiplication is

commutative, and distributive with respect to addition.

Any element p of the field F(a) may be put in the unique canonical

form

r-1

p = I W a3 ,
3=0 °

where the W. are elements of F . Set M and F(a) into one-to-one
3

correspondence by pairing the elements p and R for which the W. have
3

the same values; we write then p ^ i? . Then i f p. ^ R. , Pp ^ i?_ ,

P2 ^ i?2 , i t is easily verified that

px ± p2 ^ i?x ± i?2 ; px • p2 «u Rx • R2 ; P 1 (P 1 ±P 2 ) ~ ^ ( ^ 3 ) •

Furthermore, i f pp' = 1 , p <\/ R , p' <v< R' , then R'R' = I . Hence M

forms a field simply isomorphic with F(a) .

THEOREM 8. The characteristic equation of any matrix R of M is

the same as the equation which the corresponding element p of F(a)

satisfies in F .

Proof. This follows from Theorem 7 since p and R have the same

canonical form.
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We write N(p) for the norm of any number p of F(a) , so that from

Theorem 8:

i f R 'v p , then determinant of R = N(p) ;

i f R ^ p ? 0 , then adjoint of R ^ N(p)/p since

adji? = R~ deti? when R is non-singular.

THEOREM 9. Any matrix of order r with elements in F is

commutative with M iff it lies in the field M .

Proof. If a matrix of order r with elements in F l i e s in the

f i e ld M then i t i s commutative with M from Theorem 3. If I i s a

matrix of order r over F commutative with M then

(k.k) LM = ML , LM2 = l?L, . . . ,. Ltf'1 = M^^L .

There exis ts a non-singular matrix X which transforms M into the

diagonal form M* as in Theorem 1. By (!*.U), X LX = L* must also tie in

diagonal form, a , a , . . . , a are the diagonal elements of M* from

Theorem 1. Suppose tha t 8 , & „ , . . . , 8 are the diagonal elements of

L* .
2

Now the traces of L*s M*L*, M* L*, ... are the same as the traces of

L, ML, A*2//, . . . so that

r ,
2 ari*i-i = 1{k) ' * B 0, 1, 2, . . . .

where the I{k) are elements of F . Solving these equations for

(j = 1, 2, ..., r) , we find that as in Jarden [ 4 ] ,

k&ri = I Wkari' 3 =1,2, . . . , r ,
k=0 >''

whe re t h e W, a r e e l e m e n t s o f F . Thus

L* = I W M*k

k=0 K

and
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L = XL*X~X

k=0 K

as required.

THEOREM 10. Let \R } denote the sequence of matrices defined in

Theorem 6. Then a necessary and sufficient condition that {R} should

lie in M is that the sequences {w } 3 m = 0, 1, , r-2 3 be

connected by the relations

m = 0, 1, ..., r-2 ; j = 0, ±1, ±2, ... .

Proof. With the definition of matrix multiplication it is easily seen

that

R M = MR
n n

when and only when the relations (U.5) hold. The result then follows from

Theorem 9-

Let \R } now denote a sequence of matrices the elements of which

satisfy (U.5). Then

where the I{k) , k = 0, 1, ..., r-X , lie in F . By comparing the

elements in the first row of both sides of this identity, we find from the

initial values M^r\ M^ M ^ j , that

= Wk,n

so that

We next examine the sequences {V } vhich are generalizations of

https://doi.org/10.1017/S0004972700042519 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700042519


A.G. Shannon and Leon Bernstein

the second order sequence {w } studied in de ta i l by Horadam [ 3 , and

elsewhere].

5. Jacobi-Perron algorithm

I t follows from Theorem 10 tha t , i f we extend (U.5) so that i t i s

va l id for m = r - 1 , then

We set

4 i - s W v *i» •ad

so t ha t if a. = 0 for j > r s then

We use the notation 2? _- to denote the (n-l)-dimensional euclidean

vector space of (n- l ) - tuples of r ea l numbers (n > 2) . We shal l use the

notation of Bernstein [ 2 ] ,

( * ) (k) Ik)} _ (k) f p
ai • a2 > •••' V l J " a € V l

(fe)for a. € i ? , i = 1, . . . , w-1 , and k a non-negative rat ional integer.

Following Bernstein [2] we define the transformation

T •• En-1 * En-1 *

Let

be any vector function on E - with values in E _ such that
72— -L W—J.

a[k) * b[k) ; then
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We call f[a^k') a T-function.

We further define a Jacobi-Perron Algorithm (JPA) of the vector

a as a sequence {a } of vectors in E , if there exists a

T-transformation of E _ into E such that for every k ,

(5 .3 ) Jk)T=

Thus

[a{k)Tv)T = a{k)TV+1 (t, = 1 , 2 , . . . )

and

( a ( k ) r U ) T s = aWTV+s (s = 1 , 2 , . . . )

and

a ( * V = a(fe+u) ,
and in particular

a(o)Tk __ Jk) _

The JPA of a is called periodic if there exist non-negative

integers

(5.1») L , I > 0 ; W , m > 1 : T " * " = Tv ( v = L , L + l , . . . )

mini = I , minM = m .

THEOREM 11. The JPA of a ( 0 ) € En is periodic if and only if

there exist integers L 2 0 3 M 2 1 : /or mini = Z and minW = m ,

(5.5) 2 , ^ " ) = ^ (U = o, 1, . . . ) .

Proof. If (5.10 holds, then a(m+l)) = aM , Jm+V+l) = a ( v + l ) for

i) > I , and fc("^") = b(v> f r o m (5 ,2 ) f o r y = zs ^ + l j . . . . ^ i s p r o v e s

n e c e s s i t y . To prove s u f f i c i e n c y , suppose (5 .5 ) h o l d s . Then from Theorem

1 of Berns te in [ 2 ] ,
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( 5 . 6 ) a{
s
n) == l i m I/1/* j U^ ( n = 0 , 1 , . . . ) .

The right hand side of (5-6) i s independent of n , so that

j-*» 8'J ' 1><7'

and

(n) _ (n+m) / _ <.
as - ag (n , 1, . . .

The complete proof of Bernstein's Theorem 1 is too long to adapt and

produce here. I t involves, in analogy to the convergence of continued

frac t ions , definit ions of continued fractions and P-boundedness of

T-functions. Indeed for n = 2 , E _, becomes the real number space and

the JPA becomes the algorithm of continued fractions.

Bernstein has also proved that i f the JPA of n - 1 numbers

(tt 5 2) becomes per iodic , then these numbers a l l belong to an algebraic

number f ie ld of degree S n ; that i s , the components of a are a l l

algebraic numbers of degree 5 n . We have thus established the following

theorem:

( 7 . )

THEOREM 12. a belongs to an algebraic number field of degree

5 r .

The existence of Theorems 11 and 12 mean that Theorem 7 can also be

proved by a study of the characteristic equation of the periodic JPA

along the lines of Chapter 6 of Bernstein [2]. Theorem 7 can be used to

establish identities for the

It is of interest to note in conclusion that the r basic sequences

satisfy the requirements of Boll [I] for a fundamental basis of order r

of the recurrence relation (2.1).
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