Macaulay style formulas for toric residues

Carlos D'Andrea and Amit Khetan

Abstract

We present an explicit formula for computing toric residues of ample divisors as a quotient of two determinants, à la Macaulay, where the numerator is a minor of the denominator. We present a combinatorial construction of a specific element of residue 1 . We also give an irreducible representation of toric residues by extending the theory of subresultants to monomials of critical degree in the homogeneous coordinate ring of the corresponding toric variety.

1. Introduction

The toric residue of $n+1$ divisors on an n-dimensional toric variety was first introduced by Cox [Cox96] in the case when all divisors are ample of the same class, and extended to the general case by Cattani et al. [CCD97]. Toric residues have been found to be useful in a variety of contexts such as mirror symmetry [BM03], the Hodge structure of hypersurfaces [BC94], and in the study of sparse resultants [CDS98].

Another related, perhaps more familiar, notion is the global residue in the torus. Given a system f_{1}, \ldots, f_{n} of n Laurent polynomials in n variables with a finite set of common zeros in the torus $T=\left(\mathbb{C}^{*}\right)^{n}$, and another Laurent polynomial q, the global residue of q with respect to f_{1}, \ldots, f_{n} is the sum of the Grothendieck residues of the differential form

$$
\phi_{q}=\frac{q}{f_{1} \cdots f_{n}} \frac{d t_{1}}{t_{1}} \wedge \cdots \wedge \frac{d t_{n}}{t_{n}},
$$

at each zero of the f_{i}. This turns out to be a rational function in the coefficients in the f_{i} and has a wide variety of applications in algebra and analysis. The residue in the torus has been studied by Khovanskii [Kho78], Gelfond and Khovanskii [GK02], and Soprounov [Sop04]. Cattani and Dickenstein [CD97, Theorem 4] showed that the global residue in the torus is equal to a particular toric residue in the sense above of [Cox96, CCD97]. The precise relationship between the toric residue and the global residue in the torus is discussed in § 6 .

In this paper, we present an explicit formula for computing toric residues as quotients of two determinants, where the numerator is a minor of the denominator. This is an improvement over earlier algorithms in [CCD97, CD97, CDS96] by eliminating costly Gröbner basis computations.

Both the numerator and denominator of our quotient formula turn out to be divisible by the same extraneous factor. It would be useful to have a description of the residue in reduced form. Indeed, the denominator of the toric residue has already been identified with the sparse resultant [CDS98]. Our second main result is an identification of the numerator with a 'toric subresultant',

[^0]
C. D'Andrea and A. Khetan

analagous to the multivariate subresultant of Chardin [Cha95]. In the dense case, this numerator and its properties have been deeply studied by Jouanolou in [J79, J95, J97]. Our results may be regarded as a generalization of Jouanolou's work.

We start with some notation on toric varieties. For more details we refer the reader to [Ful93, Cox95, Cox96]. Let X be a projective toric variety of dimension n determined by a complete fan $\Sigma \subset \mathbb{R}^{n}$. The generators of the one-dimensional cones in Σ will be denoted $\eta_{0}, \ldots, \eta_{s-1}$. The Chow group $A_{n-1}(X)$ of Weil divisors modulo linear equivalence has rank $s-n$. We work in the polynomial ring $S:=\mathbb{A}\left[x_{0}, \ldots, x_{s-1}\right]$ where each variable x_{i} corresponds to the ray η_{i} and hence to a torus-invariant divisor D_{i} of X. We grade S by declaring that the monomial $\prod x_{i}^{a_{i}}$ has degree $\left[\sum a_{i} D_{i}\right] \in A_{n-1}(X)$. The base ring \mathbb{A} will be the coefficient space of our polynomial system and is specified below. We abbreviate $\beta_{0}:=\left[\sum_{i} D_{i}\right]$, the anticanonical class on X. The irrelevant ideal $B(\Sigma)$ is generated by the elements $\hat{x}_{\sigma}=\prod_{\eta_{i} \notin \sigma} x_{i}$ where σ ranges over all n-dimensional cones in Σ.

We now recall the definition of the toric residue from [Cox96]. This depends on $n+1$ generic S-homogeneous polynomials which are homogenizations of Laurent polynomials in n variables. Given a polynomial of a certain critical degree we construct a differential n-form which gives rise to a top cohomology class of the canonical sheaf of differentials $\Omega_{X}^{n}=\mathcal{O}\left(-\beta_{0}\right)$. The toric residue is defined to be the trace of this cohomology class.

Formally, pick ample degrees $\alpha_{0}, \ldots, \alpha_{n}$ and consider generic polynomials:

$$
\begin{equation*}
F_{i}(u, x):=\sum_{a \in \mathcal{A}_{i}} u_{i a} x^{a}, \quad i=0, \ldots, n \tag{1}
\end{equation*}
$$

where $\mathcal{A}_{i}:=\left\{a \in \mathbb{N}^{s}: \operatorname{deg}(a)=\alpha_{i}\right\}$. Set $\mathbb{A}:=\mathbb{Q}\left[u_{i a} ; i=0, \ldots, n ; a \in \mathcal{A}_{i}\right]$, and write $Q(\mathbb{A})$ for the field of quotients of \mathbb{A}. Let $\rho=\sum_{i} \alpha_{i}-\beta_{0}$, which is the critical degree of our system. For any subset $I=\left\{i_{1}, \ldots, i_{n}\right\}$ of $\{0, \ldots, s-1\}$ we write

$$
\operatorname{det}\left(\eta_{I}\right):=\operatorname{det}\left(\left\langle e_{l}, \eta_{i_{j}}\right\rangle_{1 \leqslant l, j \leqslant n}\right), \quad d x_{I}=d x_{i_{1}} \wedge \cdots \wedge d x_{i_{n}}, \quad \hat{x}_{I}=\prod_{j \notin I} x_{j} .
$$

The Euler form on X is the sum over all n-element subsets I of $\{0, \ldots, s-1\}$:

$$
\Omega:=\sum_{|I|=n} \operatorname{det}\left(\eta_{I}\right) \hat{x}_{I} d x_{I} .
$$

The polynomials F_{i} determine an open cover $U_{i}=\left\{x \in X: F_{i}(x) \neq 0\right\}$. A polynomial $g \in S_{\rho}$ gives an element $\omega_{g}=g \Omega / F_{0} \cdots F_{n}$ which is a Cech cocycle of degree n with respect to the open cover U_{i}. Therefore, there is an induced cohomology class $\left[\omega_{g}\right] \in H^{n}\left(X, \Omega_{X}^{n}\right)$, and we define $\operatorname{Residue}_{F}(g)=$ $\operatorname{Tr}_{X}\left(\left[\omega_{g}\right]\right)$ where $F=\left(F_{0}, \ldots, F_{n}\right)$. The toric residue is the map Residue ${ }_{F}: S_{\rho} \rightarrow Q(\mathbb{A})$.

The remainder of this paper is organized as follows: $\S 2$ gives a combinatorial construction of explicit elements of S_{ρ} with residue ± 1, playing the role of the toric Jacobian from [CDS98] and generalizing the elements Δ_{σ} constructed in [CCD97] on simplicial toric varieties. This is used in § 3 to give the promised Macaulay style residue formula.

Sections 4 and 5 discuss the reduced numerator of the toric residue of a monomial h. This is shown to be a toric subresultant associated to the system F_{0}, \ldots, F_{n} and the monomial h. In the dense case, the subresultant was introduced by [Cha95], and different algorithms for computing subresultants have been developed in [Cha94, Sza01].

In § 6, we show how our results can be used to compute global residues in the torus. We see how our results generalize some explicit formulas given by Macaulay in [Mac02] for computing global residues of dense homogeneous systems.

MACAULAY STYLE FORMULAS FOR TORIC RESIDUES

2. Elements with nonzero residue

Let X be a projective, but not necessarily simplicial, toric variety with fan Σ and F_{0}, \ldots, F_{n} generic elements of ample degrees α_{i} as above.

Pick a complete flag $\bar{\sigma}=\{0\} \subset \sigma_{1} \subset \cdots \subset \sigma_{n}$ where each σ_{i} is a cone of dimension i in Σ. For $i=1, \ldots, n$, let z_{i} be the product of all variables x_{j} such that $\eta_{j} \in \sigma_{i}$ but $\eta_{j} \notin \sigma_{i-1}$. We set $z_{n+1}=\prod_{\eta_{j} \notin \sigma_{n}} x_{j}$.

We will see that each F_{j} can be written in the form

$$
F_{j}=\sum_{i=1}^{n+1} A_{i j} z_{i} .
$$

The $(n+1) \times(n+1)$-determinant $\Delta_{\bar{\sigma}}=\operatorname{det}\left(A_{i j}\right)$ is in S_{ρ}. We have the following theorem generalizing [CCD97, Theorem 0.2].

Theorem 2.1. Suppose X, F, and $\bar{\sigma}$ are as above. Then $\operatorname{Residue}_{F}\left(\Delta_{\bar{\sigma}}\right)= \pm 1$.
Note that if X were simplicial then each of z_{1}, \ldots, z_{n} would be a single variable corresponding to the generators of the cone σ_{n} and z_{n+1} would be the product of all of the remaining variables. The element $\Delta_{\bar{\sigma}}$, in this case, is the same as the element $\Delta_{\sigma_{n}}$ from [CCD97].

Proof. The η_{i} are ample classes, therefore $\left\langle F_{0}, \ldots, F_{n}\right\rangle \subset B(\Sigma)$. We next show that $B(\Sigma) \subset$ $\left\langle z_{1}, \ldots z_{n+1}\right\rangle$. Consider a generator \hat{x}_{τ} where τ is a maximal cone of Σ. Recall that $\hat{x}_{\tau}=\prod_{\eta_{i} \notin \tau} x_{i}$. Now $\tau \cap \sigma_{n}$ is a face of σ_{n}. Choose i such that $\tau \cap \sigma_{n} \supset \sigma_{i-1}$ but $\tau \cap \sigma_{n} \not \supset \sigma_{i}$. Now, we see that the one-dimensional cones in $\tau \cap \sigma_{i}$ are all contained in σ_{i-1}, and so none of the one dimensional cones in z_{i} are in τ. Therefore, z_{i} divides \hat{x}_{τ} as desired. Hence we can write (nonuniquely) for $j=0, \ldots n$

$$
F_{j}=\sum_{i=1}^{n+1} A_{i j} z_{i} .
$$

Now, an application of the global transformation law [CCD97, Theorem 0.1], shows that Residue ${ }_{F}$ $\left(\Delta_{\bar{\sigma}}\right)=\operatorname{Residue}_{z}(1)$. And so we need only prove that $\operatorname{Residue}_{z}(1)= \pm 1$.

Let X^{\prime} be a new toric variety arising from a simplicial refinement Σ^{\prime} of Σ with the same onedimensional cones, hence the same coordinate ring, albeit with a smaller irrelevant ideal $B\left(\Sigma^{\prime}\right) \subset B(\Sigma)$. We have a natural map $f: X^{\prime} \rightarrow X$. Let \mathcal{U} be the open cover on X defined by $\left\{U_{i}=\left\{x \in X: z_{i} \neq 0\right\}\right\}$. We have an analagous collection of open sets \mathcal{U}^{\prime} on X^{\prime} defined by the same equations $\left\{U_{i}^{\prime}=\left\{x \in X^{\prime}: z_{i} \neq 0\right\}\right\}$. As $B\left(\Sigma^{\prime}\right) \subset B(\Sigma) \subset\left\langle z_{1}, \ldots z_{n+1}\right\rangle, \mathcal{U}^{\prime}$ is also an open cover of X^{\prime}.

Now, on X, the element $1 \in S$ gives the n-form

$$
\begin{equation*}
\omega=\frac{\Omega}{z_{1} \cdots z_{n+1}}=\frac{\Omega}{x_{0} \cdots x_{s-1}} . \tag{2}
\end{equation*}
$$

This form is defined on the open set

$$
U=\left\{x \in X: z_{1}(x) \neq 0, \ldots, z_{n+1}(x) \neq 0\right\}
$$

which is the same as the open set defined by $x_{0} \neq 0, \ldots, x_{s-1} \neq 0$. The map f defines an isomorphism on this open set, and we can pull back ω to get a new form $\omega^{\prime}=f^{*}(\omega)$ on $f^{-1}(U) \subset X^{\prime}$, defined by the same formula (2). Now, $f^{-1} \mathcal{U}$ is an open cover of X^{\prime}, and moreover it refines the open cover \mathcal{U}^{\prime}, since $z_{i} \neq 0$ on each $f^{-1}\left(U_{i}\right)$. Since the natural map from Cech cohomology to sheaf cohomology respects refinement $\left[\omega_{\mathcal{U}^{\prime}}^{\prime}\right]=\left[\omega_{f-1}^{\prime} \mathcal{U}\right]$ as cohomology classes in $H^{n}\left(X^{\prime}, \Omega_{X}^{\prime n}\right)$. Moreover, f is birational so $\operatorname{Tr}_{X^{\prime}} \circ f^{*}=\operatorname{Tr}_{X}$. Putting it together we have

$$
\begin{equation*}
\operatorname{Residue}_{z}(1)_{X}= \pm 1 \Longleftrightarrow \operatorname{Residue}_{z}(1)_{X^{\prime}}= \pm 1 \tag{3}
\end{equation*}
$$

C. D'Andrea and A. Khetan

For the simplicial toric variety X^{\prime} and any given maximal cone σ^{\prime}, every complete flag of cones ending in σ^{\prime} determines the same open cover (up to relabelling) which we denote $\mathcal{V}_{\sigma^{\prime}}$. In [CCD97] it was shown that $\operatorname{Tr}\left(\left[\omega_{\mathcal{V}^{\prime}}^{\prime}\right]\right)= \pm 1$ where ω^{\prime} is the same n-form as in (2). So, we need only show that for some top-dimensional cone σ^{\prime} the cohomology classes $\left[\omega_{\mathcal{U}^{\prime}}^{\prime}\right]$ and $\left[\omega_{\mathcal{V}_{\sigma^{\prime}}}^{\prime}\right.$] coincide. This will be done by picking σ^{\prime} such that we can find another open cover \mathcal{W} refining both \mathcal{U}^{\prime} and $\mathcal{V}_{\sigma^{\prime}}$ for which ω^{\prime} still determines a C Cech cocycle. The choice of σ^{\prime} is determined by the following lemma.

Lemma 2.2. There is a unique (simplicial) cone $\sigma^{\prime} \in \Sigma^{\prime}$ of dimension n generated by $\left\{\eta_{i_{1}}, \ldots \eta_{i_{n}}\right\}$ such that the corresponding variables $x_{i_{1}}, \ldots, x_{i_{n}}$ satisfy $x_{i_{k}} \mid z_{k}$ and moreover $z_{1}=\cdots=z_{n}=0$ on X^{\prime} if and only if $x_{i_{1}}=\cdots=x_{i_{n}}=0$.

Proof. We proceed by induction to show that $z_{1}=\cdots=z_{k}=0$ if and only if $x_{i_{1}}=\cdots=x_{i_{k}}=0$ for a unique k-dimensional cone $\sigma_{k}^{\prime} \in \Sigma^{\prime}$. The base case $k=1$ is trivial as z_{1} is a single variable $x_{i_{1}}$ corresponding to a unique one-dimensional cone. For the inductive step suppose $x_{i_{1}}=\cdots=x_{i_{k}}=0$ and $z_{k+1}=0$. Let σ_{k}^{\prime} be the cone corresponding to $x_{i_{1}}, \ldots, x_{i_{k}}$. The torus orbits of X^{\prime} are in one-toone correspondence with the cones in Σ^{\prime}. The orbit corresponding to a cone σ^{\prime} is specified exactly by the vanishing of the variables corresponding to the one-dimensional generators. In particular, if $x_{i_{1}}=\cdots=x_{i_{k}}=0$ and some other variable $x_{i_{k+1}}$ dividing z_{k+1} vanishes, then there is a cone in Σ^{\prime} containing the rays corresponding to $x_{i_{1}}, \ldots, x_{i_{k+1}}$. As Σ^{\prime} is simplicial, the above set of rays must itself be a $(k+1)$-dimensional cone in Σ^{\prime}. So, it is enough to show that there is a unique such cone.

Recall that we have a complete flag of cones $\sigma_{0} \subset \cdots \subset \sigma_{k} \subset \cdots \sigma_{n} \subset \Sigma$. By construction, $\sigma_{k}^{\prime} \subset \sigma_{k}$ and z_{k+1} is made up of the rays in σ_{k+1} but not in σ_{k}. Now σ_{k} was a facet of σ_{k+1} and σ_{k}^{\prime} is a cone in its triangulation in Σ^{\prime}. Therefore, there is a unique cone σ_{k+1}^{\prime} in the triangulation of σ_{k+1} containing σ_{k}^{\prime} (no two cones in a triangulation can meet in a facet of the original cone). Let $x_{i_{k+1}}$ be the additional generator of σ_{k+1}^{\prime}. This completes the induction and we take $\sigma^{\prime}=\sigma_{n}^{\prime}$.

Now, let $z_{k}^{\prime}=x_{i_{k}}$ for $k=1, \ldots, n$, and $z_{n+1}^{\prime}=\prod_{\eta_{j} \notin \sigma^{\prime}} x_{j}$ the product of the remaining variables. We define the open cover \mathcal{V} by

$$
V_{i}=\left\{x \in X^{\prime}: z_{i}^{\prime} \neq 0\right\} .
$$

By the above lemma we have $U_{i}^{\prime} \subset V_{i}$ for $i=1, \ldots, n, V_{n+1}^{\prime} \subset U_{n+1}^{\prime}$, and $\bigcup_{i=1}^{n} V_{i}=\bigcup_{i=1}^{n} U_{i}^{\prime}$. Therefore the open cover $\mathcal{W}=\left\{U_{1}^{\prime}, \ldots, U_{n}^{\prime}, V_{n+1}\right\}$ refines both \mathcal{U}^{\prime} and \mathcal{V}, and both $\omega_{\mathcal{U}^{\prime}}^{\prime}$ and $\omega_{\mathcal{V}}^{\prime}$ map to a well defined Cech cocycle $\omega_{\mathcal{W}}^{\prime}$. Hence $\omega_{\mathcal{U}^{\prime}}^{\prime}$ and $\omega_{\mathcal{V}}^{\prime}$ induce the same cohomology class, and hence have the same trace, as desired. So $\operatorname{Residue}_{x}(1)_{X^{\prime}}= \pm 1$ which completes the proof by virtue of (3).

Example 2.3. Let $O \subset \mathbb{R}^{3}$ be the octahedron with vertices $(\pm 1,0,0),(0, \pm 1,0),(0,0, \pm 1)$. This determines a toric variety X_{O} whose normal fan has generators $\eta_{0}=(-1,-1,-1), \eta_{1}=$ $(-1,-1,1), \eta_{2}=(-1,1,-1), \ldots, \eta_{7}=(1,1,1)$ and top-dimensional cones determined by the spans of the sets of four rays with one coordinate fixed. Pick the ample degrees $\alpha_{0}=\cdots=\alpha_{3}=\sum_{i=0}^{7} D_{i}$ and consider the generic system:

$$
\begin{aligned}
F_{0}:= & a_{0} x_{0}^{2} x_{1}^{2} x_{2}^{2} x_{3}^{2}+a_{1} x_{0}^{2} x_{1}^{2} x_{4}^{2} x_{5}^{2}+a_{2} x_{0}^{2} x_{2}^{2} x_{4}^{2} x_{6}^{2}+a_{3} x_{0} x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} \\
& +a_{4} x_{1}^{2} x_{3}^{2} x_{5}^{2} x_{7}^{2}+a_{5} x_{2}^{2} x_{3}^{2} x_{6}^{2} x_{7}^{2}+a_{6} x_{4}^{2} x_{5}^{2} x_{6}^{2} x_{7}^{2} \\
F_{1}:= & b_{0} x_{0}^{2} x_{1}^{2} x_{2}^{2} x_{3}^{2}+b_{1} x_{0}^{2} x_{1}^{2} x_{4}^{2} x_{5}^{2}+b_{2} x_{0}^{2} x_{2}^{2} x_{4}^{2} x_{6}^{2}+b_{3} x_{0} x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} \\
& +b_{4} x_{1}^{2} x_{3}^{2} x_{5}^{2} x_{7}^{2}+b_{5} x_{2}^{2} x_{3}^{2} x_{6}^{2} x_{7}^{2}+b_{6} x_{4}^{2} x_{5}^{2} x_{6}^{2} x_{7}^{2}
\end{aligned}
$$

Macaulay style formulas for toric residues

$$
\begin{aligned}
F_{2}:= & c_{0} x_{0}^{2} x_{1}^{2} x_{2}^{2} x_{3}^{2}+c_{1} x_{0}^{2} x_{1}^{2} x_{4}^{2} x_{5}^{2}+c_{2} x_{0}^{2} x_{2}^{2} x_{4}^{2} x_{6}^{2}+c_{3} x_{0} x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} \\
& +c_{4} x_{1}^{2} x_{3}^{2} x_{5}^{2} x_{7}^{2}+c_{5} x_{2}^{2} x_{3}^{2} x_{6}^{2} x_{7}^{2}+c_{6} x_{4}^{2} x_{5}^{2} x_{6}^{2} x_{7}^{2} \\
F_{3}:= & d_{0} x_{0}^{2} x_{1}^{2} x_{2}^{2} x_{3}^{2}+d_{1} x_{0}^{2} x_{1}^{2} x_{4}^{2} x_{5}^{2}+d_{2} x_{0}^{2} x_{2}^{2} x_{4}^{2} x_{6}^{2}+d_{3} x_{0} x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7} \\
& +d_{4} x_{1}^{2} x_{3}^{2} x_{5}^{2} x_{7}^{2}+d_{5} x_{2}^{2} x_{3}^{2} x_{6}^{2} x_{7}^{2}+d_{6} x_{4}^{2} x_{5}^{2} x_{6}^{2} x_{7}^{2} .
\end{aligned}
$$

As our complete flag $\bar{\sigma}$ we pick $\{0\} \subset\left\{\eta_{0}\right\} \subset\left\{\eta_{0}, \eta_{1}\right\} \subset\left\{\eta_{0}, \eta_{1}, \eta_{2}, \eta_{3}\right\}$. This gives $z_{0}=x_{0}, z_{1}=$ $x_{1}, z_{2}=x_{2} x_{3}, z_{3}=x_{4} x_{5} x_{6} x_{7}$ and we can write

$$
\begin{aligned}
F_{0}= & z_{0}\left(a_{0} x_{0} x_{1}^{2} x_{2}^{2} x_{3}^{2}+a_{1} x_{0} x_{1}^{2} x_{4}^{2} x_{5}^{2}+a_{2} x_{0} x_{2}^{2} x_{4}^{2} x_{6}^{2}+a_{3} x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7}\right) \\
& +z_{1}\left(a_{4} x_{1} x_{3}^{2} x_{5}^{2} x_{7}^{2}\right)+z_{2}\left(a_{5} x_{2} x_{3} x_{6}^{2} x_{7}^{2}\right)+z_{3}\left(a_{6} x_{4} x_{5} x_{6} x_{7}\right),
\end{aligned}
$$

and similarly for F_{1}, F_{2}, F_{3}. Therefore:

$$
\begin{aligned}
\Delta_{\bar{\sigma}}= & \operatorname{det}\left(\begin{array}{llll}
a_{0} x_{0} x_{1}^{2} x_{2}^{2} x_{3}^{2}+\cdots & a_{4} x_{1} x_{3}^{2} x_{5}^{2} x_{7}^{2} & a_{5} x_{2} x_{3} x_{6}^{2} x_{7}^{2} & a_{6} x_{4} x_{5} x_{6} x_{7} \\
b_{0} x_{0} x_{1}^{2} x_{2}^{2} x_{3}^{2}+\cdots & b_{4} x_{1} x_{3}^{2} x_{5}^{2} x_{7}^{2} & b_{5} x_{2} x_{3} x_{6}^{2} x_{7}^{2} & b_{6} x_{4} x_{5} x_{6} x_{7} \\
c_{0} x_{0} x_{1}^{2} x_{2}^{2} x_{3}^{2}+\cdots & c_{4} x_{1} x_{3} x_{5}^{2} x_{7}^{2} & c_{5} x_{2} x_{3} x_{6}^{2} x_{7}^{2} & c_{6} x_{4} x_{5} x_{6} x_{7} \\
d_{0} x_{0} x_{1}^{2} x_{2}^{2} x_{3}^{2}+\cdots & d_{4} x_{1} x_{3}^{2} x_{5}^{2} x_{7}^{2} & d_{5} x_{2} x_{3} x_{6}^{2} x_{7}^{2} & d_{6} x_{4} x_{5} x_{6} x_{7}
\end{array}\right) \\
= & {[0456] x_{0} x_{1}^{3} x_{2}^{3} x_{3}^{5} x_{4} x_{5}^{3} x_{6}^{5} x_{7}^{5}+[1456] x_{0} x_{1}^{3} x_{2} x_{3}^{3} x_{4}^{3} x_{5}^{5} x_{6}^{3} x_{7}^{5} } \\
& +[2456] x_{0} x_{1} x_{2}^{3} x_{3}^{3} x_{4}^{3} x_{5}^{3} x_{6}^{5} x_{7}^{5}+[3456] x_{1}^{2} x_{2}^{2} x_{3}^{4} x_{4}^{2} x_{5}^{4} x_{6}^{4} x_{7}^{6} .
\end{aligned}
$$

Here the 'bracket' [0456] denotes the 4×4 determinant:

$$
\operatorname{det}\left(\begin{array}{cccc}
a_{0} & a_{4} & a_{5} & a_{6} \\
b_{0} & b_{4} & b_{5} & b_{6} \\
c_{0} & c_{4} & c_{5} & c_{6} \\
d_{0} & d_{4} & d_{5} & d_{6}
\end{array}\right)
$$

Remark 2.4. The construction uses that the α_{i} are ample degrees. It is still an open problem to find an explicit element of nonzero residue in a more general setting, for example when the α_{i} correspond to nef and big divisors, i.e. have n-dimensional support. Indeed this is the only obstruction to generalizing the Macaulay style formula of the next section to this more general case.

3. Macaulay style formulas for residues

We now show how to use the element $\Delta_{\bar{\sigma}}$ to give an explicit Macaulay formula for the residue. We will need the following result. Consider the map of free \mathbb{A}-modules:

$$
\begin{align*}
\phi: S_{\rho-\alpha_{0}} \oplus \cdots \oplus S_{\rho-\alpha_{n}} \oplus \mathbb{A} & \rightarrow S_{\rho} \\
\left(G_{0}, \ldots, G_{n}, c\right) & \mapsto \sum_{i=0}^{n} G_{i} F_{i}+c \Delta_{\bar{\sigma}} . \tag{4}
\end{align*}
$$

Theorem 3.1 (Codimension 1 theorem). Let X be a projective toric variety, and F a generic ample system as above, then the map ϕ described above is generically surjective. Equivalently, the degree ρ component of the quotient $S_{F}:=S /\left\langle F_{0}, \ldots, F_{n}\right\rangle$ has $Q(\mathbb{A})$ dimension 1.

The proof is postponed to the next section. When X is simplicial, this result is due to [CCD97]. In a forthcoming paper, Cox and Dickenstein [CoD05] prove a much more general codimension theorem which implies the theorem above.

Let \mathbb{M} be the matrix associated with the \mathbb{A}-linear map ϕ in the monomial bases. As in [Mac02], we shall index the rows of \mathbb{M} in correspondence with the elements of the monomial basis of the domain. Fix a monomial $h \in S_{\rho}$, and let $\tilde{\mathbb{M}}$ be any square maximal submatrix with nonvanishing determinant. It turns out that $\tilde{\mathbb{M}}$ must contain the row corresponding to $\Delta_{\bar{\sigma}}$. This is due to the

C. D'Andrea and A. Khetan

fact that $\Delta_{\bar{\sigma}}$ does not belong to the ideal generated by F_{0}, \ldots, F_{n} if this family does not have any common zero in X. Let $\tilde{\mathbb{M}}_{h}$ be the square submatrix of $\tilde{\mathbb{M}}$ made by deleting this last row and the column indexed by h. Now we are ready for the main result of this section.

Theorem 3.2. For any generic ample system $F=\left(F_{0}, \ldots, F_{n}\right)$ of divisors on X and $\tilde{\mathbb{M}}$ and $\tilde{\mathbb{M}}_{h}$ defined as above:

$$
\operatorname{Residue}_{F}(h)= \pm \frac{\operatorname{det}\left(\tilde{\mathbb{M}}_{h}\right)}{\operatorname{det}(\tilde{\mathbb{M}})}
$$

Proof. Let \tilde{M}^{h} be the matrix $\tilde{\mathbb{M}}$ modified as follows: we multiply by h all of the elements in the column indexed by h. Then, $\operatorname{det}\left(\tilde{M}^{h}\right)=h \operatorname{det}(\tilde{\mathbb{M}})$. On the other hand, performing elementary operations in the columns of $\tilde{\mathbb{M}}$ and expanding the determinant along the column indexed by h, it turns out that there are homogeneous polynomials G_{i} such that:

$$
h \operatorname{det}(\tilde{\mathbb{M}})=\operatorname{det}\left(\tilde{M}^{h}\right)=G_{0} F_{0}+\cdots+G_{n} F_{n} \pm \operatorname{det}\left(\tilde{\mathbb{M}}_{h}\right) \Delta_{\bar{\sigma}} .
$$

By taking the residue of both sides, we get

$$
\operatorname{Residue}_{F}(h) \operatorname{det}(\tilde{\mathbb{M}})= \pm \operatorname{det}\left(\tilde{\mathbb{M}}_{h}\right) \operatorname{Residue}_{F}\left(\Delta_{\bar{\sigma}}\right)= \pm \operatorname{det}\left(\tilde{\mathbb{M}}_{h}\right)
$$

Remark 3.3. In the case of 'generalized unmixed systems', when each α_{i} is an integer multiple of a fixed ample degree α, one can also use the toric Jacobian $J(F)$, scaled by an appropriate constant, in place of the element $\Delta_{\bar{\sigma}}$. The Jacobian has the computational disadvantage of having much larger support than $\Delta_{\bar{\sigma}}$ although it has the advantage of being intrinsic to the toric system and not dependent on a choice of $\bar{\sigma}$.

The following result is a straightforward consequence of Theorem 3.2, and says that for any polynomial P of critical degree, $\operatorname{Residue}_{F}(P)$ may be computed as a quotient of two determinants.
Corollary 3.4. Let $P=\sum_{\operatorname{deg}\left(x^{a}\right)=\rho} p_{a} x^{a}$, where p_{a} are constants. As before, let $\tilde{\mathbb{M}}$ be any square maximal submatrix of \mathbb{M} having nonzero determinant. Let $\tilde{\mathbb{M}}_{P}$ be the matrix $\tilde{\mathbb{M}}$ modified as follows: for every monomial x^{a} of critical degree, we replace the entry in the row corresponding to $\Delta_{\bar{\sigma}}$ and column indexed by x^{a} with the coefficient p_{a}. Then:

$$
\left.\boldsymbol{\operatorname { R e s i d u e }}_{F}(P)= \pm \frac{\operatorname{det}(\tilde{\mathbb{M}}}{P}\right)
$$

Proof. Expand $\operatorname{det}\left(\tilde{\mathbb{M}}_{P}\right)$ by the row corresponding to $\Delta_{\bar{\sigma}}$, and use the linearity of the residue and Theorem 3.2.

Example 3.5. Let $X=\mathbb{P}^{1} \times \mathbb{P}^{1}$ whose fan has the following one-dimensional generators: $\eta_{1}=(1,0), \eta_{2}=(0,-1), \eta_{3}=(-1,0)$ and $\eta_{4}=(0,1)$. We pick the ample degrees $\alpha_{0}=D_{2}+D_{3}$, $\alpha_{1}=2 D_{2}+D_{3}, \alpha_{2}=D_{2}+2 D_{3}$ and consider the following generic polynomials having those degrees:

$$
\begin{aligned}
& F_{0}:=a_{0} x_{2} x_{3}+a_{1} x_{1} x_{2}+a_{2} x_{1} x_{4}+a_{3} x_{3} x_{4}, \\
& F_{1}:=b_{0} x_{2}^{2} x_{3}+b_{1} x_{1} x_{2}^{2}+b_{2} x_{2} x_{3} x_{4}+b_{3} x_{1} x_{2} x_{4}+b_{4} x_{3} x_{4}^{2}+b_{5} x_{1} x_{4}^{2}, \\
& F_{2}:=c_{0} x_{2} x_{3}^{2}+c_{1} x_{1} x_{2} x_{3}+c_{2} x_{1}^{2} x_{2}+c_{3} x_{3}^{2} x_{4}+c_{4} x_{1} x_{3} x_{4}+c_{5} x_{1}^{2} x_{4} .
\end{aligned}
$$

The critical degree is $-D_{1}+3 D_{2}+3 D_{3}-D_{4}$ and may be identified with the set of nine integer points lying in the interior of a 4×4 square having integer vertices and edges parallel to the axes (see [CDS98]). To compute $\Delta_{\bar{\sigma}}$ we can take $z_{1}=x_{1}, z_{2}=x_{2}, z_{3}=x_{3} x_{4}$.

$$
\Delta_{\bar{\sigma}}=\operatorname{det}\left(\begin{array}{ccc}
a_{1} x_{2}+a_{2} x_{4} & a_{0} x_{3} & a_{3} \\
b_{1} x_{2}^{2}+b_{3} x_{2} x_{4}+b_{5} x_{4}^{2} & b_{0} x_{2} x_{3}+b_{2} x_{3} x_{4} & b_{4} x_{4} \\
c_{1} x_{2} x_{3}+c_{2} x_{1} x_{2}+c_{4} x_{3} x_{4}+c_{5} x_{1} x_{4} & c_{0} x_{3}^{2} & c_{3} x_{3}
\end{array}\right) .
$$

MACAULAY STYLE FORMULAS FOR TORIC RESIDUES

In this case, \mathbb{M} is the following 9×9 matrix:

$$
\mathbb{M}=\left(\begin{array}{ccccccccc}
a_{3} & a_{2} & 0 & a_{0} & a_{1} & 0 & 0 & 0 & 0 \\
0 & a_{3} & a_{2} & 0 & a_{0} & a_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & a_{3} & a_{2} & 0 & a_{0} & a_{1} & 0 \\
0 & 0 & 0 & 0 & a_{3} & a_{2} & 0 & a_{0} & a_{1} \\
b_{4} & b_{5} & 0 & b_{2} & b_{3} & 0 & b_{0} & b_{1} & 0 \\
0 & b_{4} & b_{5} & 0 & b_{2} & b_{3} & 0 & b_{0} & b_{1} \\
0 & 0 & 0 & c_{3} & c_{4} & c_{5} & c_{0} & c_{1} & c_{2} \\
c_{\mathbf{3}} & c_{4} & c_{5} & c_{0} & c_{1} & c_{2} & 0 & 0 & 0 \\
\mathbf{d}_{\mathbf{1}} & \mathbf{d}_{\mathbf{2}} & \mathbf{d}_{\mathbf{3}} & \mathbf{d}_{\mathbf{4}} & \mathbf{d}_{\mathbf{5}} & \mathbf{d}_{\mathbf{6}} & \mathbf{d}_{\mathbf{7}} & \mathbf{d}_{\mathbf{8}} & \mathbf{d}_{\mathbf{9}}
\end{array}\right),
$$

where the $\mathbf{d}_{\mathbf{k}}$ are the coefficients of $\Delta_{\bar{\sigma}}$:

$$
\begin{aligned}
& \mathbf{d}_{\mathbf{1}}:=-a_{2} b_{4} c_{0}+b_{5} a_{3} c_{0}+a_{2} c_{3} b_{2}+c_{4} a_{0} b_{4}-c_{4} a_{3} b_{2}-b_{5} a_{0} c_{3} \\
& \mathbf{d}_{\mathbf{2}}:=c_{5} a_{0} b_{4}-c_{5} a_{3} b_{2} \\
& \mathbf{d}_{\mathbf{3}}:=0 \\
& \mathbf{d}_{\mathbf{4}}:=a_{1} c_{3} b_{2}-a_{1} b_{4} c_{0}+a_{2} c_{3} b_{0}-b_{3} a_{0} c_{3}+b_{3} a_{3} c_{0}+c_{1} a_{0} b_{4}-c_{1} a_{3} b_{2}-c_{4} a_{3} b_{0} \\
& \mathbf{d}_{\mathbf{5}}:=c_{2} a_{0} b_{4}-c_{2} a_{3} b_{2}-c_{5} a_{3} b_{0} \\
& \mathbf{d}_{\mathbf{6}}:=0 \\
& \mathbf{d}_{\mathbf{7}}:=a_{1} c_{3} b_{0}-a_{0} b_{1} c_{3}+a_{3} b_{1} c_{0}-c_{1} a_{3} b_{0} \\
& \mathbf{d}_{\mathbf{8}}:=0 \\
& \mathbf{d}_{\mathbf{9}}:=0
\end{aligned}
$$

It turns out that $\operatorname{det}(\mathbb{M})$ equals the sparse resultant of the F_{i}. Let

$$
\begin{aligned}
P:= & \mathbf{p}_{\mathbf{1}} x_{3}^{2} x_{4}^{2}+\mathbf{p}_{\mathbf{2}} x_{1} x_{3} x_{4}^{2}+\mathbf{p}_{\mathbf{3}} x_{1}^{2} x_{4}^{2}+\mathbf{p}_{\mathbf{4}} x_{2} x_{3}^{2} x_{4}+\mathbf{p}_{\mathbf{5}} x_{1} x_{2} x_{3} x_{4} \\
& +\mathbf{p}_{\mathbf{6}} x_{1}^{2} x_{2} x_{4}+\mathbf{p}_{\boldsymbol{7}} x_{2}^{2} x_{3}^{2}+\mathbf{p}_{\mathbf{8}} x_{1} x_{2}^{2} x_{3}+\mathbf{p}_{\mathbf{9}} x_{1}^{2} x_{2}^{2}
\end{aligned}
$$

be any polynomial of critical degree. Following the notation of Corollary 3.4, we have that $\tilde{\mathbb{M}}=\mathbb{M}$ and

$$
\tilde{\mathbb{M}} \tilde{P}_{P}=\left(\begin{array}{ccccccccc}
a_{3} & a_{2} & 0 & a_{0} & a_{1} & 0 & 0 & 0 & 0 \\
0 & a_{3} & a_{2} & 0 & a_{0} & a_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & a_{3} & a_{2} & 0 & a_{0} & a_{1} & 0 \\
0 & 0 & 0 & 0 & a_{3} & a_{2} & 0 & a_{0} & a_{1} \\
b_{4} & b_{5} & 0 & b_{2} & b_{3} & 0 & b_{0} & b_{1} & 0 \\
0 & b_{4} & b_{5} & 0 & b_{2} & b_{3} & 0 & b_{0} & b_{1} \\
0 & 0 & 0 & c_{3} & c_{4} & c_{5} & c_{0} & c_{1} & c_{2} \\
c_{3} & c_{4} & c_{5} & c_{0} & c_{1} & c_{2} & 0 & 0 & 0 \\
\mathbf{p}_{\mathbf{1}} & \mathbf{p}_{\mathbf{2}} & \mathbf{p}_{\mathbf{3}} & \mathbf{p}_{\mathbf{4}} & \mathbf{p}_{\mathbf{5}} & \mathbf{p}_{\mathbf{6}} & \mathbf{p}_{\mathbf{7}} & \mathbf{p}_{\mathbf{8}} & \mathbf{p}_{\mathbf{9}}
\end{array}\right) .
$$

So, we have that $\operatorname{Residue}_{F}(P)= \pm \operatorname{det}\left(\tilde{\mathbb{M}}_{P}\right) / \operatorname{det}(\tilde{\mathbb{M}})$.
Example 3.6. Consider the generic system introduced in Example 2.3. In this case, \mathbb{M} is a 101×63 size matrix. With the aid of Maple, we have found a square maximal minor $\tilde{\mathbb{M}}$ by choosing the rows indexed by the element $\Delta_{\bar{\sigma}}$, as constructed in Example 2.3, and the following monomials:
in $S_{\rho-\alpha_{0}}$

$$
\begin{aligned}
& x_{0}^{4} x_{1}^{4} x_{2}^{4} x_{3}^{4}, x_{0}^{4} x_{1}^{4} x_{4}^{4} x_{5}^{4}, x_{0}^{4} x_{2}^{4} x_{4}^{4} x_{6}^{4}, x_{1}^{4} x_{3}^{4} x_{5}^{4} x_{7}^{4}, x_{2}^{4} x_{3}^{4} x_{6}^{4} x_{7}^{4}, x_{4}^{4} x_{5}^{4} x_{6}^{4} x_{7}^{4}, \\
& x_{0}^{4} x_{1}^{4} x_{2}^{2} x_{3}^{2} x_{4}^{2} x_{5}^{2}, x_{0}^{4} x_{1}^{2} x_{2}^{4} x_{3}^{2} x_{4}^{2} x_{6}^{2}, x_{0}^{3} x_{1}^{3} x_{2}^{3} x_{3}^{3} x_{4} x_{5} x_{6} x_{7}, x_{0}^{2} x_{1}^{4} x_{2}^{2} x_{3}^{4} x_{5}^{2} x_{7}^{2}, \\
& x_{0}^{2} x_{1}^{2} x_{2}^{4} x_{3}^{4} x_{6}^{2} x_{7}^{2}, x_{0}^{2} x_{1}^{2} x_{2}^{2} x_{3}^{2} x_{4}^{2} x_{5}^{2} x_{6}^{2} x_{7}^{2}, x_{0}^{4} x_{1}^{2} x_{4}^{4} x_{5}^{2} x_{2}^{2} x_{6}^{2}, x_{0}^{3} x_{1}^{3} x_{4}^{3} x_{5}^{3} x_{2} x_{3} x_{6} x_{7}, \\
& x_{0}^{2} x_{1}^{4} x_{4}^{2} x_{5}^{4} x_{3}^{2} x_{7}^{2}, x_{0}^{2} x_{1}^{2} x_{4}^{4} x_{5}^{4} x_{6}^{2} x_{7}^{2}, x_{0}^{3} x_{2}^{3} x_{4}^{3} x_{6}^{3} x_{1} x_{3} x_{5} x_{7}, x_{0}^{2} x_{2}^{4} x_{4}^{2} x_{6}^{4} x_{3}^{2} x_{7}^{2}, \\
& x_{0}^{2} x_{2}^{2} x_{4}^{4} x_{6}^{4} x_{5}^{2} x_{7}^{2}, x_{0} x_{1}^{3} x_{2} x_{3}^{3} x_{4} x_{5}^{3} x_{6} x_{7}^{3}, x_{0} x_{1} x_{2}^{3} x_{3}^{3} x_{4} x_{5} x_{6}^{3} x_{7}^{3}, \\
& x_{0} x_{1} x_{2} x_{3} x_{4}^{3} x_{5}^{3} x_{6}^{3} x_{7}^{3}, x_{1}^{2} x_{3}^{4} x_{5}^{2} x_{7}^{4} x_{2}^{2} x_{6}^{2}, x_{1}^{2} x_{3}^{2} x_{5}^{4} x_{7}^{4} x_{4}^{2} x_{6}^{2}, x_{2}^{2} x_{3}^{2} x_{6}^{4} x_{7}^{4} x_{4}^{2} x_{5}^{2},
\end{aligned}
$$

in $S_{\rho-\alpha_{1}}$

$$
\begin{aligned}
& x_{0}^{4} x_{1}^{4} x_{2}^{4} x_{3}^{4}, x_{0}^{4} x_{1}^{4} x_{4}^{4} x_{5}^{4}, x_{0}^{4} x_{2}^{4} x_{4}^{4} x_{6}^{4}, x_{1}^{4} x_{3}^{4} x_{5}^{4} x_{7}^{4}, x_{2}^{4} x_{3}^{4} x_{6}^{4} x_{7}^{4}, x_{4}^{4} x_{5}^{4} x_{6}^{4} x_{7}^{4}, \\
& x_{0}^{4} x_{1}^{4} x_{2}^{2} x_{3}^{2} x_{4}^{2} x_{5}^{2}, x_{0}^{4} x_{1}^{2} x_{2}^{4} x_{3}^{2} x_{4}^{2} x_{6}^{2}, x_{0}^{3} x_{1}^{3} x_{2}^{3} x_{3}^{3} x_{4} x_{5} x_{6} x_{7}, x_{0}^{2} x_{1}^{4} x_{2}^{2} x_{3}^{4} x_{5}^{2} x_{7}^{2}, \\
& x_{0}^{2} x_{1}^{2} x_{2}^{4} x_{3}^{4} x_{6}^{2} x_{7}^{2}, x_{0}^{4} x_{1}^{2} x_{4}^{4} x_{5}^{2} x_{2}^{2} x_{6}^{2}, x_{0}^{3} x_{1}^{3} x_{4}^{3} x_{5}^{3} x_{2} x_{3} x_{6} x_{7}, x_{0}^{2} x_{1}^{4} x_{4}^{2} x_{5}^{4} x_{3}^{2} x_{7}^{2}, \\
& x_{0}^{3} x_{2}^{3} x_{4}^{3} x_{6}^{3} x_{1} x_{3} x_{5} x_{7}, x_{0}^{2} x_{2}^{4} x_{4}^{2} x_{6}^{4} x_{3}^{2} x_{7}^{2}, x_{0} x_{1}^{3} x_{2} x_{3}^{3} x_{4} x_{5}^{3} x_{6} x_{7}^{3}, x_{0} x_{1} x_{2}^{3} x_{3}^{3} x_{4} x_{5} x_{6}^{3} x_{7}^{3} ;
\end{aligned}
$$

in $S_{\rho-\alpha_{2}}$

$$
\begin{aligned}
& x_{0}^{4} x_{1}^{4} x_{2}^{4} x_{3}^{4}, x_{0}^{4} x_{1}^{4} x_{4}^{4} x_{5}^{4}, x_{0}^{4} x_{2}^{4} x_{4}^{4} x_{6}^{4}, x_{1}^{4} x_{3}^{4} x_{5}^{4} x_{7}^{4}, x_{2}^{4} x_{3}^{4} x_{6}^{4} x_{7}^{4}, x_{4}^{4} x_{5}^{4} x_{6}^{4} x_{7}^{4}, \\
& x_{0}^{4} x_{1}^{4} x_{2}^{2} x_{3}^{2} x_{4}^{2} x_{5}^{2}, x_{0}^{4} x_{1}^{2} x_{2}^{4} x_{3}^{2} x_{4}^{2} x_{6}^{2}, x_{0}^{3} x_{1}^{3} x_{2}^{3} x_{3}^{3} x_{4} x_{5} x_{6} x_{7}, x_{0}^{2} x_{1}^{4} x_{2}^{2} x_{3}^{4} x_{5}^{2} x_{7}^{2}, \\
& x_{0}^{4} x_{1}^{2} x_{4}^{4} x_{5}^{2} x_{2}^{2} x_{6}^{2}, x_{0}^{3} x_{1}^{3} x_{4}^{3} x_{5}^{3} x_{2} x_{3} x_{6} x_{7} ;
\end{aligned}
$$

in $S_{\rho-\alpha_{3}}$

$$
x_{0}^{4} x_{1}^{4} x_{2}^{4} x_{3}^{4}, x_{0}^{4} x_{1}^{4} x_{4}^{4} x_{5}^{4}, x_{0}^{4} x_{2}^{2} x_{4}^{4} x_{6}^{4}, x_{1}^{4} x_{3}^{4} x_{5}^{4} x_{7}^{4}, x_{2}^{4} x_{3}^{4} x_{6}^{4} x_{7}^{4}, x_{4}^{4} x_{5}^{4} x_{6}^{4} x_{7}^{4}, x_{0}^{4} x_{1}^{4} x_{2}^{2} x_{3}^{2} x_{4}^{2} x_{5}^{2} .
$$

Again in this case, for any polynomial P of critical degree, we have that $\operatorname{Residue}_{F}(P)= \pm \operatorname{det}\left(\tilde{\mathbb{M}}_{P}\right) /$ $\operatorname{det}(\tilde{\mathbb{M}})$.

4. Toric subresultants in the critical degree

In this section we define the toric subresultant of a monomial $h \in S_{\rho}$ and show that this is precisely the numerator of the residue of h. To set things up we must construct two complexes of free \mathbb{A}-modules which we will call the resultant and subresultant complexes, respectively. Along the way we will prove Theorem 3.1 from the previous section. The approach will be to use Weyman's complex $[\mathrm{GKZ}, \S 3.4 \mathrm{E}]$ to pass from an exact sequence of sheaves to a generically exact complex of free modules.

Proof of Theorem 3.1. Note that, as $\operatorname{Residue}_{F}\left(\Delta_{\bar{\sigma}}\right)= \pm 1, \Delta_{\bar{\sigma}}$ is not in the ideal $\left\langle F_{0}, \ldots, F_{n}\right\rangle$. Recall that S_{F} is the quotient $S /\left\langle F_{0}, \ldots, F_{n}\right\rangle$. Now the surjectivity of ϕ and the fact that $\left(S_{F}\right)_{\rho}$ has codimension 1 are equivalent.

Let F be our standard generic ample system. The polynomials F_{i} are sections of sheaves $\mathcal{L}_{i}:=$ $\mathcal{O}\left(\alpha_{i}\right)$ on X (with coefficients in \mathbb{A}). Given any subset I of $\{0, \ldots, n\}$, let $\alpha_{I}=\sum_{i \in I} \alpha_{i}$. We get a corresponding (dual) Koszul complex of sheaves

$$
\begin{equation*}
0 \rightarrow \mathcal{O}\left(-\sum_{i=0}^{n} \alpha_{i}\right) \rightarrow \cdots \rightarrow \bigoplus_{i} \mathcal{O}\left(-\alpha_{i}\right) \stackrel{F}{\rightarrow} \mathcal{O}_{X} \rightarrow 0 \tag{5}
\end{equation*}
$$

Macaulay style formulas for toric residues

If we now tensor this complex with the sheaf $\mathcal{M}:=\mathcal{O}(\rho)=\mathcal{O}\left(\sum \alpha_{i}-\beta_{0}\right)$ we get a new complex

$$
\begin{equation*}
0 \rightarrow \mathcal{O}\left(-\beta_{0}\right) \rightarrow \cdots \rightarrow \bigoplus_{i} \mathcal{O}\left(\rho-\alpha_{i}\right) \xrightarrow{F} \mathcal{O}(\rho) \rightarrow 0 . \tag{6}
\end{equation*}
$$

Since all sheaf Tor groups vanish when one of the factors is locally free, it follows that the complex (6) remains exact even if \mathcal{M} is not locally free. We can therefore apply 'Weyman's complex' [GKZ, ch. 3, Theorem 4.11] which yields a double complex:

$$
\begin{aligned}
C^{-p, q} & =H^{q}\left(X, \bigoplus_{0 \leqslant i_{1} \leqslant \cdots \leqslant i_{p} \leqslant n} \mathcal{L}_{i_{1}}^{*} \otimes \cdots \otimes \mathcal{L}_{i_{p}}^{*} \otimes \mathcal{M}\right) \\
& =\bigoplus_{|I|=n+1-p} H^{q}\left(X, \mathcal{O}\left(\alpha_{I}-\beta_{0}\right)\right) .
\end{aligned}
$$

The corresponding total complex is generically exact with differentials depending polynomially on the coefficients of the F_{i}; therefore, we can view this as a generically exact complex of free \mathbb{A}-modules. By the toric version of Kodaira vanishing, see [Mus02], all cohomology terms in the complex vanish except when $q=0$ or when $p=n+1$ and $q=n$. Note that $H^{0}\left(X, \mathcal{O}\left(\alpha_{I}-\beta_{0}\right)\right)=S_{\alpha_{I}-\beta_{0}}$ and the differentials between these terms are just those from the Koszul complex on S determined by F_{0}, \ldots, F_{n}. Also the only nonvanishing higher cohomology term is $H^{n}\left(X, \mathcal{O}\left(-\beta_{0}\right)\right) \cong \mathbb{C}$, which will correspond to a rank 1 free \mathbb{A}-module. The last differential $\phi: C^{-1} \rightarrow C^{0}$ can therefore be chosen to be the map (4) from § 3:

$$
\begin{aligned}
\phi: S_{\rho-\alpha_{0}} \oplus \cdots \oplus S_{\rho-\alpha_{n}} \oplus \mathbb{A} & \rightarrow S_{\rho} \\
\left(G_{0}, \ldots, G_{n}, c\right) & \mapsto \sum_{i=0}^{n} G_{i} F_{i}+c \Delta_{\bar{\sigma}} .
\end{aligned}
$$

This map is generically surjective and therefore we have proven Theorem 3.1.

Definition 4.1. The resultant complex is the complex of free \mathbb{A}-modules constructed above. Namely

$$
\begin{equation*}
0 \rightarrow S_{-\beta_{0}} \rightarrow \cdots \rightarrow \bigoplus_{i} S_{\rho-\alpha_{i}} \oplus \mathbb{A} \xrightarrow{\phi} S_{\rho} \rightarrow 0 \tag{7}
\end{equation*}
$$

where the map ϕ is as above.
Let $\mathcal{A}_{i}:=\left\{a \in \mathbb{N}^{s}: \operatorname{deg}(a)=\alpha_{i}\right\}$, and ℓ the index of the lattice spanned by $\cup \mathcal{A}_{i}$ in \mathbb{Z}^{n}. We denote by $\operatorname{res}_{\alpha_{0}, \ldots, \alpha_{n}}\left(F_{0}, \ldots, F_{n}\right)$ the (toric) mixed resultant [GKZ, § 3.4A].

Proposition 4.2. The determinant of the resultant complex (7) with respect to the monomial bases is

$$
c \cdot \operatorname{res}_{\alpha_{0}, \ldots, \alpha_{n}}\left(F_{0}, \ldots, F_{n}\right)^{\ell}
$$

for some constant $c \in \mathbb{Q}$.

Proof. In the case when $\ell=1$, so the \mathcal{A}_{i} span \mathbb{Z}^{n}, this is a consequence of Theorem 4.11 in [GKZ, $\S 3.4 \mathrm{E}]$. For the general case we note that the determinant still vanishes if and only if the resultant is 0 , and the degree with respect to the coefficients of any F_{i} is still the mixed volume of all of the other supports with respect to the given lattice \mathbb{Z}^{n}. The degree of the resultant, on the other hand, is $1 / \ell$ of this mixed volume [PS93].

Conjecture 4.3. The constant $c= \pm 1$.

C. D'Andrea and A. Khetan

The following corollary also appears, under weaker hypothesis on F, in [CoD05].
Corollary 4.4. The complex below of free \mathbb{A}-modules is generically exact everywhere but at the last step:

$$
\begin{equation*}
0 \rightarrow S_{-\beta_{0}} \rightarrow \cdots \rightarrow \bigoplus_{i} S_{\rho-\alpha_{i}} \stackrel{F}{\rightarrow} S_{\rho} . \tag{8}
\end{equation*}
$$

There are two ways to enforce exactness at the last stage of the complex. The resultant complex does this by enlarging the second to last module. The second way to get an exact complex out of (8) is to corestrict the last map to a smaller target. Pick a monomial $h \in S_{\rho}$ and define $S_{\rho} / h:=$ $\mathbb{A}\left\langle x^{a}, \operatorname{deg}(a)=\rho, x^{a} \neq h\right\rangle$.

Definition 4.5. The subresultant complex with respect to h is the complex

$$
\begin{equation*}
0 \rightarrow S_{-\beta_{0}} \rightarrow \cdots \rightarrow \bigoplus_{i} S_{\rho-\alpha_{i}} \xrightarrow{F_{h}} S_{\rho} / h \rightarrow 0 . \tag{9}
\end{equation*}
$$

Here F_{h} is the multiplication map of the F_{i} corestricted to S_{ρ} / h.

Proposition 4.6. If h does not belong to the ideal $\left\langle F_{0}, \ldots, F_{n}\right\rangle$, with coefficients in $Q(\mathbb{A})$, then the complex (9) is generically exact.

Proof. This is an immediate consequence of Theorem 3.1.
Now, as the homology with coefficients in \mathbb{A} vanishes for $p>0$, the determinant of the complex with respect to the monomial bases is an element of \mathbb{A} (see [GKZ, Appendix A]) and may be computed as the gcd of the maximal minors of F_{h}. So we can define the following.

Definition 4.7. If h is not in the ideal $\left\langle F_{0}, \ldots, F_{n}\right\rangle$, then let

$$
\mathcal{S}_{h}:=\operatorname{det}(\operatorname{complex}(9)) \in \mathbb{A},
$$

where the determinant is taken with respect to the monomial bases of \mathbb{K}. If h is in the ideal generated by F_{0}, \ldots, F_{n}, then we set $\mathcal{S}_{h}:=0$. The polynomial \mathcal{S}_{h} is well defined, up to a sign, and is called the h-subresultant of the family (1).

Proposition 4.8.

(i) For each i and each monomial h of degree ρ, \mathcal{S}_{h} is homogeneous in the coefficients of F_{i}. If it is not identically zero, it has total degree equal to $\sum_{i} M V\left(\alpha_{0}, \ldots, \alpha_{i-1}, \alpha_{i+1}, \ldots, \alpha_{n}\right)-1$. Here $M V$ is the mixed volume of the polytopes corresponding to the given ample degrees.
(ii) Let \mathbf{k} be a field of characteristic zero. For every specialization of the coefficients of F_{i} in \mathbf{k}, we have that $\mathcal{S}_{h} \neq 0$ if and only if

$$
\mathbf{k}\langle h\rangle+\left\langle F_{0}, \ldots F_{n}\right\rangle_{\rho}=\mathbf{k}\left[x_{0}, \ldots, x_{s-1}\right]_{\rho} .
$$

Proof. The second statement is a straightforward consequence of the definition of \mathcal{S}_{h} as the determinant of the complex (9). The first part follows by comparing the determinant of (9) and the determinant of the resultant complex (7), whose degree in the coefficients of f_{i} equals $M V\left(\alpha_{0}, \ldots, \alpha_{i-1}, \alpha_{i+1}, \ldots, \alpha_{n}\right)$.

Macaulay style formulas for toric residues

5. Residues, resultants and subresultants

We are now ready for our second main theorem.
Theorem 5.1. We have

$$
\operatorname{Residue}_{F}(h)= \pm \frac{\mathcal{S}_{h}}{c \cdot \operatorname{res}_{\alpha_{0}, \ldots, \alpha_{n}}\left(F_{0}, \ldots, F_{n}\right)^{\ell}} .
$$

Proof. Using the result of Theorem 3.2,

$$
\boldsymbol{\operatorname { R e s i d u e }}_{F}(h)= \pm \frac{\operatorname{det}\left(\tilde{\mathbb{M}}_{h}\right)}{\operatorname{det}(\tilde{\mathbb{M}})}= \pm \frac{\delta_{1} \mathcal{S}_{h}}{\delta_{1} c \operatorname{res}_{\alpha_{0}, \ldots, \alpha_{n}}\left(F_{0}, \ldots, F_{n}\right)^{\ell}} .
$$

This is due to the fact that the extraneous factor δ_{1} for a maximal minor in the resultant complex and for the corresponding maximal minor in any subresultant complex are the same. The result now follows from the definition of the subresultant and Proposition 4.2.

Corollary 5.2. We get the following factorization in \mathbb{A} :

$$
\mathcal{S}_{h}=\operatorname{res}_{\alpha_{0}, \ldots, \alpha_{n}}\left(F_{0}, \ldots, F_{n}\right)^{\ell-1} P_{h},
$$

where P_{h} is a polynomial which is not a factor of the resultant.
Proof. In [CDS98, Theorem 1.4] it is shown that the residue is a rational function whose denominator is $\operatorname{res}_{\alpha_{0}, \ldots, \alpha_{n}}\left(F_{0}, \ldots, F_{n}\right)$. While their proof is in the generalized unmixed setting, it carries over to our setting as well, since it relies only on the representation of the toric residue as a sum of local residues [CCD97, Theorem 0.4]. Counting degrees, it turns out that P_{h} has degree in the coefficients of f_{i} one less than the sparse resultant. So, it cannot be a factor of it.

Theorem 5.1 may be regarded as a generalization of Jouanolou's results in the dense case. Suppose that F_{0}, \ldots, F_{n} are generic homogeneous polynomials of respective degrees d_{0}, \ldots, d_{n}. In $[\mathrm{J} 79,(2.9 .6)]$, a linear function $\omega:\left(S /\left\langle F_{0}, \ldots, F_{n}\right\rangle\right)_{\rho} \rightarrow \mathbb{A}$ is defined by setting $\omega\left(\Delta_{\bar{\sigma}}\right):=$ $\operatorname{res}_{d_{0}, \ldots, d_{n}}\left(F_{0}, \ldots, F_{n}\right)$. Hence, $\omega(h)$ may be regarded as the numerator of the residue of h. Several properties of this morphism are studied in [J95, J97]. In [J97, Corollaire 3.9.7.7], it is shown that $\omega(h)$ may be computed as a quotient of two determinants. Comparing this quotient with Chardin's recipe for computing the subresultant as a quotient of two determinants [Cha94] we get that if h is a monomial then $\omega(h)$ is the classical subresultant of the set $\{h\}$ with respect to F_{0}, \ldots, F_{n}.

Example 5.3. We present here an example where $\ell>1$. Let P be the simplex in \mathbb{R}^{3} which is the convex hull of $(0,0,0),(0,1,0),(0,0,1)$ and $(3,1,1)$. In this case, $\ell=3$ and S is a ring of polynomials in four variables. The associated toric variety can be seen to be the quotient of \mathbb{P}^{3} by $(\mathbb{Z} / 3 \mathbb{Z})^{2}$ and the corresponding grading on S is $\mathbb{Z} \oplus(\mathbb{Z} / 3 \mathbb{Z})^{2}$. The four variables $x_{1}, x_{2}, x_{3}, x_{4}$ are each of degree 1 in the free component and of degrees $(0,0),(1,0),(0,1)$ and $(1,1)$, respectively, in the torsion components.

Let $\alpha=P \cap \mathbb{Z}^{3}$, and consider the following four generic polynomials in S_{α} :

$$
F_{i}:=a_{i} x_{1}^{3}+b_{i} x_{2}^{3}+c_{i} x_{3}^{3}+d_{i} x_{4}^{3}, \quad i=0,1,2,3 .
$$

In this system Δ_{σ} equals $x_{1}^{2} x_{2}^{2} x_{3}^{2} x_{4}^{2}$ times the determinant of

$$
D:=\left(\begin{array}{llll}
a_{0} & b_{0} & c_{0} & d_{0} \\
a_{1} & b_{1} & c_{1} & d_{1} \\
a_{2} & b_{2} & c_{2} & d_{2} \\
a_{3} & b_{3} & c_{3} & d_{3}
\end{array}\right) .
$$

C. D'Andrea and A. Khetan

Also, it is easy to see that $\operatorname{res}_{\alpha, \alpha, \alpha, \alpha}\left(F_{0}, F_{1}, F_{2}, F_{3}\right)=\operatorname{det}(D)$. The matrix of the last morphism of the complex (4) has size 33×21 in this case. A nonzero maximal minor of this matrix is

$$
\left(\begin{array}{ccccccccccccccccccccc}
0 & a_{1} & b_{1} & c_{1} & d_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & a_{2} & b_{2} & c_{2} & d_{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & a_{3} & b_{3} & c_{3} & d_{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & a_{4} & b_{4} & c_{4} & d_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & a_{1} & b_{1} & c_{1} & d_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & a_{2} & b_{2} & c_{2} & d_{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & a_{3} & b_{3} & c_{3} & d_{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & a_{1} & 0 & 0 & d_{1} & 0 & b_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & c_{1} \\
0 & 0 & 0 & a_{2} & 0 & 0 & d_{2} & 0 & b_{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & c_{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & a_{1} & b_{1} & c_{1} & d_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & a_{2} & b_{2} & c_{2} & d_{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & a_{3} & b_{3} & c_{3} & d_{3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & a_{4} & b_{4} & c_{4} & d_{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & a_{1} & b_{1} & d_{1} & 0 & 0 & c_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & a_{2} & b_{2} & d_{2} & 0 & 0 & c_{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & a_{3} & b_{3} & d_{3} & 0 & 0 & c_{3} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & a_{1} & 0 & 0 & 0 & b_{1} & c_{1} & d_{1} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & a_{2} & 0 & 0 & 0 & b_{2} & c_{2} & d_{2} & 0 & 0 & 0 \\
0 & 0 & a_{1} & 0 & 0 & d_{1} & 0 & 0 & c_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & b_{1} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & a_{1} & 0 & 0 & d_{1} & 0 & c_{1} & 0 & 0 & 0 & b_{1} & 0 \\
\operatorname{det}(D) & 0
\end{array}\right) .
$$

Its determinant equals

$$
\operatorname{det}(D)^{3}\left(c_{2} b_{1}-b_{2} c_{1}\right)^{2}\left(d_{3} c_{2} b_{1}-b_{2} c_{1} d_{3}-d_{1} b_{3} c_{2}-c_{3} d_{2} b_{1}+c_{3} d_{1} b_{2}+d_{2} b_{3} c_{1}\right)^{2}
$$

so we have that

$$
\delta_{1}=\left(c_{2} b_{1}-b_{2} c_{1}\right)^{2}\left(d_{3} c_{2} b_{1}-b_{2} c_{1} d_{3}-d_{1} b_{3} c_{2}-c_{3} d_{2} b_{1}+c_{3} d_{1} b_{2}+d_{2} b_{3} c_{1}\right)^{2}
$$

The first column of this matrix is indexed by $x_{1}^{2} x_{2}^{2} x_{3}^{2} x_{4}^{2}$. It is easy to see that, for every monomial h of critical degree, $\mathcal{S}_{h}=0$ unless $h=x_{1}^{2} x_{2}^{2} x_{3}^{2} x_{4}^{2}$. In this case, $\mathcal{S}_{x_{1}^{2} x_{2}^{2} x_{3}^{2} x_{4}^{2}}=\operatorname{det}(D)^{2}$ and hence $P_{x_{1}^{2} x_{2}^{2} x_{3}^{2} x_{4}^{2}}= \pm 1$.

This can be explained as follows: every monomial of critical degree is a multiple of x_{i}^{3} for at least one $i=0, \ldots, 3$ except $x_{1}^{2} x_{2}^{2} x_{3}^{2} x_{4}^{2}$. An easy consequence of Cramer's rule is that every monomial which is multiple of x_{i}^{3} is in the ideal generated by the generic F_{i}. This is why all except one of the subresultants are identically zero.

Conjecture 5.4. If P_{h} is not identically zero, then it is an irreducible element of \mathbb{A}. In particular, when $\ell=1$, every subresultant \mathcal{S}_{h} is irreducible.

6. Computing global residues 'à la Macaulay'

In this section, we will review the toric algorithm of [CD97] for computing global residues by means of toric residues (see also [CDS98]). As a straightforward consequence of their algorithm and our results, we get a quotient formula for computing global residues. In the dense case,

Macaulay style formulas for toric residues

we recover the quotient type formula given by Macaulay in [Mac02] for computing the global residue of $x_{1}^{d_{1}-1} x_{2}^{d_{2}-1} \ldots x_{n}^{d_{n}-1}$ with respect to a generic family of polynomials of degrees d_{1}, \ldots, d_{n}.

Let $\mathbf{A}_{1}, \ldots, \mathbf{A}_{n}$ be subsets of \mathbb{Z}^{n}, and consider n Laurent polynomials in n variables t_{1}, \ldots, t_{n} having support in $\mathbf{A}_{1}, \ldots, \mathbf{A}_{n}$ respectively:

$$
f_{j}=\sum_{m \in \mathbf{A}_{j}} u_{j m} \cdot t^{m}, \quad j=1, \ldots, n .
$$

Let V be the set of common zeros of f_{1}, \ldots, f_{n} in the torus $T=\left(\mathbb{C}^{*}\right)^{n}$. If V is finite and all its roots are simple, then for any Laurent polynomial $q \in \mathbb{C}\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]$, the global residue of the differential form

$$
\phi_{q}=\frac{q}{f_{1} \cdots f_{n}} \frac{d t_{1}}{t_{1}} \wedge \cdots \wedge \frac{d t_{n}}{t_{n}}
$$

is defined as $\sum_{\xi \in V}\left(q(\xi) / J^{T}(f)(\xi)\right)$, where $J^{T}(f)$ denotes the affine toric Jacobian

$$
J^{T}(f):=\operatorname{det}\left(t_{k} \frac{\partial f_{j}}{\partial t_{k}}\right)_{1 \leqslant j, k \leqslant n} .
$$

Global residues are basic invariants of multivariate polynomial systems (see [CD97, CDS98] and the references therein).

The link between toric and global residues is given in [CD97, Theorem 4].
Theorem 6.1. Let $f_{1}, \ldots, f_{n} \in \mathbb{C}\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]$ be Laurent polynomials having a finite number of zeros in T, and g another Laurent monomial. Then there is a projective toric variety X with homogeneous coordinate ring S_{X} and a homogeneous element $F_{0} \in S_{X}$ such that:
(i) there is a 'homogenization rule' which assigns to every f_{i} a homogeneous polynomial $F_{i} \in$ $S_{X}, i=1, \ldots, n$
(ii) the family F_{0}, \ldots, F_{n} has no zeros in X;
(iii) there is another homogeneous monomial $G \in S_{X}$ such that

$$
\operatorname{Global}_{\operatorname{Residue}_{f}(g)}=\operatorname{Residue}_{F}(G) .
$$

As an immediate consequence, we get also a quotient formula for computing global residues, as the following example shows.

Example 6.2. This example has already appeared in the introduction of [CDS98]. We want to compute the global residue of $g(t):=t_{1}^{3} t_{2}^{2}$ with respect to the generic system

$$
\begin{aligned}
& f_{1}=a_{0} t_{1}^{2}+a_{1} t_{1} t_{2}+a_{2} t_{2}^{2}+a_{3} t_{1}+a_{4} t_{2}+a_{5} \\
& f_{2}=b_{0} t_{1}^{2}+b_{1} t_{1} t_{2}+b_{2} t_{2}^{2}+b_{3} t_{1}+b_{4} t_{2}+b_{5}
\end{aligned}
$$

Applying the algorithm of [CD97] we get that, in this case, the corresponding toric variety X is \mathbb{P}^{2} with the standard homogeneous coordinates $S_{X}=\mathbb{C}\left[x_{0}, x_{1}, x_{2}\right]$. The 'homogeneous' polynomials are

$$
\begin{aligned}
& F_{0}\left(x_{0}, x_{1}, x_{2}\right):=x_{0}^{2} \\
& F_{1}\left(x_{0}, x_{1}, x_{2}\right):=a_{0} x_{1}^{2}+a_{1} x_{1} x_{2}+a_{2} x_{2}^{2}+a_{3} x_{1} x_{0}+a_{4} x_{2} x_{0}+a_{5} x_{0}^{2} \\
& F_{2}\left(x_{0}, x_{1}, x_{2}\right):=b_{0} x_{1}^{2}+b_{1} x_{1} x_{2}+b_{2} x_{2}^{2}+b_{3} x_{1} x_{0}+b_{4} x_{2} x_{0}+b_{5} x_{0}^{2}
\end{aligned}
$$

and $G=x_{1}^{2} x_{2}$.
The global residue may be computed then as the toric residue of G with respect to F_{0}, F_{1}, F_{2}. Using our methods, it turns out that the matrix \mathbb{M} of Theorem 3.2 is square. Computing it explicitly,

C. D'Andrea and A. Khetan

we get

$$
\mathbb{M}=\left(\begin{array}{cccccccccc}
x_{0} x_{1}^{2} & x_{0} x_{1} x_{2} & x_{0} x_{2}^{2} & x_{0}^{2} x_{1} & x_{0}^{2} x_{2} & x_{0}^{3} & x_{1}^{3} & x_{1}^{2} x_{2} & x_{1} x_{2}^{2} & x_{2}^{3} \\
a_{0} & a_{1} & a_{2} & a_{3} & a_{4} & a_{5} & 0 & \mathbf{0} & 0 & 0 \\
b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & b_{5} & 0 & \mathbf{0} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & \mathbf{0} & 0 & 0 \\
a_{3} & a_{4} & 0 & a_{5} & 0 & 0 & a_{0} & \mathbf{a}_{\mathbf{1}} & a_{2} & 0 \\
b_{3} & b_{4} & 0 & b_{5} & 0 & 0 & b_{0} & \mathbf{b}_{\mathbf{1}} & b_{2} & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & \mathbf{0} & 0 & 0 \\
0 & a_{3} & a_{4} & 0 & a_{5} & 0 & 0 & \mathbf{a}_{\mathbf{0}} & a_{1} & a_{2} \\
0 & b_{3} & b_{4} & 0 & b_{5} & 0 & 0 & \mathbf{b}_{\mathbf{0}} & b_{1} & b_{2} \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & \mathbf{0} & 0 & 0 \\
\mathbf{j}_{\mathbf{1}} & \mathbf{j}_{\mathbf{2}} & \mathbf{j}_{3} & \mathbf{j}_{\mathbf{4}} & \mathbf{j}_{\mathbf{5}} & \mathbf{j}_{\mathbf{6}} & \mathbf{j}_{\mathbf{7}} & \mathbf{j}_{\mathbf{8}} & \mathbf{j}_{\mathbf{9}} & \mathbf{j}_{\mathbf{1 0}}
\end{array}\right),
$$

where the \mathbf{j}_{k} are the coefficients of $\Delta_{\bar{\sigma}}$. The matrix $\tilde{\mathbb{M}}_{h}$ is made by deleting in \mathbb{M} the eighth row and the last column. Hence, we have in virtue of Theorem 3.2

$$
\boldsymbol{\operatorname { R e s i d u e }}_{F}(h)= \pm \frac{\operatorname{det}\left(\tilde{\mathbb{M}}_{h}\right)}{\operatorname{det}(\mathbb{M})}= \pm \frac{\operatorname{det}\left(\tilde{\mathbb{M}}_{h}\right)}{\operatorname{res}_{2,2,2}\left(F_{0}, F_{1}, F_{2}\right)}
$$

and one can check that $\operatorname{det}\left(\tilde{\mathbb{M}}_{h}\right)$ is the polynomial P_{32} of the introduction of [CDS98].
We close this section by showing that the method for computing global residues as a quotient of two determinants presented here, may be regarded as a generalization of a formula given by Macaulay in the classical case. In order to follow his notation, let $F_{1}\left(x_{0}, \ldots, x_{n}\right), \ldots, F_{n}\left(x_{0}, \ldots, x_{n}\right)$ be generic homogeneous polynomials of respective degrees d_{1}, \ldots, d_{n}, and set $f_{i}:=F_{i}\left(1, x_{1}, \ldots, x_{n}\right)$. Let J be the affine Jacobian of the f_{i}, i.e. $J=\operatorname{det}\left(\partial f_{i} / \partial x_{j}\right)_{i, j}$, and

$$
V\left(f_{1}, \ldots, f_{n}\right):=\left\{\xi_{1}, \ldots, \xi_{d_{1} \ldots d_{n}}\right\} \subset \overline{Q(\mathbb{A})}
$$

be the variety defined by the common zeros of the f_{i} in the algebraic closure of $Q(\mathbb{A})$. We denote with \mathbf{m} the monomial $x_{1}^{d_{1}-1} \ldots x_{n}^{d_{n}-1}$.

From display (13) in [Mac02] and following his notation, we have

$$
\begin{equation*}
\sum_{j=1}^{d_{1} \ldots d_{n}} \frac{\mathbf{m}\left(\xi_{j}\right)}{J\left(\xi_{j}\right)}= \pm \frac{R\left(n, t_{n}-1\right)}{R\left(n, t_{n}\right)} \tag{10}
\end{equation*}
$$

where:

- $R\left(n, t_{n}\right)$ is the resultant of $F_{1}\left(0, x_{1}, \ldots, x_{n}\right), \ldots, F_{n}\left(0, x_{1}, \ldots, x_{n}\right)$;
- $R\left(n, t_{n}-1\right)$ is the subresultant of the monomial \mathbf{m} with respect to $F_{1}\left(0, x_{1}, \ldots, x_{n}\right), \ldots$, $F_{n}\left(0, x_{1}, \ldots, x_{n}\right)$.
Comparing the left-hand side of (10) with the definition of the global residue, we have that (10) is actually the global residue of $x_{1}^{d_{1}} \ldots x_{n}^{d_{n}}$ with respect to f_{1}, \ldots, f_{n}. Applying the toric algorithm of [CD97] we get the following:
- $X=\mathbb{P}^{n}, S_{X}=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ with homogenization given by total degree;
- $F_{0}=x_{0}$, and if $g=x_{1}^{d_{1}} \ldots x_{n}^{d_{n}}$, then $G=\mathbf{m}$.

Denote with res the homogeneous resultant for a family of $n+1$ homogeneous polynomials in $n+1$ variables of degrees $1, d_{1}, \ldots d_{n}$. Then, it turns out that (10) equals Residue $_{F}(\mathbf{m})$. Applying Theorem 5.1, we can write $\operatorname{Residue}_{F}(\mathbf{m})$ as $\pm \mathcal{S}_{\mathbf{m}} / \operatorname{res}\left(x_{0}, F_{1}, \ldots, F_{n}\right)$. Now, specializing a generic F_{0} to x_{0} and applying [Cha94, Lemma 1], we get that $\mathcal{S}_{\mathrm{m}} \mapsto R\left(n, t_{n}-1\right)$ and res $\mapsto R\left(n, t_{n}\right)$.

Macaulay style formulas for toric residues

Acknowledgements

We would like to thank Bernd Sturmfels for his insightful comments on preliminary versions of this paper. We thank Eduardo Cattani and Alicia Dickenstein for pointing out that the original proof of Theorem 2.1 was incomplete and providing a suggestion on how to fill the gap. We are also grateful to David Cox for helpful discussions and along with Alicia Dickenstein for having communicated to us their work in progress. All the computations were made with Maple.

References

BC94 V. Batyrev and D. Cox, On the Hodge structure of projective hypersurfaces in toric varieties, Duke Math. J. 75 (1994), 293-338.
BM03 V. Batyrev and E. Materov, Mixed toric residues and Calabi-Yau complete intersections, in Calabi-Yau varieties and mirror symmetry (Toronto, ON, 2001), Fields Inst. Commun. 38 (American Mathematical Society, Providence, RI, 2003), 3-26.
Cha95 M. Chardin, Multivariate subresultants. J. Pure Appl. Algebra 101 (1995), 129-138.
Cha94 M. Chardin. Formules à la Macaulay pour les sous-résultants en plusieurs variables, C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), 433-436.
CCD97 E. Cattani, D. Cox and A. Dickenstein, Residues in toric varieties, Compositio Math. 108 (1997), 35-76.
CoD05 D. Cox and A. Dickenstein, Codimension one theorems for complete toric varieties, Proc. Amer. Math. Soc., to appear.
CD97 E. Cattani and A. Dickenstein, A global view of residues in the torus, Algorithms for algebra (Eindhoven, 1996). J. Pure Appl. Algebra 117/118 (1997), 119-144.
CDS96 E. Cattani, A. Dickenstein, and B. Sturmfels, Computing multidimensional residues, Algorithms in algebraic geometry and applications (Santander, 1994), Progress in Mathematics, vol. 143 (Birkhäuser, Basel, 1996), 135-164.
CDS98 E. Cattani, A. Dickenstein and B. Sturmfels, Residues and resultants, J. Math. Sci. Univ. Tokyo 5 (1998), 119-148.

Cox95 D. Cox, The homogeneous coordinate ring of a toric variety, J. Algebraic Geom. 4 (1995), 17-50.
Cox96 D. Cox, Toric residues, Ark. Mat. 34 (1996), 73-96.
Ful93 W. Fulton, Introduction to toric varieties, Annals of Mathematical Studies, vol. 131 (Princeton University Press, Princeton, NJ, 1993).
GK02 O. A. Gelfond and A. G. Khovanskii, Toric geometry and Grothendieck residues, Mosc. Math. J. 2 (2002), 99-112, 199.
GKZ I. M. Gelfand, M. M. Kapranov and A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Mathematics: Theory and Applications (Birkhäuser, Boston, MA, 1994).
J79 J. P. Jouanolou, Singularités rationnelles du résultant, in Algebraic geometry (Proc. Summer Meeting), University of Copenhagen, Copenhagen, 1978, Lecture Notes in Mathematics, vol. 732 (Springer, Berlin, 1979), 183-213.
J95 J. P. Jouanolou, Aspects invariants de l'élimination, Adv. Math. 114 (1995), 1-174.
J97 J. P. Jouanolou, Formes d'inertie et résultant: un formulaire, Adv. Math. 126 (1997), 119-250 (in French).
Kho78 A. G. Khovanskii, Newton polyhedra and toroidal varieties, Russian Math. Surveys 33 (1978), 237-238.
Mac02 F. Macaulay, Some formulae in elimination, Proc. London Math. Soc. (1) 33 (1902), 3-27.
Mus02 M. Mustaţă, Vanishing theorems on toric varieties, Tohoku Math. J. (2) 54 (2002), 451-470.
PS93 P. Pedersen and B. Sturmfels, Product formulas for resultants and Chow forms, Math. Z. 214 (1993), 377-396.

Sop04 I. Soprounov, Residues and tame symbols on toroidal varieties, Compositio Math. 140 (2004), 1593-1613.
Sza01 A. Szanto, Multivariate subresultants using Jouanolou's resultant matrices, Preprint (2001), http://www.mathpreprints.com/math/Preprint/aszanto/20011204/2/.

Carlos D'Andrea cdandrea@math.berkeley.edu
Miller Institute for Basic Research in Science and Department of Mathematics, University of California at Berkeley, Berkeley, CA 94720, USA

Amit Khetan khetan@math.umass.edu
Department of Mathematics, University of California at Berkeley, Berkeley, CA 94720, USA
Current address: Department of Mathematics, University of Massachusetts at Amherst, Amherst, MA 01002, USA

[^0]: Received 7 August 2003, accepted in final form 2 July 2004, published online 21 April 2005.
 2000 Mathematics Subject Classification 14Q99.
 Keywords: residues, toric varieties, subresultant.
 The first author was supported by the Miller Institute for Basic Research in Science, in the form of a Miller Research Fellowship (2002-2005). The second author was supported by an NSF grant in the name of Professor Bernd Sturmfels. This journal is (c) Foundation Compositio Mathematica 2005.

