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Macaulay style formulas for toric residues

Carlos D’Andrea and Amit Khetan

Abstract

We present an explicit formula for computing toric residues of ample divisors as a quotient
of two determinants, à la Macaulay, where the numerator is a minor of the denominator.
We present a combinatorial construction of a specific element of residue 1. We also give
an irreducible representation of toric residues by extending the theory of subresultants
to monomials of critical degree in the homogeneous coordinate ring of the corresponding
toric variety.

1. Introduction

The toric residue of n + 1 divisors on an n-dimensional toric variety was first introduced by Cox
[Cox96] in the case when all divisors are ample of the same class, and extended to the general case
by Cattani et al. [CCD97]. Toric residues have been found to be useful in a variety of contexts
such as mirror symmetry [BM03], the Hodge structure of hypersurfaces [BC94], and in the study of
sparse resultants [CDS98].

Another related, perhaps more familiar, notion is the global residue in the torus. Given a system
f1, . . . , fn of n Laurent polynomials in n variables with a finite set of common zeros in the torus
T = (C∗)n, and another Laurent polynomial q, the global residue of q with respect to f1, . . . , fn is
the sum of the Grothendieck residues of the differential form

φq =
q

f1 · · · fn

dt1
t1

∧ · · · ∧ dtn
tn

,

at each zero of the fi. This turns out to be a rational function in the coefficients in the fi and
has a wide variety of applications in algebra and analysis. The residue in the torus has been
studied by Khovanskii [Kho78], Gelfond and Khovanskii [GK02], and Soprounov [Sop04]. Cattani
and Dickenstein [CD97, Theorem 4] showed that the global residue in the torus is equal to a
particular toric residue in the sense above of [Cox96, CCD97]. The precise relationship between the
toric residue and the global residue in the torus is discussed in § 6.

In this paper, we present an explicit formula for computing toric residues as quotients of two
determinants, where the numerator is a minor of the denominator. This is an improvement over
earlier algorithms in [CCD97, CD97, CDS96] by eliminating costly Gröbner basis computations.

Both the numerator and denominator of our quotient formula turn out to be divisible by the
same extraneous factor. It would be useful to have a description of the residue in reduced form.
Indeed, the denominator of the toric residue has already been identified with the sparse resultant
[CDS98]. Our second main result is an identification of the numerator with a ‘toric subresultant’,
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analagous to the multivariate subresultant of Chardin [Cha95]. In the dense case, this numerator
and its properties have been deeply studied by Jouanolou in [J79, J95, J97]. Our results may be
regarded as a generalization of Jouanolou’s work.

We start with some notation on toric varieties. For more details we refer the reader to [Ful93,
Cox95, Cox96]. Let X be a projective toric variety of dimension n determined by a complete fan
Σ ⊂ Rn. The generators of the one-dimensional cones in Σ will be denoted η0, . . . , ηs−1. The Chow
group An−1(X) of Weil divisors modulo linear equivalence has rank s − n. We work in the poly-
nomial ring S := A[x0, . . . , xs−1] where each variable xi corresponds to the ray ηi and hence to
a torus-invariant divisor Di of X. We grade S by declaring that the monomial

∏
xai

i has degree
[
∑

aiDi] ∈ An−1(X). The base ring A will be the coefficient space of our polynomial system and
is specified below. We abbreviate β0 := [

∑
i Di], the anticanonical class on X. The irrelevant ideal

B(Σ) is generated by the elements x̂σ =
∏

ηi /∈σ xi where σ ranges over all n-dimensional cones
in Σ.

We now recall the definition of the toric residue from [Cox96]. This depends on n + 1 generic
S-homogeneous polynomials which are homogenizations of Laurent polynomials in n variables.
Given a polynomial of a certain critical degree we construct a differential n-form which gives rise
to a top cohomology class of the canonical sheaf of differentials Ωn

X = O(−β0). The toric residue is
defined to be the trace of this cohomology class.

Formally, pick ample degrees α0, . . . , αn and consider generic polynomials:

Fi(u, x) :=
∑
a∈Ai

uiax
a, i = 0, . . . , n. (1)

where Ai := {a ∈ Ns : deg(a) = αi}. Set A := Q[uia; i = 0, . . . , n; a ∈ Ai], and write Q(A) for the
field of quotients of A. Let ρ =

∑
i αi −β0, which is the critical degree of our system. For any subset

I = {i1, . . . , in} of {0, . . . , s − 1} we write

det(ηI) := det(〈el, ηij 〉1�l,j�n), dxI = dxi1 ∧ · · · ∧ dxin , x̂I =
∏
j /∈I

xj .

The Euler form on X is the sum over all n-element subsets I of {0, . . . , s − 1}:
Ω :=

∑
|I|=n

det(ηI)x̂I dxI .

The polynomials Fi determine an open cover Ui = {x ∈ X : Fi(x) �= 0}. A polynomial g ∈ Sρ gives
an element ωg = gΩ/F0 · · ·Fn which is a C̆ech cocycle of degree n with respect to the open cover Ui.
Therefore, there is an induced cohomology class [ωg] ∈ Hn(X,Ωn

X), and we define ResidueF (g) =
TrX([ωg]) where F = (F0, . . . , Fn). The toric residue is the map ResidueF : Sρ → Q(A) .

The remainder of this paper is organized as follows: § 2 gives a combinatorial construction of
explicit elements of Sρ with residue ±1, playing the role of the toric Jacobian from [CDS98] and
generalizing the elements ∆σ constructed in [CCD97] on simplicial toric varieties. This is used in
§ 3 to give the promised Macaulay style residue formula.

Sections 4 and 5 discuss the reduced numerator of the toric residue of a monomial h. This is
shown to be a toric subresultant associated to the system F0, . . . , Fn and the monomial h. In the
dense case, the subresultant was introduced by [Cha95], and different algorithms for computing
subresultants have been developed in [Cha94, Sza01].

In § 6, we show how our results can be used to compute global residues in the torus. We see how
our results generalize some explicit formulas given by Macaulay in [Mac02] for computing global
residues of dense homogeneous systems.

714

https://doi.org/10.1112/S0010437X05001326 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X05001326


Macaulay style formulas for toric residues

2. Elements with nonzero residue

Let X be a projective, but not necessarily simplicial, toric variety with fan Σ and F0, . . . , Fn generic
elements of ample degrees αi as above.

Pick a complete flag σ̄ = {0} ⊂ σ1 ⊂ · · · ⊂ σn where each σi is a cone of dimension i in Σ.
For i = 1, . . . , n, let zi be the product of all variables xj such that ηj ∈ σi but ηj /∈ σi−1. We set
zn+1 =

∏
ηj /∈σn

xj.
We will see that each Fj can be written in the form

Fj =
n+1∑
i=1

Aijzi.

The (n+1)×(n+1)-determinant ∆σ̄ = det(Aij) is in Sρ. We have the following theorem generalizing
[CCD97, Theorem 0.2].

Theorem 2.1. Suppose X, F , and σ̄ are as above. Then ResidueF (∆σ̄) = ±1.

Note that if X were simplicial then each of z1, . . . , zn would be a single variable corresponding
to the generators of the cone σn and zn+1 would be the product of all of the remaining variables.
The element ∆σ̄, in this case, is the same as the element ∆σn from [CCD97].

Proof. The ηi are ample classes, therefore 〈F0, . . . , Fn〉 ⊂ B(Σ). We next show that B(Σ) ⊂
〈z1, . . . zn+1〉. Consider a generator x̂τ where τ is a maximal cone of Σ. Recall that x̂τ =

∏
ηi /∈τ xi.

Now τ ∩ σn is a face of σn. Choose i such that τ ∩ σn ⊃ σi−1 but τ ∩ σn �⊃ σi. Now, we see that the
one-dimensional cones in τ ∩ σi are all contained in σi−1, and so none of the one dimensional cones
in zi are in τ . Therefore, zi divides x̂τ as desired. Hence we can write (nonuniquely) for j = 0, . . . n

Fj =
n+1∑
i=1

Aijzi.

Now, an application of the global transformation law [CCD97, Theorem 0.1], shows that ResidueF

(∆σ̄) = Residuez(1). And so we need only prove that Residuez(1) = ±1.
Let X ′ be a new toric variety arising from a simplicial refinement Σ′ of Σ with the same one-

dimensional cones, hence the same coordinate ring, albeit with a smaller irrelevant ideal
B(Σ′) ⊂ B(Σ). We have a natural map f : X ′ → X. Let U be the open cover on X defined by
{Ui = {x ∈ X : zi �= 0}}. We have an analagous collection of open sets U ′ on X ′ defined by the
same equations {U ′

i = {x ∈ X ′ : zi �= 0}}. As B(Σ′) ⊂ B(Σ) ⊂ 〈z1, . . . zn+1〉, U ′ is also an open
cover of X ′.

Now, on X, the element 1 ∈ S gives the n-form

ω =
Ω

z1 · · · zn+1
=

Ω
x0 · · · xs−1

. (2)

This form is defined on the open set

U = {x ∈ X : z1(x) �= 0, . . . , zn+1(x) �= 0},
which is the same as the open set defined by x0 �= 0, . . . , xs−1 �= 0. The map f defines an isomorphism
on this open set, and we can pull back ω to get a new form ω′ = f∗(ω) on f−1(U) ⊂ X ′, defined by
the same formula (2). Now, f−1U is an open cover of X ′, and moreover it refines the open cover U ′,
since zi �= 0 on each f−1(Ui). Since the natural map from C̆ech cohomology to sheaf cohomology
respects refinement [ω′

U ′ ] = [ω′
f−1U ] as cohomology classes in Hn(X ′,Ω′n

X). Moreover, f is birational
so TrX′ ◦ f∗ = TrX . Putting it together we have

Residuez(1)X = ±1 ⇐⇒ Residuez(1)X′ = ±1. (3)
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For the simplicial toric variety X ′ and any given maximal cone σ′, every complete flag of cones
ending in σ′ determines the same open cover (up to relabelling) which we denote Vσ′ . In [CCD97]
it was shown that Tr([ω′

Vσ′ ]) = ±1 where ω′ is the same n-form as in (2). So, we need only show
that for some top-dimensional cone σ′ the cohomology classes [ω′

U ′ ] and [ω′
Vσ′ ] coincide. This will

be done by picking σ′ such that we can find another open cover W refining both U ′ and Vσ′

for which ω′ still determines a C̆ech cocycle. The choice of σ′ is determined by the following
lemma.

Lemma 2.2. There is a unique (simplicial) cone σ′ ∈ Σ′ of dimension n generated by {ηi1 , . . . ηin}
such that the corresponding variables xi1 , . . . , xin satisfy xik | zk and moreover z1 = · · · = zn = 0
on X ′ if and only if xi1 = · · · = xin = 0.

Proof. We proceed by induction to show that z1 = · · · = zk = 0 if and only if xi1 = · · · = xik = 0
for a unique k-dimensional cone σ′

k ∈ Σ′. The base case k = 1 is trivial as z1 is a single variable xi1

corresponding to a unique one-dimensional cone. For the inductive step suppose xi1 = · · · = xik = 0
and zk+1 = 0. Let σ′

k be the cone corresponding to xi1 , . . . , xik . The torus orbits of X ′ are in one-to-
one correspondence with the cones in Σ′. The orbit corresponding to a cone σ′ is specified exactly
by the vanishing of the variables corresponding to the one-dimensional generators. In particular,
if xi1 = · · · = xik = 0 and some other variable xik+1

dividing zk+1 vanishes, then there is a cone
in Σ′ containing the rays corresponding to xi1 , . . . , xik+1

. As Σ′ is simplicial, the above set of rays
must itself be a (k + 1)-dimensional cone in Σ′. So, it is enough to show that there is a unique such
cone.

Recall that we have a complete flag of cones σ0 ⊂ · · · ⊂ σk ⊂ · · · σn ⊂ Σ. By construction,
σ′

k ⊂ σk and zk+1 is made up of the rays in σk+1 but not in σk. Now σk was a facet of σk+1

and σ′
k is a cone in its triangulation in Σ′. Therefore, there is a unique cone σ′

k+1 in the triangu-
lation of σk+1 containing σ′

k (no two cones in a triangulation can meet in a facet of the original
cone). Let xik+1

be the additional generator of σ′
k+1. This completes the induction and we take

σ′ = σ′
n.

Now, let z′k = xik for k = 1, . . . , n, and z′n+1 =
∏

ηj /∈σ′ xj the product of the remaining variables.
We define the open cover V by

Vi = {x ∈ X ′ : z′i �= 0}.
By the above lemma we have U ′

i ⊂ Vi for i = 1, . . . , n, V ′
n+1 ⊂ U ′

n+1, and
⋃n

i=1 Vi =
⋃n

i=1 U ′
i .

Therefore the open cover W = {U ′
1, . . . , U

′
n, Vn+1} refines both U ′ and V, and both ω′

U ′ and ω′
V

map to a well defined C̆ech cocycle ω′
W . Hence ω′

U ′ and ω′
V induce the same cohomology class, and

hence have the same trace, as desired. So Residuex(1)X′ = ±1 which completes the proof by virtue
of (3).

Example 2.3. Let O ⊂ R3 be the octahedron with vertices (±1, 0, 0), (0,±1, 0), (0, 0,±1).
This determines a toric variety XO whose normal fan has generators η0 = (−1,−1,−1), η1 =
(−1,−1, 1), η2 = (−1, 1,−1), . . . , η7 = (1, 1, 1) and top-dimensional cones determined by the spans
of the sets of four rays with one coordinate fixed. Pick the ample degrees α0 = · · · = α3 =

∑7
i=0 Di

and consider the generic system:

F0 := a0x
2
0x

2
1x

2
2x

2
3 + a1x

2
0x

2
1x

2
4x

2
5 + a2x

2
0x

2
2x

2
4x

2
6 + a3x0x1x2x3x4x5x6x7

+ a4x
2
1x

2
3x

2
5x

2
7 + a5x

2
2x

2
3x

2
6x

2
7 + a6x

2
4x

2
5x

2
6x

2
7

F1 := b0x
2
0x

2
1x

2
2x

2
3 + b1x

2
0x

2
1x

2
4x

2
5 + b2x

2
0x

2
2x

2
4x

2
6 + b3x0x1x2x3x4x5x6x7

+ b4x
2
1x

2
3x

2
5x

2
7 + b5x

2
2x

2
3x

2
6x

2
7 + b6x

2
4x

2
5x

2
6x

2
7
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F2 := c0x
2
0x

2
1x

2
2x

2
3 + c1x

2
0x

2
1x

2
4x

2
5 + c2x

2
0x

2
2x

2
4x

2
6 + c3x0x1x2x3x4x5x6x7

+ c4x
2
1x

2
3x

2
5x

2
7 + c5x

2
2x

2
3x

2
6x

2
7 + c6x

2
4x

2
5x

2
6x

2
7

F3 := d0x
2
0x

2
1x

2
2x

2
3 + d1x

2
0x

2
1x

2
4x

2
5 + d2x

2
0x

2
2x

2
4x

2
6 + d3x0x1x2x3x4x5x6x7

+ d4x
2
1x

2
3x

2
5x

2
7 + d5x

2
2x

2
3x

2
6x

2
7 + d6x

2
4x

2
5x

2
6x

2
7.

As our complete flag σ̄ we pick {0} ⊂ {η0} ⊂ {η0, η1} ⊂ {η0, η1, η2, η3}. This gives z0 = x0, z1 =
x1, z2 = x2x3, z3 = x4x5x6x7 and we can write

F0 = z0(a0x0x
2
1x

2
2x

2
3 + a1x0x

2
1x

2
4x

2
5 + a2x0x

2
2x

2
4x

2
6 + a3x1x2x3x4x5x6x7)

+ z1(a4x1x
2
3x

2
5x

2
7) + z2(a5x2x3x

2
6x

2
7) + z3(a6x4x5x6x7),

and similarly for F1, F2, F3. Therefore:

∆σ̄ = det




a0x0x
2
1x

2
2x

2
3 + · · · a4x1x

2
3x

2
5x

2
7 a5x2x3x

2
6x

2
7 a6x4x5x6x7

b0x0x
2
1x

2
2x

2
3 + · · · b4x1x

2
3x

2
5x

2
7 b5x2x3x

2
6x

2
7 b6x4x5x6x7

c0x0x
2
1x

2
2x

2
3 + · · · c4x1x

2
3x

2
5x

2
7 c5x2x3x

2
6x

2
7 c6x4x5x6x7

d0x0x
2
1x

2
2x

2
3 + · · · d4x1x

2
3x

2
5x

2
7 d5x2x3x

2
6x

2
7 d6x4x5x6x7




= [0456]x0x
3
1x

3
2x

5
3x4x

3
5x

3
6x

5
7 + [1456]x0x

3
1x2x

3
3x

3
4x

5
5x

3
6x

5
7

+ [2456]x0x1x
3
2x

3
3x

3
4x

3
5x

5
6x

5
7 + [3456]x2

1x
2
2x

4
3x

2
4x

4
5x

4
6x

6
7.

Here the ‘bracket’ [0456] denotes the 4 × 4 determinant:

det




a0 a4 a5 a6

b0 b4 b5 b6

c0 c4 c5 c6

d0 d4 d5 d6


 .

Remark 2.4. The construction uses that the αi are ample degrees. It is still an open problem to find
an explicit element of nonzero residue in a more general setting, for example when the αi correspond
to nef and big divisors, i.e. have n-dimensional support. Indeed this is the only obstruction to
generalizing the Macaulay style formula of the next section to this more general case.

3. Macaulay style formulas for residues

We now show how to use the element ∆σ̄ to give an explicit Macaulay formula for the residue. We
will need the following result. Consider the map of free A-modules:

φ : Sρ−α0 ⊕ · · · ⊕ Sρ−αn ⊕ A → Sρ

(G0, . . . , Gn, c) �→
n∑

i=0

GiFi + c∆σ̄.
(4)

Theorem 3.1 (Codimension 1 theorem). Let X be a projective toric variety, and F a generic ample
system as above, then the map φ described above is generically surjective. Equivalently, the degree ρ
component of the quotient SF := S/〈F0, . . . , Fn〉 has Q(A) dimension 1.

The proof is postponed to the next section. When X is simplicial, this result is due to [CCD97].
In a forthcoming paper, Cox and Dickenstein [CoD05] prove a much more general codimension
theorem which implies the theorem above.

Let M be the matrix associated with the A-linear map φ in the monomial bases. As in [Mac02],
we shall index the rows of M in correspondence with the elements of the monomial basis of the
domain. Fix a monomial h∈Sρ, and let M̃ be any square maximal submatrix with nonvanishing
determinant. It turns out that M̃ must contain the row corresponding to ∆σ̄. This is due to the

717

https://doi.org/10.1112/S0010437X05001326 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X05001326


C. D’Andrea and A. Khetan

fact that ∆σ̄ does not belong to the ideal generated by F0, . . . , Fn if this family does not have any
common zero in X. Let M̃h be the square submatrix of M̃ made by deleting this last row and the
column indexed by h. Now we are ready for the main result of this section.

Theorem 3.2. For any generic ample system F = (F0, . . . , Fn) of divisors on X and M̃ and M̃h

defined as above:

ResidueF (h) = ±det(M̃h)
det(M̃)

.

Proof. Let M̃h be the matrix M̃ modified as follows: we multiply by h all of the elements in the
column indexed by h. Then, det(M̃h) = hdet(M̃). On the other hand, performing elementary
operations in the columns of M̃ and expanding the determinant along the column indexed by h,
it turns out that there are homogeneous polynomials Gi such that:

hdet(M̃) = det(M̃h) = G0F0 + · · · + GnFn ± det(M̃h)∆σ̄.

By taking the residue of both sides, we get

ResidueF (h) det(M̃) = ± det(M̃h)ResidueF (∆σ̄) = ± det(M̃h).

Remark 3.3. In the case of ‘generalized unmixed systems’, when each αi is an integer multiple of a
fixed ample degree α, one can also use the toric Jacobian J(F ), scaled by an appropriate constant,
in place of the element ∆σ̄. The Jacobian has the computational disadvantage of having much
larger support than ∆σ̄ although it has the advantage of being intrinsic to the toric system and not
dependent on a choice of σ̄.

The following result is a straightforward consequence of Theorem 3.2, and says that for any
polynomial P of critical degree, ResidueF (P ) may be computed as a quotient of two determinants.

Corollary 3.4. Let P =
∑

deg(xa)=ρ pax
a, where pa are constants. As before, let M̃ be any square

maximal submatrix of M having nonzero determinant. Let M̃P be the matrix M̃ modified as follows:
for every monomial xa of critical degree, we replace the entry in the row corresponding to ∆σ̄ and
column indexed by xa with the coefficient pa. Then:

ResidueF (P ) = ±det(M̃P )
det(M̃)

.

Proof. Expand det(M̃P ) by the row corresponding to ∆σ̄, and use the linearity of the residue and
Theorem 3.2.

Example 3.5. Let X = P1 × P1 whose fan has the following one-dimensional generators:
η1 = (1, 0), η2 = (0,−1), η3 = (−1, 0) and η4 = (0, 1). We pick the ample degrees α0 = D2 + D3,
α1 = 2D2 +D3, α2 = D2 +2D3 and consider the following generic polynomials having those degrees:

F0 := a0x2x3 + a1x1x2 + a2x1x4 + a3x3x4,

F1 := b0x
2
2x3 + b1x1x

2
2 + b2x2x3x4 + b3x1x2x4 + b4x3x

2
4 + b5x1x

2
4,

F2 := c0x2x
2
3 + c1x1x2x3 + c2x

2
1x2 + c3x

2
3x4 + c4x1x3x4 + c5x

2
1x4.

The critical degree is −D1 + 3D2 + 3D3 − D4 and may be identified with the set of nine integer
points lying in the interior of a 4 × 4 square having integer vertices and edges parallel to the axes
(see [CDS98]). To compute ∆σ̄ we can take z1 = x1, z2 = x2, z3 = x3x4.

∆σ̄ = det


 a1x2 + a2x4 a0x3 a3

b1x
2
2 + b3x2x4 + b5x

2
4 b0x2x3 + b2x3x4 b4x4

c1x2x3 + c2x1x2 + c4x3x4 + c5x1x4 c0x
2
3 c3x3


 .
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In this case, M is the following 9 × 9 matrix:

M =




a3 a2 0 a0 a1 0 0 0 0
0 a3 a2 0 a0 a1 0 0 0
0 0 0 a3 a2 0 a0 a1 0
0 0 0 0 a3 a2 0 a0 a1

b4 b5 0 b2 b3 0 b0 b1 0
0 b4 b5 0 b2 b3 0 b0 b1

0 0 0 c3 c4 c5 c0 c1 c2

c3 c4 c5 c0 c1 c2 0 0 0
d1 d2 d3 d4 d5 d6 d7 d8 d9




,

where the dk are the coefficients of ∆σ̄:

d1 := −a2b4c0 + b5a3c0 + a2c3b2 + c4a0b4 − c4a3b2 − b5a0c3

d2 := c5a0b4 − c5a3b2

d3 := 0

d4 := a1c3b2 − a1b4c0 + a2c3b0 − b3a0c3 + b3a3c0 + c1a0b4 − c1a3b2 − c4a3b0

d5 := c2a0b4 − c2a3b2 − c5a3b0

d6 := 0

d7 := a1c3b0 − a0b1c3 + a3b1c0 − c1a3b0

d8 := 0

d9 := 0.

It turns out that det(M) equals the sparse resultant of the Fi. Let

P := p1x2
3x

2
4 + p2x1x3x

2
4 + p3x2

1x
2
4 + p4x2x

2
3x4 + p5x1x2x3x4

+ p6x2
1x2x4 + p7x2

2x
2
3 + p8x1x

2
2x3 + p9x2

1x
2
2

be any polynomial of critical degree. Following the notation of Corollary 3.4, we have that M̃ = M

and

M̃P =




a3 a2 0 a0 a1 0 0 0 0
0 a3 a2 0 a0 a1 0 0 0
0 0 0 a3 a2 0 a0 a1 0
0 0 0 0 a3 a2 0 a0 a1

b4 b5 0 b2 b3 0 b0 b1 0
0 b4 b5 0 b2 b3 0 b0 b1

0 0 0 c3 c4 c5 c0 c1 c2

c3 c4 c5 c0 c1 c2 0 0 0
p1 p2 p3 p4 p5 p6 p7 p8 p9




.

So, we have that ResidueF (P ) = ±det(M̃P )/det(M̃).

Example 3.6. Consider the generic system introduced in Example 2.3. In this case, M is a 101× 63
size matrix. With the aid of Maple, we have found a square maximal minor M̃ by choosing the rows
indexed by the element ∆σ̄, as constructed in Example 2.3, and the following monomials:
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in Sρ−α0

x4
0x

4
1x

4
2x

4
3, x

4
0x

4
1x

4
4x

4
5, x

4
0x

4
2x

4
4x

4
6, x

4
1x

4
3x

4
5x

4
7, x

4
2x

4
3x

4
6x

4
7, x

4
4x

4
5x

4
6x

4
7,

x4
0x

4
1x

2
2x

2
3x

2
4x

2
5, x

4
0x

2
1x

4
2x

2
3x

2
4x

2
6, x

3
0x

3
1x

3
2x

3
3x4x5x6x7, x

2
0x

4
1x

2
2x

4
3x

2
5x

2
7,

x2
0x

2
1x

4
2x

4
3x

2
6x

2
7, x

2
0x

2
1x

2
2x

2
3x

2
4x

2
5x

2
6x

2
7, x

4
0x

2
1x

4
4x

2
5x

2
2x

2
6, x

3
0x

3
1x

3
4x

3
5x2x3x6x7,

x2
0x

4
1x

2
4x

4
5x

2
3x

2
7, x

2
0x

2
1x

4
4x

4
5x

2
6x

2
7, x

3
0x

3
2x

3
4x

3
6x1x3x5x7, x

2
0x

4
2x

2
4x

4
6x

2
3x

2
7,

x2
0x

2
2x

4
4x

4
6x

2
5x

2
7, x0x

3
1x2x

3
3x4x

3
5x6x

3
7, x0x1x

3
2x

3
3x4x5x

3
6x

3
7,

x0x1x2x3x
3
4x

3
5x

3
6x

3
7, x

2
1x

4
3x

2
5x

4
7x

2
2x

2
6, x

2
1x

2
3x

4
5x

4
7x

2
4x

2
6, x

2
2x

2
3x

4
6x

4
7x

2
4x

2
5;

in Sρ−α1

x4
0x

4
1x

4
2x

4
3, x

4
0x

4
1x

4
4x

4
5, x

4
0x

4
2x

4
4x

4
6, x

4
1x

4
3x

4
5x

4
7, x

4
2x

4
3x

4
6x

4
7, x

4
4x

4
5x

4
6x

4
7,

x4
0x

4
1x

2
2x

2
3x

2
4x

2
5, x

4
0x

2
1x

4
2x

2
3x

2
4x

2
6, x

3
0x

3
1x

3
2x

3
3x4x5x6x7, x

2
0x

4
1x

2
2x

4
3x

2
5x

2
7,

x2
0x

2
1x

4
2x

4
3x

2
6x

2
7, x

4
0x

2
1x

4
4x

2
5x

2
2x

2
6, x

3
0x

3
1x

3
4x

3
5x2x3x6x7, x

2
0x

4
1x

2
4x

4
5x

2
3x

2
7,

x3
0x

3
2x

3
4x

3
6x1x3x5x7, x

2
0x

4
2x

2
4x

4
6x

2
3x

2
7, x0x

3
1x2x

3
3x4x

3
5x6x

3
7, x0x1x

3
2x

3
3x4x5x

3
6x

3
7;

in Sρ−α2

x4
0x

4
1x

4
2x

4
3, x

4
0x

4
1x

4
4x

4
5, x

4
0x

4
2x

4
4x

4
6, x

4
1x

4
3x

4
5x

4
7, x

4
2x

4
3x

4
6x

4
7, x

4
4x

4
5x

4
6x

4
7,

x4
0x

4
1x

2
2x

2
3x

2
4x

2
5, x

4
0x

2
1x

4
2x

2
3x

2
4x

2
6, x

3
0x

3
1x

3
2x

3
3x4x5x6x7, x

2
0x

4
1x

2
2x

4
3x

2
5x

2
7,

x4
0x

2
1x

4
4x

2
5x

2
2x

2
6, x

3
0x

3
1x

3
4x

3
5x2x3x6x7;

in Sρ−α3

x4
0x

4
1x

4
2x

4
3, x

4
0x

4
1x

4
4x

4
5, x

4
0x

2
2x

4
4x

4
6, x

4
1x

4
3x

4
5x

4
7, x

4
2x

4
3x

4
6x

4
7, x

4
4x

4
5x

4
6x

4
7, x

4
0x

4
1x

2
2x

2
3x

2
4x

2
5.

Again in this case, for any polynomial P of critical degree, we have that ResidueF (P ) = ±det(M̃P )/
det(M̃).

4. Toric subresultants in the critical degree

In this section we define the toric subresultant of a monomial h ∈ Sρ and show that this is precisely
the numerator of the residue of h. To set things up we must construct two complexes of free
A-modules which we will call the resultant and subresultant complexes, respectively. Along the
way we will prove Theorem 3.1 from the previous section. The approach will be to use Weyman’s
complex [GKZ, § 3.4E] to pass from an exact sequence of sheaves to a generically exact complex of
free modules.

Proof of Theorem 3.1. Note that, as ResidueF (∆σ̄) = ±1, ∆σ̄ is not in the ideal 〈F0, . . . , Fn〉.
Recall that SF is the quotient S/〈F0, . . . , Fn〉. Now the surjectivity of φ and the fact that (SF )ρ has
codimension 1 are equivalent.

Let F be our standard generic ample system. The polynomials Fi are sections of sheaves Li :=
O(αi) on X (with coefficients in A). Given any subset I of {0, . . . , n}, let αI =

∑
i∈I αi. We get a

corresponding (dual) Koszul complex of sheaves

0 → O
(
−

n∑
i=0

αi

)
→ · · · →

⊕
i

O(−αi)
F→ OX → 0. (5)
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If we now tensor this complex with the sheaf M := O(ρ) = O(
∑

αi − β0) we get a new complex

0 → O(−β0) → · · · →
⊕

i

O(ρ − αi)
F→ O(ρ) → 0. (6)

Since all sheaf Tor groups vanish when one of the factors is locally free, it follows that the complex (6)
remains exact even if M is not locally free. We can therefore apply ‘Weyman’s complex’ [GKZ, ch. 3,
Theorem 4.11] which yields a double complex:

C−p,q = Hq

(
X,

⊕
0�i1�···�ip�n

L∗
i1 ⊗ · · · ⊗ L∗

ip ⊗M
)

=
⊕

|I|=n+1−p

Hq(X,O(αI − β0)).

The corresponding total complex is generically exact with differentials depending polynomially on
the coefficients of the Fi; therefore, we can view this as a generically exact complex of free A-modules.
By the toric version of Kodaira vanishing, see [Mus02], all cohomology terms in the complex vanish
except when q = 0 or when p = n + 1 and q = n. Note that H0(X,O(αI − β0)) = SαI−β0 and
the differentials between these terms are just those from the Koszul complex on S determined by
F0, . . . , Fn. Also the only nonvanishing higher cohomology term is Hn(X,O(−β0)) ∼= C, which will
correspond to a rank 1 free A-module. The last differential φ : C−1 → C0 can therefore be chosen
to be the map (4) from § 3:

φ : Sρ−α0 ⊕ · · · ⊕ Sρ−αn ⊕ A → Sρ

(G0, . . . , Gn, c) �→
n∑

i=0

GiFi + c∆σ̄.

This map is generically surjective and therefore we have proven Theorem 3.1.

Definition 4.1. The resultant complex is the complex of free A-modules constructed above. Namely

0 → S−β0 → · · · →
⊕

i

Sρ−αi ⊕ A
φ→ Sρ → 0 (7)

where the map φ is as above.

Let Ai := {a ∈ Ns : deg(a) = αi}, and 	 the index of the lattice spanned by ∪Ai in Zn. We denote
by resα0,...,αn(F0, . . . , Fn) the (toric) mixed resultant [GKZ, § 3.4A].

Proposition 4.2. The determinant of the resultant complex (7) with respect to the monomial
bases is

c · resα0,...,αn(F0, . . . , Fn)�

for some constant c ∈ Q.

Proof. In the case when 	 = 1, so the Ai span Zn, this is a consequence of Theorem 4.11 in [GKZ,
§ 3.4E]. For the general case we note that the determinant still vanishes if and only if the resultant
is 0, and the degree with respect to the coefficients of any Fi is still the mixed volume of all of the
other supports with respect to the given lattice Zn. The degree of the resultant, on the other hand,
is 1/	 of this mixed volume [PS93].

Conjecture 4.3. The constant c = ±1.
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The following corollary also appears, under weaker hypothesis on F , in [CoD05].

Corollary 4.4. The complex below of free A-modules is generically exact everywhere but at the
last step:

0 → S−β0 → · · · →
⊕

i

Sρ−αi

F→ Sρ. (8)

There are two ways to enforce exactness at the last stage of the complex. The resultant complex
does this by enlarging the second to last module. The second way to get an exact complex out
of (8) is to corestrict the last map to a smaller target. Pick a monomial h ∈ Sρ and define Sρ/h :=
A〈xa,deg(a) = ρ, xa �= h〉.

Definition 4.5. The subresultant complex with respect to h is the complex

0 → S−β0 → · · · →
⊕

i

Sρ−αi

Fh→ Sρ/h → 0. (9)

Here Fh is the multiplication map of the Fi corestricted to Sρ/h.

Proposition 4.6. If h does not belong to the ideal 〈F0, . . . , Fn〉, with coefficients in Q(A), then
the complex (9) is generically exact.

Proof. This is an immediate consequence of Theorem 3.1.

Now, as the homology with coefficients in A vanishes for p > 0, the determinant of the complex
with respect to the monomial bases is an element of A (see [GKZ, Appendix A]) and may be
computed as the gcd of the maximal minors of Fh. So we can define the following.

Definition 4.7. If h is not in the ideal 〈F0, . . . , Fn〉, then let

Sh := det(complex(9)) ∈ A,

where the determinant is taken with respect to the monomial bases of K. If h is in the ideal generated
by F0, . . . , Fn, then we set Sh := 0. The polynomial Sh is well defined, up to a sign, and is called
the h-subresultant of the family (1).

Proposition 4.8.

(i) For each i and each monomial h of degree ρ, Sh is homogeneous in the coefficients of Fi.
If it is not identically zero, it has total degree equal to

∑
i MV(α0, . . . , αi−1, αi+1, . . . , αn)− 1.

Here MV is the mixed volume of the polytopes corresponding to the given ample degrees.

(ii) Let k be a field of characteristic zero. For every specialization of the coefficients of Fi in k,
we have that Sh �= 0 if and only if

k〈h〉 + 〈F0, . . . Fn〉ρ = k[x0, . . . , xs−1]ρ.

Proof. The second statement is a straightforward consequence of the definition of Sh as the deter-
minant of the complex (9). The first part follows by comparing the determinant of (9) and the
determinant of the resultant complex (7), whose degree in the coefficients of fi equals
MV(α0, . . . , αi−1, αi+1, . . . , αn).
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5. Residues, resultants and subresultants

We are now ready for our second main theorem.

Theorem 5.1. We have

ResidueF (h) = ± Sh

c · resα0,...,αn(F0, . . . , Fn)�
.

Proof. Using the result of Theorem 3.2,

ResidueF (h) = ±det(M̃h)
det(M̃)

= ± δ1Sh

δ1c resα0,...,αn(F0, . . . , Fn)�
.

This is due to the fact that the extraneous factor δ1 for a maximal minor in the resultant complex
and for the corresponding maximal minor in any subresultant complex are the same. The result
now follows from the definition of the subresultant and Proposition 4.2.

Corollary 5.2. We get the following factorization in A:

Sh = resα0,...,αn(F0, . . . , Fn)�−1Ph,

where Ph is a polynomial which is not a factor of the resultant.

Proof. In [CDS98, Theorem 1.4] it is shown that the residue is a rational function whose denominator
is resα0,...,αn(F0, . . . , Fn). While their proof is in the generalized unmixed setting, it carries over to
our setting as well, since it relies only on the representation of the toric residue as a sum of local
residues [CCD97, Theorem 0.4]. Counting degrees, it turns out that Ph has degree in the coefficients
of fi one less than the sparse resultant. So, it cannot be a factor of it.

Theorem 5.1 may be regarded as a generalization of Jouanolou’s results in the dense case.
Suppose that F0, . . . , Fn are generic homogeneous polynomials of respective degrees d0, . . . , dn.
In [J79, (2.9.6)], a linear function ω : (S/〈F0, . . . , Fn〉)ρ → A is defined by setting ω(∆σ̄) :=
resd0,...,dn(F0, . . . , Fn). Hence, ω(h) may be regarded as the numerator of the residue of h.
Several properties of this morphism are studied in [J95, J97]. In [J97, Corollaire 3.9.7.7], it is
shown that ω(h) may be computed as a quotient of two determinants. Comparing this quotient
with Chardin’s recipe for computing the subresultant as a quotient of two determinants [Cha94]
we get that if h is a monomial then ω(h) is the classical subresultant of the set {h} with respect to
F0, . . . , Fn.

Example 5.3. We present here an example where 	 > 1. Let P be the simplex in R3 which is
the convex hull of (0, 0, 0), (0, 1, 0), (0, 0, 1) and (3, 1, 1). In this case, 	 = 3 and S is a ring of
polynomials in four variables. The associated toric variety can be seen to be the quotient of P3 by
(Z/3Z)2 and the corresponding grading on S is Z ⊕ (Z/3Z)2. The four variables x1, x2, x3, x4 are
each of degree 1 in the free component and of degrees (0, 0), (1, 0), (0, 1) and (1, 1), respectively, in
the torsion components.

Let α = P ∩ Z3, and consider the following four generic polynomials in Sα:

Fi := aix
3
1 + bix

3
2 + cix

3
3 + dix

3
4, i = 0, 1, 2, 3.

In this system ∆σ equals x2
1x

2
2x

2
3x

2
4 times the determinant of

D :=




a0 b0 c0 d0

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3


 .
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Also, it is easy to see that resα,α,α,α(F0, F1, F2, F3) = det(D). The matrix of the last morphism of
the complex (4) has size 33 × 21 in this case. A nonzero maximal minor of this matrix is


0 a1 b1 c1 d1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 a2 b2 c2 d2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 a3 b3 c3 d3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 a4 b4 c4 d4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 a1 b1 c1 d1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 a2 b2 c2 d2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 a3 b3 c3 d3 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 a1 0 0 d1 0 b1 0 0 0 0 0 0 0 0 0 0 0 c1

0 0 0 a2 0 0 d2 0 b2 0 0 0 0 0 0 0 0 0 0 0 c2

0 0 0 0 0 0 0 0 0 a1 b1 c1 d1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 a2 b2 c2 d2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 a3 b3 c3 d3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 a4 b4 c4 d4 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 a1 b1 d1 0 0 c1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 a2 b2 d2 0 0 c2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 a3 b3 d3 0 0 c3 0 0 0
0 0 0 0 0 0 0 0 0 0 0 a1 0 0 0 b1 c1 d1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 a2 0 0 0 b2 c2 d2 0 0 0
0 0 a1 0 0 d1 0 0 c1 0 0 0 0 0 0 0 0 0 b1 0 0
0 0 0 0 0 0 0 0 0 0 a1 0 0 d1 0 c1 0 0 0 b1 0

det(D) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0




.

Its determinant equals

det(D)3(c2b1 − b2c1)2(d3c2b1 − b2c1d3 − d1b3c2 − c3d2b1 + c3d1b2 + d2b3c1)2

so we have that

δ1 = (c2b1 − b2c1)2(d3c2b1 − b2c1d3 − d1b3c2 − c3d2b1 + c3d1b2 + d2b3c1)2.

The first column of this matrix is indexed by x2
1x

2
2x

2
3x

2
4. It is easy to see that, for every monomial

h of critical degree, Sh = 0 unless h = x2
1x

2
2x

2
3x

2
4. In this case, Sx2

1x2
2x2

3x2
4

= det(D)2 and hence
Px2

1x2
2x2

3x2
4

= ±1.

This can be explained as follows: every monomial of critical degree is a multiple of x3
i for at least

one i = 0, . . . , 3 except x2
1x

2
2x

2
3x

2
4. An easy consequence of Cramer’s rule is that every monomial

which is multiple of x3
i is in the ideal generated by the generic Fi. This is why all except one of the

subresultants are identically zero.

Conjecture 5.4. If Ph is not identically zero, then it is an irreducible element of A. In particular,
when 	 = 1, every subresultant Sh is irreducible.

6. Computing global residues ‘à la Macaulay’

In this section, we will review the toric algorithm of [CD97] for computing global residues by
means of toric residues (see also [CDS98]). As a straightforward consequence of their algorithm
and our results, we get a quotient formula for computing global residues. In the dense case,
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we recover the quotient type formula given by Macaulay in [Mac02] for computing the global residue
of xd1−1

1 xd2−1
2 . . . xdn−1

n with respect to a generic family of polynomials of degrees d1, . . . , dn.
Let A1, . . . ,An be subsets of Zn, and consider n Laurent polynomials in n variables t1, . . . , tn

having support in A1, . . . ,An respectively:

fj =
∑

m∈Aj

ujm · tm, j = 1, . . . , n.

Let V be the set of common zeros of f1, . . . , fn in the torus T = (C∗)n. If V is finite and all its roots
are simple, then for any Laurent polynomial q ∈ C[t±1

1 , . . . , t±1
n ], the global residue of the differential

form

φq =
q

f1 · · · fn

dt1
t1

∧ · · · ∧ dtn
tn

,

is defined as
∑

ξ∈V (q(ξ)/JT (f)(ξ)), where JT (f) denotes the affine toric Jacobian

JT (f) := det
(

tk
∂fj

∂tk

)
1�j,k�n

.

Global residues are basic invariants of multivariate polynomial systems (see [CD97, CDS98] and the
references therein).

The link between toric and global residues is given in [CD97, Theorem 4].

Theorem 6.1. Let f1, . . . , fn ∈ C[t±1
1 , . . . , t±1

n ] be Laurent polynomials having a finite number
of zeros in T , and g another Laurent monomial. Then there is a projective toric variety X with
homogeneous coordinate ring SX and a homogeneous element F0 ∈ SX such that:

(i) there is a ‘homogenization rule’ which assigns to every fi a homogeneous polynomial Fi ∈
SX , i = 1, . . . , n;

(ii) the family F0, . . . , Fn has no zeros in X;

(iii) there is another homogeneous monomial G ∈ SX such that

Global Residuef (g) = ResidueF (G).

As an immediate consequence, we get also a quotient formula for computing global residues, as
the following example shows.

Example 6.2. This example has already appeared in the introduction of [CDS98]. We want to
compute the global residue of g(t) := t31t

2
2 with respect to the generic system

f1 = a0t
2
1 + a1t1t2 + a2t

2
2 + a3t1 + a4t2 + a5,

f2 = b0t
2
1 + b1t1t2 + b2t

2
2 + b3t1 + b4t2 + b5.

Applying the algorithm of [CD97] we get that, in this case, the corresponding toric variety X is
P2 with the standard homogeneous coordinates SX = C[x0, x1, x2]. The ‘homogeneous’ polynomials
are

F0(x0, x1, x2) := x2
0,

F1(x0, x1, x2) := a0x
2
1 + a1x1x2 + a2x

2
2 + a3x1x0 + a4x2x0 + a5x

2
0,

F2(x0, x1, x2) := b0x
2
1 + b1x1x2 + b2x

2
2 + b3x1x0 + b4x2x0 + b5x

2
0,

and G = x2
1x2.

The global residue may be computed then as the toric residue of G with respect to F0, F1, F2.
Using our methods, it turns out that the matrix M of Theorem 3.2 is square. Computing it explicitly,
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we get

M =




x0x
2
1 x0x1x2 x0x

2
2 x2

0x1 x2
0x2 x3

0 x3
1 x2

1x2 x1x
2
2 x3

2

a0 a1 a2 a3 a4 a5 0 0 0 0
b0 b1 b2 b3 b4 b5 0 0 0 0
0 0 0 0 0 1 0 0 0 0
a3 a4 0 a5 0 0 a0 a1 a2 0
b3 b4 0 b5 0 0 b0 b1 b2 0
0 0 0 1 0 0 0 0 0 0
0 a3 a4 0 a5 0 0 a0 a1 a2

0 b3 b4 0 b5 0 0 b0 b1 b2

0 0 0 0 1 0 0 0 0 0
j1 j2 j3 j4 j5 j6 j7 j8 j9 j10




,

where the jk are the coefficients of ∆σ̄. The matrix M̃h is made by deleting in M the eighth row
and the last column. Hence, we have in virtue of Theorem 3.2

ResidueF (h) = ±det(M̃h)
det(M)

= ± det(M̃h)
res2,2,2(F0, F1, F2)

,

and one can check that det(M̃h) is the polynomial P32 of the introduction of [CDS98].

We close this section by showing that the method for computing global residues as a quotient
of two determinants presented here, may be regarded as a generalization of a formula given by
Macaulay in the classical case. In order to follow his notation, let F1(x0, . . . , xn), . . . , Fn(x0, . . . , xn)
be generic homogeneous polynomials of respective degrees d1, . . . , dn, and set fi := Fi(1, x1, . . . , xn).
Let J be the affine Jacobian of the fi, i.e. J = det(∂fi/∂xj)i,j, and

V (f1, . . . , fn) := {ξ1, . . . , ξd1...dn} ⊂ Q(A)

be the variety defined by the common zeros of the fi in the algebraic closure of Q(A). We denote
with m the monomial xd1−1

1 . . . xdn−1
n .

From display (13) in [Mac02] and following his notation, we have
d1...dn∑
j=1

m(ξj)
J(ξj)

= ±R(n, tn − 1)
R(n, tn)

, (10)

where:

• R(n, tn) is the resultant of F1(0, x1, . . . , xn), . . . , Fn(0, x1, . . . , xn);
• R(n, tn − 1) is the subresultant of the monomial m with respect to F1(0, x1, . . . , xn), . . . ,

Fn(0, x1, . . . , xn).

Comparing the left-hand side of (10) with the definition of the global residue, we have that (10) is
actually the global residue of xd1

1 . . . xdn
n with respect to f1, . . . , fn. Applying the toric algorithm of

[CD97] we get the following:

• X = Pn, SX = C[x0, . . . , xn] with homogenization given by total degree;
• F0 = x0, and if g = xd1

1 . . . xdn
n , then G = m.

Denote with res the homogeneous resultant for a family of n + 1 homogeneous polynomials in
n + 1 variables of degrees 1, d1, . . . dn. Then, it turns out that (10) equals ResidueF (m). Applying
Theorem 5.1, we can write ResidueF (m) as ±Sm/res(x0, F1, . . . , Fn). Now, specializing a generic
F0 to x0 and applying [Cha94, Lemma 1], we get that Sm �→ R(n, tn − 1) and res �→ R(n, tn).
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Cha94 M. Chardin. Formules à la Macaulay pour les sous-résultants en plusieurs variables, C. R. Acad.

Sci. Paris Sér. I Math. 319 (1994), 433–436.
CCD97 E. Cattani, D. Cox and A. Dickenstein, Residues in toric varieties, Compositio Math. 108 (1997),

35–76.
CoD05 D. Cox and A. Dickenstein, Codimension one theorems for complete toric varieties, Proc. Amer.

Math. Soc., to appear.
CD97 E. Cattani and A. Dickenstein, A global view of residues in the torus, Algorithms for algebra

(Eindhoven, 1996). J. Pure Appl. Algebra 117/118 (1997), 119–144.
CDS96 E. Cattani, A. Dickenstein, and B. Sturmfels, Computing multidimensional residues, Algorithms

in algebraic geometry and applications (Santander, 1994), Progress in Mathematics, vol. 143
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