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We study the effects of Prandtl number Pr and Rayleigh number Ra in two-dimensional
Rayleigh–Bénard convection without boundaries, i.e. with periodic boundary conditions.
For Prandtl numbers in the range 10−3 � Pr � 102, the viscous dissipation scales as εν ∝
Pr1/2Ra−1/4, which is based on the observation that enstrophy 〈ω2〉 ∝ Pr0Ra1/4, and the
Nusselt number tends to follow the ‘ultimate’ scaling Nu ∝ Pr1/2Ra1/2 for all values of Pr
considered. The inverse cascade of kinetic energy forms the power-law spectrum Êu(k) ∝
k−2.3, which is close to k−11/5 proposed by the Bolgiano–Obukhov (BO) scaling. The
potential energy flux is not constant, in contrast to one of the main assumptions underlying
the BO phenomenology. So, the direct cascade of potential energy forms the power-law
spectrum Êθ (k) ∝ k−1.2, which deviates from the expected k−7/5. Finally, at Pr → 0 and
∞, we find that the dynamics is dominated by vertically oriented elevator modes that grow
without bound, even at high Rayleigh numbers and with large-scale dissipation present.

Key words: turbulent convection, Bénard convection

1. Introduction

The fundamental challenge of understanding thermally driven flow in the strongly
nonlinear regime has puzzled the fluid dynamics community for more than a century
(Doering 2019). The typical set-up that is studied theoretically consists of a fluid confined
between two horizontal plates that is heated from below and cooled at the top. This
is the so-called Rayleigh–Bénard convection (RBC) problem after Rayleigh’s proposed
model (Rayleigh 1916) for Bénard’s experiment on buoyancy-driven thermal convection
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(Bénard 1900, 1927). The classical problem depends on two dimensionless parameters:
the Rayleigh number Ra, which measures the driving effect of buoyancy relative to the
stabilising effects of viscosity and thermal diffusivity; and the Prandtl number Pr, which
is the ratio of kinematic viscosity to thermal diffusivity. The global flow properties may be
characterised by the Nusselt number Nu, a further dimensionless parameter that measures
the total heat flux relative to the purely conductive heat flux. A way to progress our
understanding on RBC is to understand the dependence of the dynamics on Ra, Pr and
the boundary conditions.

Bolgiano (1959) and Obukhov (1959) proposed the so-called Bolgiano–Obukhov (BO)
phenomenology for stably stratified turbulence, in which buoyancy balances inertia in the
momentum equation and the potential energy flux is approximately constant for length
scales larger than the Bolgiano scale. These assumptions lead to kinetic and potential
energy spectra of the form Êu(k) ∝ k−11/5 and Êθ (k) ∝ k−7/5, respectively, where k is
the wavenumber. This scaling law is considered to be universal under certain conditions,
irrespective of the specific details of the flow geometry, boundary conditions or forcing
mechanisms. However, deviations from universality can occur. Despite originally being
proposed for homogeneous stably stratified flows, BO scaling has been partly identified
in experimental and numerical studies of inhomogeneous (i.e. with no-slip or free-slip
boundary conditions on the top and bottom plates) three-dimensional (3-D) RBC in
different geometries (Wu et al. 1990; Calzavarini, Toschi & Tripiccione 2002; Mishra
& Verma 2010; Kaczorowski & Xia 2013). However, the existence of the BO scaling
is still debatable (Lohse & Xia 2010; Kunnen & Clercx 2014), with some studies of
inhomogeneous and homogeneous (i.e. with periodic boundary conditions) 3-D RBC
reporting (Kolmogorov 1941) power-law scaling k−5/3 for the kinetic and potential energy
spectra (Borue & Orszag 1997; Verma, Kumar & Pandey 2017; Verma 2018). Similar
controversy remains in simulations of two-dimensional (2-D) RBC, with some studies
partly identifying BO scaling (Toh & Suzuki 1994; Mazzino 2017; Xie & Huang 2022;
Samuel & Verma 2024), while some argue against the validity of the BO scaling (Biskamp
& Schwarz 1997; Biskamp, Hallatschek & Schwarz 2001; Celani, Mazzino & Vergassola
2001; Celani et al. 2002).

For the strongly nonlinear regime of thermal convection, which is of paramount
importance for geophysical and astrophysical applications, there are two competing
theories for the behaviour of Nu as Ra tends to infinity for arbitrary Pr. These two
proposed asymptotic scaling laws are the ‘classical’ theory Nu ∝ Pr0Ra1/3 by Malkus
(1954) and the ‘ultimate’ theory Nu ∝ Pr1/2Ra1/2, at least for Pr � 1, by Kraichnan
(1962) and Spiegel (1971). The Rayleigh number at which the transition to the ultimate
scaling is presumed to occur is not known, and laboratory experiments and numerical
simulations (Niemela et al. 2000; Chavanne et al. 2001; Niemela & Sreenivasan 2003;
Urban, Musilová & Skrbek 2011; He et al. 2012; Zhu et al. 2018; Doering, Toppaladoddi &
Wettlaufer 2019) have reported different power laws for a wide range of Rayleigh numbers.

In the analogy of RBC with geophysical phenomena, the top and bottom boundaries are
often absent, particularly when the focus is on understanding the dynamics of the bulk
flow. In this study, we choose the most obvious theoretical approach to bypass boundary
layer effects by considering a fully periodic domain (Toh & Suzuki 1994; Borue & Orszag
1997; Biskamp et al. 2001; Celani et al. 2002; Ng et al. 2018) for the Rayleigh–Bénard
problem, with an imposed constant vertical temperature gradient. For this homogeneous
RBC set-up it has been claimed that Nu ∝ Ra1/2 (Lohse & Toschi 2003; Calzavarini et al.
2005), in line with the ultimate theory, and this scaling is also suggested from simulations
of axially periodic RBC in a vertical cylinder (Schmidt et al. 2012).
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Homogeneous RBC, however, exhibits exponentially growing solutions in the form of
axially uniform vertical jets, called ‘elevator modes’ (Baines & Gill 1969; Batchelor &
Nitsche 1991; Calzavarini et al. 2006; Liu & Zikanov 2015). As soon as these modes grow
to a significant amplitude, they experience secondary instabilities, ultimately leading to
statistically stationary solutions (Calzavarini et al. 2006; Schmidt et al. 2012). In recent
numerical simulations, the elevator modes were suppressed by introducing an artificial
horizontal buoyancy field (Xie & Huang 2022) or large-scale friction (Barral & Dubrulle
2023). The inverse cascade that is observed in 2-D homogeneous RBC (Toh & Suzuki
1994; Verma 2018; Xie & Huang 2022) is another source of energy for the large-scale
modes that grow to extreme values, forming a condensate whose amplitude saturates when
the viscous dissipation at the largest scale balances the energy injection (Chertkov et al.
2007; Boffetta & Ecke 2012). So, in this study, to avoid the unbounded growth of energy
we include large-scale dissipation to mimic the effect of friction when there are boundaries
and to be able to reach statistically stationary solutions.

The aim of this paper is to bring more insight to the effect of the control parameters and
the boundaries on the dynamics of 2-D RBC. Most of the attention on 2-D RBC focuses
on the Rayleigh number dependence of the dynamics, with only a few studies considering
the effects of the Prandtl number (Calzavarini et al. 2005; Zhang, Zhou & Sun 2017; He
et al. 2021). So, we extensively study the effects of the Prandtl number using numerical
simulations of 2-D RBC driven by a constant temperature gradient in a periodic domain,
to effectively remove the boundaries. We also consider high Rayleigh number simulations
with normal viscosity and hyperviscosity to permit large scale separation, which is crucial
for the analysis of the multi-scale dynamics, that will also shed light on the long standing
debate of the power-law scalings of the spectra.

The paper is structured as follows. Section 2 contains the dynamical equations,
numerical methods and the definitions of the global and spectral observables under study.
The results of our simulations are presented in § 3, where we analyse how the global
observables scale with the Prandtl and Rayleigh numbers and then investigate the effects
of these dimensionless parameters on the spectral dynamics. In Appendix A we discuss
the behaviour of the system at zero and infinite Prandtl number and in § 4 we summarise
our conclusions.

2. Problem description

2.1. Governing equations
We consider 2-D RBC of a fluid heated from below in a periodic square cell
(x, y) ∈ [0, L]2. The temperature T(x, y, t) is decomposed as T = −�Ty/L + θ , where
�T/L is the constant imposed temperature gradient and the temperature perturbation
θ(x, y, t) satisfies periodic boundary conditions. As usual, for simplicity we employ the
Oberbeck–Boussinesq approximation (Oberbeck 1879; Boussinesq 1903; Tritton 2012), in
which the kinematic viscosity ν and the thermal diffusivity κ are taken to be constant while
the temperature dependence of the fluid density ρ is neglected, except in the buoyancy term
of the momentum equation.

The governing equations of the problem in two dimensions can be written in terms of
θ(x, y, t) and the streamfunction ψ(x, y, t) as follows:

∂t∇2ψ + {ψ,∇2ψ} = αg∂xθ + ν(−∇2)n+1ψ + μψ, (2.1a)

∂tθ + {ψ, θ} = �T
L
∂xψ − κ(−∇2)nθ, (2.1b)
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where {A,B} = ∂xA∂yB − ∂yA∂xB is the standard Poisson bracket, α is the thermal
expansion coefficient and g is the gravitational acceleration. To prevent the formation of a
large-scale condensate in the presence of an inverse cascade, to avoid the elevator modes
and to reach a turbulent stationary regime, we supplement our system with a large-scale
dissipative term μψ that is responsible for saturating the inverse cascade. We consider
both normal and hyperviscosity by raising the Laplacian to the powers of n = 1 and n = 4,
respectively. The hyperviscous case, albeit not physically realisable, gives a wider inertial
range, as diffusive and viscous terms kick in abruptly at much smaller scales compared
with the normal viscosity case. In the ideal limit of ν → 0, κ → 0 andμ → 0, the quantity
that is conserved is Eu(t)− (agL/�T)Eθ (t), where the instantaneous kinetic energy Eu(t)
and the potential energy Eθ (t) are defined by

Eu(t) = 1
2 〈|∇ψ |2〉x, Eθ (t) = 1

2 〈θ2〉x, (2.2a,b)

with the angle brackets 〈·〉x here denoting average in space. Spatio-temporal averages will
be denoted as 〈·〉.

Equations (2.1) depend on three dimensionless parameters, namely

Pr = ν

κ
, Ra = αg�TL4n−1

νκ
, Rh = μ

(
L5

αg�T

)1/2

, (2.3a–c)

which are the Prandtl number, Rayleigh number and friction Reynolds number,
respectively.

We perform direct numerical simulations of (2.1) using the pseudospectral method
(Orszag & Gottlieb 1977). We decompose the streamfunction into basis functions with
Fourier modes in both the x and y directions, viz.

ψ(x, t) =
N/2∑

k=−N/2

ψ̂k(t)eik·x, (2.4)

where ψ̂k is the amplitude of the k = (kx, ky) mode of ψ , and N denotes the number of
aliased modes in the x- and y-directions. We decompose θ in the same way. A third-order
Runge–Kutta scheme is used for time advancement and the aliasing errors are removed
with the two-thirds dealiasing rule (Gómez, Mininni & Dmitruk 2005). In both the normal
and hyperviscous simulations, we find that Rh = (2π)5/2 yields a saturated turbulent state
that dissipates enough kinetic energy at large scales such that the kinetic energy spectrum
peaks at k = 2 without overdamping the system. So, we fix Rh = (2π)5/2 	 100 while
varying the Rayleigh and Prandtl numbers in the ranges 6.2 × 107 � Ra � 6.2 × 1011 and
10−3 � Pr � 102. To model the large Rayleigh number dynamics, we set Ra = 9.4 × 1049

in our hyperviscous simulations. Figure 1 shows the parameter values simulated in the
(Ra,Pr)-plane as well as the resolution, N, used in each case. The criterion we used to
ensure that our runs are well resolved was to verify that the peaks of the potential and
kinetic energy dissipation spectra are at least one order of magnitude above the tail of the
spectra. Time-averaged quantities are computed after the system has reached a statistically
stationary regime. We have accumulated statistics over long time integrations to ensure
that our statistics are well converged.

2.2. Global and spectral observables
Next, we briefly outline the global and spectral observables that will be explored in our
numerical simulations below. The energy spectra of the velocity field Êu(k, t) and the

998 A27-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

71
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.715


2-D Rayleigh–Bénard convection without boundaries

1050

1011

109

107

10–3 10–2 10–1 100 101 102

1024

2048

4096

8192
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N

Figure 1. Parameter values simulated in the (Ra,Pr)-plane with the resolution, N, used at each instant colour
coded in the legend. The black dashed line separates runs with normal viscosity (below line) from those with
hyperviscosity (above line).

temperature field Êθ (k, t), referred to as the kinetic energy and potential energy spectra,
are defined as

Êu(k, t) = 1
2

∑
k�|k|<k+�k

k2
∣∣∣ψ̂k(t)

∣∣∣2 , (2.5a)

Êθ (k, t) = 1
2

∑
k�|k|<k+�k

∣∣∣θ̂k(t)
∣∣∣2 , (2.5b)

where the sum is performed over the Fourier modes with wavenumber amplitude k =
|k| =

√
k2

x + k2
y in a shell of width �k = 2π/L. Using the Fourier transform, one can

derive the evolution equations of kinetic and potential energy spectra from (2.1), namely

∂tÊu(k, t) = −∂kΠu(k, t)− Dν(k, t)− Dμ(k, t)+ αgFB(k, t), (2.6a)

∂tÊθ (k, t) = −∂kΠθ(k, t)− Dκ(k, t)+ �T
L

FB(k, t). (2.6b)

The energy flux Π is a measure of the nonlinear cascades in turbulence (Alexakis &
Biferale 2018). The energy flux for a circle of radius k in the 2-D wavenumber space is the
total energy transferred from the modes within the circle to the modes outside the circle.
Consequently, we define the flux of kinetic energy Πu(k, t) and potential energy Πθ(k, t)
as

Πu(k, t) =
∑
k′�k

Tu(k′, t), (2.7a)

Πθ(k, t) =
∑
k′�k

Tθ (k′, t), (2.7b)

where Tu(k, t) and Tθ (k, t) are the nonlinear kinetic and potential energy transfer across k

Tu(k, t) = −
∑

k�|k|<k+�k

ψ̂∗
k(t)

̂{ψ,∇2ψ}k(t), (2.8a)

Tθ (k, t) =
∑

k�|k|<k+�k

θ̂∗
k (t){̂ψ, θ}k(t). (2.8b)
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The notation {̂.}k represents the Fourier mode of the Poisson bracket expanded using (2.4),
and the asterisk denotes complex conjugation.

The spectra of the small-scale viscous dissipation Dν(k, t), the large-scale frictional
dissipation Dμ(k, t) and the thermal dissipation Dκ(k, t) are defined as

Dν(k, t) = 2νk2nÊu(k, t), (2.9a)

Dμ(k, t) = 2μk−2Êu(k, t), (2.9b)

Dκ(k, t) = 2κk2nÊθ (k, t), (2.9c)

and the spectrum of the buoyancy term is given by

FB(k, t) =
∑

k�|k|<k+�k

ikxψ̂∗
k(t)θ̂k(t). (2.10)

The Nusselt number is a dimensionless measure of the averaged vertical heat flux
relative to the conductive heat flux. The form of the conductive heat flux is determined
by the thermal diffusive term. Hence, the Nusselt number is defined mathematically by

Nu = 1 + 〈∂xψθ〉
κ�T/L2n−1 . (2.11)

Using the above definition, one can derive the following exact relations for the kinetic and
potential energy balances in the statistically stationary regime, as in Shraiman & Siggia
(1990):

εu = εν + εμ = ν3

L6n−2 (Nu − 1)
Ra

Pr2 , (2.12a)

εθ = εκ = κ�T2

L2n (Nu − 1), (2.12b)

where εu = αg〈ψ∂xθ〉 is the injection rate of kinetic energy due to buoyancy, εν =
ν〈ψ∇2(n+1)ψ〉 is the viscous dissipation rate, εμ = μ〈ψ2〉 is the large-scale dissipation
rate, εθ = (�T/L)〈∂xψ θ〉 is the injection rate of potential energy due to buoyancy and
εκ = κ〈θ∇2nθ〉 is the thermal dissipation rate.

2.3. Elevator modes
Upon linearising (2.1) about the conductive state (ψ = θ = 0), we find that infinitesimal
solutions with ψ(x, t) = exp(ik · x + σ t) are possible, provided the normalised linear
growth rate σ satisfies the relation(

σ + k2n
)(
σ + Prk2n + Rh

√
RaPr

k2

)
= RaPr(2πkx)

2

k2 , (2.13)

which has two real roots for σ . From these two roots, one is positive if and only if

Rh

√
Ra
Pr

<
Ra(2πkx)

2

k2n − k2n+2. (2.14)

One can show that σ is a monotonic decreasing function of ky, so the most dangerous
modes are independent of y, with

ψ(x, t) = exp(ikxx + σ t), kx ∈ Z>0. (2.15)

Indeed, such a unidirectional mode satisfies the nonlinear governing equations (2.1)
exactly, because the nonlinear Poisson bracket terms are identically zero.
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Figure 2. Spatio-temporal averages of the kinetic and potential energies and the terms in the kinetic and
potential energy balances (2.12) as functions of Pr with Ra = 6.2 × 1011 fixed (a–c) and as functions of Ra
with Pr = 1 fixed (d–f ). We use normal viscosity (n = 1) and keep Rh = (2π)5/2 fixed in all plots.

Although the maximum growth rate does not necessarily occur at the minimum
wavenumber kx = 1, it is straightforward to show that (2.14) is satisfied for some (kx, ky) if
and only if it is satisfied at (kx, ky) = (1, 0). In other words, exact solutions of the problem
(2.1) that grow exponentially without bound exist whenever

Rh

√
Ra
Pr

<
Ra

(2π)2(n−1) − (2π)2n+2. (2.16)

In practice, unless the initial conditions are equal to an elevator mode, we find that elevator
modes do not dominate the dynamics at finite Prandtl number if Rh is large enough. So, we
fix Rh = (2π)5/2, which is sufficient to prevent elevator modes from growing and to allow
the flow to reach turbulent saturated states without overdamping the system. For zero and
infinite Prandtl number convection, elevator modes are seemingly more attractive, even
for randomly generated initial conditions (see Appendix A). Thus, our analysis focuses on
finite values of Prandtl number.

3. Results

3.1. Global observables
In figures 2(a)–2(c) we show how the global observables in the kinetic and potential energy
balances (2.12) vary with Pr keeping Ra = 6.2 × 1011, while in (d–f ) we show how the
same quantities vary with Ra while keeping Pr = 1. In both cases, we use normal viscosity
(n = 1) and keep Rh = (2π)5/2 constant. Firstly, figures 2(a) and 2(d) show that the kinetic
and potential energies remain virtually constant while Pr and Ra vary by at least four
orders of magnitude. Secondly, figures 2(b) and 2(e) show that εu ≈ εμ, which indicates
that the majority of the kinetic energy, injected by buoyancy in the flow, is dissipated at
large scales. This effect is caused by the inverse cascade of kinetic energy, which will be
investigated in more detail in § 3.2. Note that εu and εμ are almost independent of both Pr
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Pr Ra

Ra1/4

102 108 109 1010 1011

(b)(a)

Figure 3. Enstrophy 〈ω2〉 as a function of Pr with Ra = 6.2 × 1011 fixed (a), and as a function of Ra with
Pr = 1 fixed (b). We keep n = 1 (normal viscosity) and Rh = (2π)5/2 fixed in all plots.

and Ra, while the viscous dissipation scales like

εν ∝ Pr1/2Ra−1/4. (3.1)

Finally, in figures 2(c) and 2( f ), we see that εθ = εκ , as required by the potential energy
balance (2.12b), and both observables, are also virtually independent of both Pr and Ra.

To explain the scaling of the viscous dissipation rate (3.1), we now look at how
the enstrophy 〈ω2〉 varies with the Prandtl and Rayleigh numbers, where ω = ∇2ψ is
the vorticity of the flow. In figure 3(a) we plot enstrophy as a function of Pr with
Ra = 6.2 × 1011 fixed, and in figure 3(b) as a function of Ra with Pr = 1 fixed. We
keep Rh = (2π)5/2 fixed throughout. From figure 3(a) we observe that enstrophy can be
considered approximately independent of Pr, because it varies by less than a factor of two
over the five decades of Prandtl numbers considered, while figure 3(b) demonstrates that
enstrophy scales like Ra1/4, i.e.

〈ω2〉 ∝ Pr0Ra1/4. (3.2)

With normal viscosity, by definition we have εν = ν〈ψ∇4ψ〉 = ν〈ω2〉 and, writing ν ∝
(Pr/Ra)1/2, we thus obtain the scaling of (3.1) that is observed in figure 2.

According to figure 2, the energy injection rates εu and εθ are both approximately
constant in the range of Pr and Ra we considered. With RaPr � 1 and n = 1, the net
energy balances (2.12) thus produce the Nusselt number scaling

Nu ∝ Pr1/2Ra1/2. (3.3)

This relation is in agreement with the ultimate scaling. In figure 4, we plot the Nusselt
number compensated by the classical scaling, Nu ∝ Pr0Ra1/3, and by the ultimate scaling,
Nu ∝ Pr1/2Ra1/2. The ultimate scaling provides a much more convincing collapse of the
data, with the fit becoming progressively more accurate as Ra increases for all values of
Pr considered. Indeed, the ultimate scaling in terms of Rayleigh number dependence was
expected to be exhibited by our simulations, as we have effectively removed the boundary
layers by applying periodic boundary conditions, similarly to previous studies (Lohse
& Toschi 2003; Calzavarini et al. 2005). The ultimate scaling asserts (3.3) at least for
Pr � 1 and this is what is expected in 3-D RBC with boundaries. Nevertheless, figure 4
demonstrates that in homogeneous 2-D RBC the Nusselt number depends on all the values
of Prandtl number we considered, even for Pr > 1.
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Figure 5. The ratio of the kinetic energy to the potential energy spectra Êu(k)/Êθ (k) compensated by k4/5

for the hyperviscous simulations with Ra = 9.4 × 1049, Rh = (2π)5/2 and different Prandtl numbers as colour
coded in the legend. The inset shows the same ratio but for runs with normal viscosity at Ra = 6.2 × 1011.

3.2. Spectra and cascades
In this section, we examine the multi-scale dynamics of the flows using spectra. To
eliminate finite Rayleigh number effects and to have large enough scale separation, we
focus on the hyperviscous simulations (i.e. n = 4 in (2.1)) at Ra = 9.4 × 1049 and Rh =
(2π)5/2. Results with normal viscosity (i.e. n = 1 in (2.1)) at Ra = 6.2 × 1011 are also
presented for comparison. According to the BO scaling (Bolgiano 1959; Obukhov 1959),
the ratio of the kinetic to the potential energy spectra scales as Êu(k)/Êθ (k) ∝ k−4/5, since
Êu(k) ∝ k−11/5 and Êθ (k) ∝ k−7/5. In figure 5 we plot Êu(k)/Êθ (k) compensated by k4/5

for the hyperviscous simulations and, in the inset, for the runs with normal viscosity.
Instead of finding a wavenumber range where this scaling is valid, we observe a k−0.3

power law for all Prandtl numbers considered, suggesting that BO scaling is not followed in
our simulations. For the normal viscosity simulations we find the k−0.3 power law again to
be followed, but within a narrower wavenumber range (see inset of figure 5). Figure 5 also
shows that, for Pr � 1, the kinetic energy is much larger than the potential energy at large
wavenumbers. This is expected as the small scales are dominated by thermal diffusivity
when Pr � 1, and so the potential energy is dissipated much more effectively than the
kinetic energy. The opposite is true for Pr � 1.

In figures 6(a) and 6(b), we plot the kinetic and potential energy spectra compensated
by the power laws proposed by the BO phenomenology. The hyperviscous runs are shown
in the main plots, and normal viscosity runs in the insets. From the hyperviscous runs
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Figure 6. The time-averaged energy spectra compensated by best-fit power laws (a,b), and spectral fluxes
normalised by the time-averaged dissipation rates (c,d) for the runs with hyperviscosity at Ra = 9.4 × 1049,
Rh = (2π)5/2 and different Prandtl numbers as colour coded in the legend. The insets show the same quantities
but for runs with normal viscosity at Ra = 6.2 × 1011.

we observe that the compensated kinetic energy spectrum k11/5Êu(k) is flat within a
range of wavenumbers and hence it is close to the BO scaling, with the best fit being
Êu(k) ∝ k−2.3. However, the BO scaling is not evident from the inset showing the runs with
normal viscosity due finite Rayleigh number effects. On the other hand, it is clear that the
compensated potential energy spectrum k7/5Êθ (k) does not follow the BO scaling for either
the hyperviscous and normal viscosity runs, with the best fit being Êθ (k) ∝ k−1.2. The
power-law exponents of the spectra we observe differ from those in 3-D RBC with periodic
boundary conditions, where the kinetic and potential energy exhibit k−5/3 power-law
spectra (Borue & Orszag 1997), similar to those observed in passive scalar turbulence
(Warhaft 2000).

To understand the dynamics of the turbulent cascades, we plot the associated kinetic
and potential energy fluxes normalised by the respective time-averaged injection rates
of energy due to buoyancy in figures 6(c) and 6(d). The positive potential energy flux
suggests a strong direct cascade, while the weak negative kinetic energy flux suggests an
inverse cascade. For Pr = 1 these types of cascades are in agreement with Xie & Huang
(2022). The negative kinetic energy flux peaks at low wavenumbers, while the potential
energy flux peaks at high wavenumbers. The inverse cascade of kinetic energy is not
affected by the Prandtl number; however, the direct cascade of potential energy moves
to higher wavenumbers along with the peak of Πθ(k) as Pr increases. We emphasise the
wavenumber dependence of kinetic and potential energy fluxes, with ∂kΠu(k) > 0 and
∂kΠθ(k) > 0 in the intermediate range of wavenumbers for all of the Prandtl numbers
considered.

In figure 7, we present the time-averaged spectra of the magnitudes of the terms in the
kinetic and potential energy balances (2.6) for runs with hyperviscosity and three different
values of Pr ∈ {10−2, 1, 102}. The corresponding plots with normal viscosity and Ra =
6.2 × 1011 are shown in figure 8. In both figures, the red dots indicate where the inertial
flux terms ∂kΠu and ∂kΠθ become negative. In the kinetic energy balance, we identify
three distinct wavenumber ranges, labelled I to III in the plots. In region I, the kinetic
energy injected by buoyancy is dissipated by the large-scale friction. In region II, the
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inertial term balances buoyancy, which is positive for all wavenumbers in this region, i.e.

∂kΠu(k) ≈ αgFB(k) > 0, (3.4)

with FB(k) ∝ k−1.5. Equation (3.4) implies the k dependence of the kinetic energy flux
we see in figure 6(c), which is expected based on the BO phenomenology. Note that
region II is largest for small Prandtl numbers, especially in the runs with normal viscosity,
as evident from the results presented in figures 8(a)–8(c). In region III, the balances
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between terms depend on the Prandtl number. For Pr = 10−2 buoyancy decays rapidly
and so small-scale viscous dissipation is balanced by the inertial term, which is negative
in this range of wavenumbers. As Pr increases, buoyancy becomes more significant in the
balance of region III between the small-scale viscous dissipation and the inertial term. For
Pr � 102, small-scale viscous dissipation seems to be balanced by buoyancy rather than
by the inertial term. This effect is shown more clearly in the runs with normal viscosity
shown in figure 8(c), where the small-scale dissipation range is much larger.

In the potential energy balance, we identify two distinct wavenumber ranges, labelled A
and B in the plots (see (d–f ) in figures 7 and 8). In these plots we observe the inertial term
to be balanced by buoyancy in region A and by small-scale thermal dissipation in region
B. In other words, the potential energy injected by buoyancy in region A is cascaded to
larger wavenumbers, where it is dissipated by thermal diffusivity.

We recall that the red dots in figures 7 and 8 show where the inertial terms of the kinetic
and potential energy become negative. This sign change occurs primarily in region III for
∂kΠu(k) and region B for ∂kΠθ(k), the latter corresponding to the large negative gradient
of Πθ(k) observed in figure 6 at large wavenumbers. Near the boundary between regions
A and B in figures 7 and 8(d–f ), we observe that ∂kΠθ(k) exhibits fluctuations between
positive and negative values over these wavenumbers. However, for the majority of the
wavenumbers in region A we find that

∂kΠθ(k) ≈ �T
L

FB(k) > 0. (3.5)

This relation implies the k dependence of the potential energy flux we observe in
figure 6(d) for all the Prandtl numbers we studied. Note that in the wavenumber range
where region II and A overlap, we have ∂kΠu(k)/αg ≈ (L/�T)∂kΠθ(k) ≈ FB(k), such
that Πu(k)− (αgL/�T)Πθ(k) is approximately constant in the intermediate range of
wavenumbers as FB(k) cancels out. This is the inertial range of scales, where the viscous,
diffusive and friction effects can be neglected and so the energy flux is constant. This
is expected for the ideal invariant Eu(t)− (agL/�T)Eθ (t), which is conserved in the
limit of ν → 0, κ → 0 and μ → 0. In Appendix B we plot the absolute value of the
time-averaged spectra |Êu(k)− (agL/�T)Êθ (k)| and the flux Πu(k)− (αgL/�T)Πθ(k)
for the hyperviscous runs at Ra = 9.4 × 1049, Rh = (2π)5/2 and different Prandtl numbers
as colour coded in the legend (see figure 10). The spectra |Êu(k)− (agL/�T)Êθ (k)| scale
like k−1 and the fluxΠu(k)− (αgL/�T)Πθ(k) is constant as expected for all values of Pr
considered.

4. Conclusions

In this paper we study the effects of varying the Prandtl and Rayleigh numbers on the
dynamics of 2-D RBC without boundaries, i.e. with periodic boundary conditions. For
zero and infinite Prandtl number convection, we find that large-scale elevator modes
dominate the dynamics, unless large-scale dissipation is made so strong as to suppress
turbulent convection. Such elevator modes have long been known (Baines & Gill 1969).
In all parameter values simulated, the inequality (2.16) holds, implying that the system
admits exact single-mode solutions that grow exponentially without bound. Whether or not
the solution blows up must depend on the initial conditions, in a way that is not currently
understood. Instead, we focus on finite Prandtl numbers, where we find that nonlinear
interactions between modes allow the system to reach turbulent stationary states.
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2-D Rayleigh–Bénard convection without boundaries

Examining the Prandtl and Rayleigh number dependences of the terms in the kinetic and
potential energy balances, we find that the enstrophy scales as 〈ω2〉 ∝ Pr0Ra1/4 and hence
the small-scale viscous dissipation scales as εν = ν〈ω2〉 ∝ Pr1/2Ra−1/4. On the other
hand, we observe that the injection rate of kinetic energy εu due to buoyancy is effectively
independent of both the Prandtl and the Rayleigh number. Using this observation, we find
that Nu ∝ Pr1/2Ra1/2, which agrees with the so-called ultimate scaling. The collapse of
the data using the ultimate scaling becomes progressively more accurate as Ra increases
for all values of Pr considered.

Analysing the kinetic and potential energy spectral fluxes, we find an inverse cascade of
kinetic energy and a direct cascade of potential energy. The inverse cascade is independent
of the Prandtl number, while the peak of the potential energy flux moves to higher
wavenumbers as Pr increases. The kinetic and potential energy fluxes, Πu(k) and Πθ(k),
are not constant because both of their derivatives in k are balanced by the buoyancy term
FB(k), which is predominantly positive in the intermediate range of wavenumbers. These
two balances imply a positive slope in k for the fluxes. On the other hand, the potential
energy flux was recently claimed to be constant in the inhomogeneous set-up of 2-D
RBC (Samuel & Verma 2024). Nevertheless, their observations of the potential energy
spectrum did not follow the BO scaling. Although we observe no range of wavenumbers
where either Πu(k) or Πθ(k) is constant, we find that they are connected by the relation
Πu(k)− (αgL/�T)Πθ(k) ≈ constant in the overlap between regions II and A.

The kinetic energy spectra scale as Êu(k) ∝ k−2.3, which is close to k−11/5 behaviour
of the BO phenomenology. However, the potential energy spectra scale as Êθ (k) ∝ k−1.2,
which deviates from the k−7/5 scaling predicted by the BO arguments. The deviation from
the BO phenomenology is also clear when we test the scaling Êu(k)/Êθ (k)k4/5 ≈ const.,
which is clearly not followed by our spectra, which scale as Êu(k)/Êθ (k)k4/5 ∝ k−0.3. For
the hyperviscous simulations, the observed power laws in the inertial range of the kinetic
and potential energy spectra do not show any dependence on the Prandtl number. The only
dependence we observe is at the dissipative range of wavenumbers, where the viscosity and
the thermal diffusivity dominate the dynamics. In the spectra from the normal viscosity
simulations, the effects of the Prandtl number are more significant due to the comparatively
low scale separation. Hence, the wavenumber range over which a power-law behaviour can
be observed is truncated.

This study clearly demonstrates the necessity for large scale separation to be able to
make clearer conclusions on the spectral dynamics and the power-law exponents of 2-D
RBC. This requirement makes similar studies in three dimensions more challenging.
The development of a phenomenology where buoyancy acts as a broadband spectral
forcing is required to interpret the current observations. Numerical simulations at Prandtl
and Rayleigh numbers outside the ranges we investigated, i.e. Pr < 10−3, Pr > 102 and
Ra > 1012, are challenging but would be of great interest to see if they agree with the
hyperviscous simulations we have performed and to provide a more complete picture of
the asymptotic regime of buoyancy-driven turbulent convection.
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Appendix A. Zero and infinite Prandtl number convection

To simplify the analysis let us write the non-dimensional form of (2.1) in accordance with

x ∼ L, t ∼ L2n

κ
, ψ ∼ κ

L2n−2 , θ ∼ �T, (A1a–d)

which yields

∂t∇2ψ + {ψ,∇2ψ} = RaPr∂xθ + Pr(−∇2)n+1ψ + Rh

√
Ra
Pr
ψ, (A2a)

∂tθ + {ψ, θ} = ∂xψ − (−∇2)nθ. (A2b)

As we take Pr → ∞, we ensure that Rh
√

Ra/Pr is finite to maintain the effects of the
large-scale dissipation. The system (A2) thus reduces to

Ra∂xθ = −
[
(−∇2)n+1 + Rh

√
Ra
Pr

]
ψ, (A3a)

∂tθ + {ψ, θ} = ∂xψ − (−∇2)nθ. (A3b)

In the complementary limit of zero Prandtl number, we have to rescale the variables
according to

{ψ, θ, t} �→ {Prψ,Pr θ, t/Pr}, (A4)

before letting Pr → 0, which removes the time derivative and advective term from the heat
transport equation (A2b). As we take Pr → 0, we maintain the effects of the large-scale
dissipation by ensuring that Rh

√
Ra/Pr is finite. This process reduces the system (A2) to

∂t∇2ψ + {ψ,∇2ψ} = Ra∂xθ + (−∇2)n+1ψ + Rh

√
Ra
Pr
ψ, (A5a)

∂xψ = (−∇2)nθ. (A5b)

In figure 9 we plot time series of the kinetic energy, Eu in both the Pr → 0 and Pr → ∞
limits. We use normal viscosity (i.e. n = 1), we set Ra = 107 for four different values of
Rh

√
Ra/Pr and the simulations are initialised with random initial data. The flow converges

to a statistically steady state only in the case where Pr → ∞ and Rh
√

Ra/Pr = 9 × 106,
a value only 10 % smaller than the maximum value given by (2.16) at which all convection
is suppressed. For all other parameter values attempted, an elevator mode takes over the
dynamics and the energy grows without bound.

We have explored various initial conditions, different from the elevator modes, to find
bounded solutions in the extreme Prandtl number limits. However, we are not able to
reliably obtain turbulent saturated states in these limits, unless the large-scale dissipation
is made very strong, suppressing turbulent convection.

Appendix B. Spectra and flux of the ideal invariant

Here, we plot the absolute value of the time-averaged spectra of the ideal invariant
|Êu(k)− (agL/�T)Êθ (k)| and the flux Πu(k)− (αgL/�T)Πθ(k) for the hyperviscous
runs at Ra = 9.4 × 1049, Rh = (2π)5/2 and different Prandtl numbers as colour coded
in the legend.
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