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Abstract. Let G be a finite group acting freely on a finitistic space X having
cohomology type (0, b) (for example, �n × �2n is a space of type (0, 1) and the one-
point union �n ∨ �2n ∨ �3n is a space of type (0, 0)). It is known that a finite group
G that contains �p ⊕ �p ⊕ �p, p a prime, cannot act freely on �n × �2n. In this paper,
we show that if a finite group G acts freely on a space of type (0, 1), where n is odd,
then G cannot contain �p ⊕ �p, p an odd prime. For spaces of cohomology type (0, 0),
we show that every p-subgroup of G is either cyclic or a generalized quaternion group.
Moreover, for n even, it is shown that �2 is the only group that can act freely on X .

2010 Mathematics Subject Classification. Primary 57S99, Secondary 55T10,
55M20.

1. Introduction. It has been an interesting problem in the theory of
transformation groups to find finite groups that can occur as the fundamental groups of
the spaces that have nice universal covering spaces, such as the n-sphere �n, �n × �m,
the complex projective space �Pn, etc. This is equivalent to determining the finite
groups that can act freely on these spaces and to determine the orbit spaces in those
cases. The first result in this direction is due to Smith [14]. It has been proved that every
abelian subgroup of a finite group G that acts freely on a sphere is cyclic. Further, it was
shown by Milnor [12] that any element of order 2 in a finite group G acting freely on
a mod 2 homology n-sphere lies in Z(G), the centre of the group. It follows that every
subgroup of order p2 or 2p, p a prime, of a finite group acting freely on �n is cyclic. In
Madsen et al. [9], using surgery on manifolds, it is shown that these conditions are also
sufficient for the existence of a free action of G on �n. Thus, we have a complete solution
of the problem that is known in the case of �n. Conner [15] has shown that a group
containing �p ⊕ �p ⊕ �p, p a prime, cannot act freely on �n × �n. A generalization
of this result for free actions of finite group on the product �n × �m was obtained by
Heller [3]. It has been shown that a finite group G that contains �p ⊕ �p ⊕ �p, p a
prime, cannot act freely on �n × �m.

In this paper, we study for free actions of finite group G on a space of cohomology
type �n × �2n and �n ∨ �2n ∨ �3n. The cohomology structure of the fixed point set of
a periodic map of odd order on the spaces of latter type was first studied by Dotzel
and Singh [18]. It has been shown that �p can act freely on such spaces. Further
investigations of �p, p a prime, action on these spaces were done by Dotzel and Singh
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[19] and Pergher et al. [16]. Recently, using the results of Pergher et al. [16], Mattos et al.
[5] proved Borsuk–Ulam type theorems and their parametrized versions for �2-action.
For free actions of finite groups on a space of cohomology type �n ∨ �2n ∨ �3n, we
show here that every p-subgroup of G is either cyclic or a generalized quaternion group.
Moreover, for such spaces, it is proved that �2 is the only group that can act freely
on X when n is even. Moreover, if a finite group G acts freely on �n × �2n, then G
cannot contain �p ⊕ �p, for all odd prime p. This improves the result of Heller [3]. All
spaces considered here are assumed to be finitistic: A paracompact Hausdorff space is
finitistic if every open covering has a finite-dimensional refinement. Moreover, we will
use Čech cohomology throughout the paper.

2. Preliminaries. Suppose that a compact Lie group G acts on a space X . If
G ↪→ EG → BG is the universal principal G-bundle, then the Borel construction on X is
defined as the orbit space XG = (X × EG)/G, where G acts diagonally on the product
X × EG. The projection X × EG → EG gives a fibration (called the Borel fibration)

XG −→ BG

with fibre X . We will exploit the Leray–Serre spectral sequence associated with the
Borel fibration X ↪→ XG −→ BG. The E2-term of this spectral sequence is given by

Ek,l
2 = Hk(BG;Hl(X ; �)),

where Hl(X ; �) is a locally constant sheaf with stalk Hl(X ; �), � a field, and it
converges to H(XG; �) as an algebra. If π1(BG) acts trivially on H∗(X ; �), then the
coefficient sheaf H(X ; �) is constant so that

Ek,l
2 = Hk(BG; �) ⊗ Hl(X ; �).

For further details about the Leray–Serre spectral sequence, refer to Davis and Kirk
[10] and McCleary [11]. For G = �p, p a prime, we take � = �p and write H∗(X) to
mean H∗(X ; �p). We recall that

H∗(BG) =
{

�p[t] deg t = 1 for p = 2 and

�p[s, t] deg s = 1, deg t = 2 for p > 2 and βp(s) = t,

where βp is the mod-p Bockstein homomorphism associated with the coefficient
sequence 0 → �p → �p2 → �p → 0. We also recall that if X is a paracompact
Hausdorff free G-space, G a compact Lie group, then X/G � XG. Note that if X is
connected G-space, then E∗,0

2 = H∗(BG). Volovikov [4] introduced the following notion
of numerical index of a G-space.

DEFINITION 2.1 ([4]). The index i(X) is the smallest r such that for some k, the
differential dr : Ek−r,r−1

r −→ Ek,0
r in the cohomology Leray–Serre spectral sequence of

the fibration X
i

↪→ XG
π−→ BG is nontrivial.

Clearly, i(X) = r if Ek,0
2 = Ek,0

3 = . . . = Ek,0
r for all k, and Ek,0

r 	= Ek,0
r+1 for some k.

If E∗,0
2 = E∗,0

∞ , then i(X) = ∞.

PROPOSITION 2.2 ([4, Proposition 2.1]). If there exists an equivariant map between
G-spaces X and Y, then i(X) ≤ i(Y ).
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Given two integers a and b, a space X is said to have cohomology type (a, b)
if Hi(X, �) ∼= � for i = 0, 2n, and 3n only. Also, the generators x ∈ Hn(X ; �), y ∈
H2n(X ; �) and z ∈ H3n(X ; �) satisfy x2 = ay and xy = bz. For example, �n × �2n has
type (0, 1), �P3 and �P3 have type (1, 1), �P2 ∨ �6 has type (1, 0) and �n ∨ �2n ∨ �3n

has type (0, 0). Such spaces were first investigated by James [8] and Toda [7].

PROPOSITION 2.3 ([16, Theorem 4.1]). If G = �2 acts freely on a space X of
cohomology type (a, b), where a and b are even, characterized by an integer n > 1,
then

H∗(X/G) = �2[u, w]/〈u3n+1, w2 + αunw + βu2n, un+1w〉,
where deg u = 1, deg w = n and α, β ∈ �2.

PROPOSITION 2.4 ([19, Theorem 2]). Suppose that G = �p, p > 2 a prime, act freely
on a space X of cohomology type (a, b), where a = 0 (mod p) = b. Then,

H∗(X/G) = �p[u, v, w]/〈u2, w2, v
n+1

2 w, v
3n+1

2 〉,
where deg u = 1, deg w = n, v = βp(u) (βp being the mod-p Bockstein) and n is odd.

3. Main results. Let X be a space of cohomology type (a, b), characterized by
an integer n > 1, where a = 0 (mod p) and b = 0 (mod p) or b 	= 0 (mod p), p a prime.
We show that the group G = �p ⊕ �p cannot act freely on a space X and, for even n
and a = 0 (mod p) = b, we shall show that the only finite group that acts freely on X is
�2. We also construct a space X of cohomology type (a, b), where a = 0 (mod p) = b,
n > 1 and an example of free involution on X . Recall that G = �p, p an odd prime, can
act freely on a space X of cohomology type (0, 0) [18].

THEOREM 3.1. Let X be a space of cohomology type (a, b), characterized by an
integer n > 1. Then, the group G = �p ⊕ �p, p > 2 a prime, cannot act freely on X if
a = 0 (mod p).

THEOREM 3.2. Let X be a space of cohomology type (a, b), characterized by an
integer n > 1. If a and b are even integers, then the group G = �2 ⊕ �2 cannot act freely
on X.

We first prove the following propositions.

PROPOSITION 3.3. Let X be a space of cohomology type (a, b), characterized by an
integer n > 1. If G = �p, where p > 2 a prime, acts freely on X and a = 0 (mod p) = b,
then n is odd and i(X) = 3n + 1.

Proof. To prove this proposition, we recapitulate the proof of Theorem 2 [19].
Suppose G acts freely on X . Then, n must be odd, otherwise χ (XG) = χ (X) 	= 0 mod p
(by Floyd’s formula). Moreover, H∗(XG) = 0 in higher degree, by [6, Theorem 1.5,
p. 374]. Clearly, the induced action of G on H∗(X) is trivial, so we have Ek,l

2 =
Hk(BG) ⊗ Hl(X). Let x ∈ Hn(X), y ∈ H2n(X) and z ∈ H3n(X) be the generators. Then,
x2 = 0 and xy = 0. If dn+1(1 ⊗ x) = t

n+1
2 ⊗ 1, then dn+1(1 ⊗ y) = 0, and we have 0 =

dn+1((1 ⊗ x)(1 ⊗ y)) = t
n+1

2 ⊗ y, a contradiction. Therefore, dn+1(1 ⊗ x) = 0. Assume
now that dn+1(1 ⊗ y) = 0. And, if dn+1(1 ⊗ z) = 0, it implies that E∗,∗

2n+1 = E∗,∗
2 . Further,

if d2n+1(1 ⊗ y) = stn ⊗ 1, then 0 = dn+1((1 ⊗ x)(1 ⊗ y)) = stn ⊗ x, a contradiction.
Therefore, d2n+1(1 ⊗ y) = 0, then E∗,∗

3n+1 = E∗,∗
2 . In this case, at least nth and 2nth lines
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of the spectral sequence survive to infinity, contradicting our hypothesis. On the other
hand, if dn+1(1 ⊗ z) = t

n+1
2 ⊗ y, then Ek,l

n+2 = �p for k ≥ 0 and l = 0, n; Ek,l
n+2 = �p for

0 ≤ k ≤ n and l = 2n and zero otherwise. Clearly, E∗,∗
∞ = E∗,∗

n+2, and thus the nth and the
bottom lines of the spectral sequence survive to infinity, a contradiction. Therefore, we
must have dn+1(1 ⊗ y) = t

n+1
2 ⊗ x. We have, Ek,l

n+2 = �p for k ≥ 0 if l = 0, 3n, Ek,l
n+2 = �p

for 0 ≤ k ≤ n if l = n and zero otherwise. So, we have, E∗,∗
3n+1 = E∗,∗

n+2. Obviously, the
differential d3n+1 : E0,3n

3n+1 → E3n+1,0
3n+1 must be nontrivial, otherwise the top and bottom

lines of the spectral sequence survive to infinity. Hence, i(X) = 3n + 1. �
The proof of the following proposition is similar to the proof of previous

proposition.

PROPOSITION 3.4. Let X be a space of cohomology type (a, b), characterized by an
integer n > 1. If G = �2 acts freely on X and a and b are even integers, then i(X) = 3n + 1.

PROPOSITION 3.5. Suppose that G = �p, p > 2 a prime, act freely on a space X of
cohomology type (a, b), where a = 0(mod p) and b 	= 0 (mod p). Then,

H∗(X/G) = �p[u, v, w]/〈u2, w2, v
n+1

2 〉,

where deg u = 1, deg w = 2n, v = βp(u) and n is odd (Thus, X/G ∼p Ln
p × �2n).

Moreover, i(X) = n + 1.

Proof. As in Proposition 3.3, we see that n is odd and Ek,l
2 = Hk(BG) ⊗ Hl(X).

Let x ∈ Hn(X), y ∈ H2n(X) and z ∈ H3n(X) be the generators. Then, x2 = 0 and
xy = bz, where 0 	= b ∈ �p. Assume that dn+1(1 ⊗ x) = 0. If dn+1(1 ⊗ y) = t

n+1
2 ⊗ x,

then 0 = dn+1((1 ⊗ y)(1 ⊗ y)) = 2(t
n+1

2 ⊗ xy), a contradiction. Therefore, dn+1(1 ⊗ y) =
0 and so dn+1(1 ⊗ z) = 0. Therefore, E∗,∗

2n+1 = E∗,∗
2 . Now, if d2n+1(1 ⊗ y) = stn ⊗ 1,

then 0 = d2n+1((1 ⊗ y)(1 ⊗ y)) = 2(stn ⊗ y), a contradiction. On the other hand, if
d2n+1(1 ⊗ y) = 0, then d2n+1(1 ⊗ z) = 0. It is also obvious that d3n+1(1 ⊗ z) = 0.
Thus, in this case, spectral sequence collapses and hence H∗(XG) 	= 0 in higher
degree, a contradiction. Therefore, dn+1(1 ⊗ x) = t

n+1
2 ⊗ 1. Then, dn+1(1 ⊗ y) = 0 and

dn+1(1 ⊗ z) = t
n+1

2 ⊗ 1
b y. We have

Ek,l
∞ =

{
�p 0 ≤ k ≤ n and l = 0, 2n.

0 otherwise.

Consequently,

Hj(XG) =
{

�p 0 ≤ j ≤ n and 2n ≤ j ≤ 3n.

0 otherwise.

Let u = π∗(s) and v = π∗(t) be determined by s ⊗ 1 and t ⊗ 1, respectively. Clearly, u2 =
v

n+1
2 = 0. Since 1 ⊗ y is a permanent cocycle, so it determines element w ∈ H2n(XG)

such that i∗(w) = y. Therefore, the cohomology ring of XG is given by

�p[u, v, w]/〈u2, v
n+1

2 , w2〉,

where deg u = 1, βp(u) = v, deg w = 2n and n is odd. This completes the proof. �
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Proof of Theorem 3.1. Suppose that G = H ⊕ K , where H = K = �p, acts freely
on the space X. Then, there is a free action of K on the orbit space Y = X/H via the
canonical isomorphism K ≈ G/H; in fact, for an element Hx = [x] in Y, one defines
k[x] = [kx] for all k ∈ K . Obviously, the restriction of the action of G on X to K is free.
With these actions of K on X and Y , the orbit map πH : X → Y is an equivariant. So,
by Proposition 2.2, i(X) ≤ i(Y ) and by Propositions 3.3 and 3.5, we have i(X) = n + 1
or 3n + 1. However, we show that i(Y ) = 2, which contradicts the above inequality
and hence the theorem. The proof of this fact is divided in two parts depending upon
whether b = 0 (mod) p or b 	= 0 (mod) p.

First, consider the case b 	= 0 (mod p). By Proposition 3.5, we have H∗(Y ) =
�p[u, v, w]/〈u2, w2, v

n+1
2 〉, where deg u = 1, deg w = 2n and v = βp(u). Thus,

Hj(Y ) =
{

�p 0 ≤ j ≤ n and 2n ≤ j ≤ 3n
0 otherwise.

Clearly, induced action of K on H∗(Y ) is trivial. Therefore, the E2-term of the
Leray–Serre spectral sequence of the fibration Y ↪→ YK → BK can be written as
E∗,∗

2 = H∗(BK ) ⊗ H∗(Y ). Since the action of K on Y is free, dr 	= 0 for some r ≥ 2. If
d2(1 ⊗ u) = 0, then 1 ⊗ u is a permanent cocycle. Hence, there exists a nonzero element
u

′ ∈ H1(YG) such that i∗(u
′
) = u. If d2(1 ⊗ v) 	= 0, then E0,2

∞ = E0,2
3 = 0, and we see

that the homomorphism i∗ : H2(YG) → H2(Y ) is trivial. Now, by the naturality of
p-Bockstien homomorphism, we have v = βp(i∗(u

′
)) = i∗(βp(u

′
)) = 0, a contradiction.

Therefore, d2(1 ⊗ v) = 0. For the same reason, we obtained d3(1 ⊗ v) = 0. Also, it is
obvious that dr(1 ⊗ w) = 0 for r ≤ n. Moreover, since w2 = 0, and deg w is even, it is
easily seen that dr(1 ⊗ w) = 0 for all r ≥ n + 1. Thus, in this case, the spectral sequence
collapses to E2-term, contrary to fact that the action of K on Y is free. Hence, we find
that d2(1 ⊗ u) 	= 0 and we have i(Y ) = 2.

Next, consider the case b = 0 (mod p). By Proposition 2.4, we have

H∗(Y ) = �p[u, v, w]/〈u2, w2, v
n+1

2 w, v
3n+1

2 〉,

where deg u = 1, deg w = n, and v = βp(u) (βp being the mod-p Bockstein). Thus,

Hj(Y ) =

⎧⎪⎨
⎪⎩

�p 0 ≤ j ≤ n − 1 and 2n + 1 ≤ j ≤ 3n
�p ⊕ �p n ≤ j ≤ 2n
0 otherwise.

We observe that the action of K induced on H∗(Y ) is trivial. Let g be a generator of
K = �p. By naturality of cup product, we get g∗(uvjw) = g∗(u)g∗(vj)g∗(w) and g∗(vj) =
(g∗(v))j. Clearly, g∗(u) = u and g∗(v) = v. If the induced action of K is nontrivial, we
get g∗(w) = uv

n−1
2 or uv

n−1
2 + w. If g∗(w) = uv

n−1
2 , then w = g∗p(w) = g∗p−1(uv

n−1
2 ) =

uv
n−1

2 , a contradiction. If g∗(w) = uv
n−1

2 + w, then 0 = g∗(v
n+1

2 w) = v
n+1

2 (uv
n−1

2 + w) =
uvn, which is again a contradiction. Therefore, it follows that the induced action of K
on H∗(Y ) is trivial. Thus, the fibration Y ↪→ YK → BK has a simple local coefficient.
Thus, Ek,l

2 = Hk(BK ) ⊗ Hl(Y ). As above, we see that if d2(1 ⊗ u) = 0, then the spectral
sequence collapses to E2-term, contrary to fact that the action of K on Y is free. Thus,
we have d2(1 ⊗ u) 	= 0 and i(Y ) = 2. �
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Proof of Theorem 3.2. Suppose that G = H ⊕ K , where H = K = �2, acts freely
on the space X. As in case of Theorem 3.1, there is a free action of K on Y = X/H,

such that the map πH : X → Y , x �→ Hx, is K-equivariant map. So, i(X) ≤ i(Y ). By
Proposition 2.3, we have

H∗(Y ) = �2[u, w]/〈u3n+1, w2 + αunw + βu2n, un+1w〉,

where deg u = 1, deg w = n, and α, β ∈ �2. Thus,

Hj(Y ) =

⎧⎪⎨
⎪⎩

�2 0 ≤ j ≤ n − 1 and 2n + 1 ≤ j ≤ 3n
�2 ⊕ �2 n ≤ j ≤ 2n
0 otherwise.

As in Theorem 3.1, the induced action of K on H∗(Y ) is trivial. So, Ek,l
2 = Hk(BK ) ⊗

Hl(Y ). Since K acts freely on Y , some differential dr : Ek,l
r −→ Ek+r,l−r+1

r must be
nontrivial. Clearly, either d2(1 ⊗ u) 	= 0 or d2(1 ⊗ u) = 0 and dr(1 ⊗ w) 	= 0, for some
2 ≤ r ≤ n + 1. In the latter case, suppose that dr(1 ⊗ w) = tr ⊗ un+1−r, for some 2 ≤
r ≤ n + 1. Then, we have 0 = dr((1 ⊗ un+1)(1 ⊗ w)) = tr ⊗ u2n+2−r, a contradiction.
Therefore, we must have d2(1 ⊗ u) 	= 0 and i(Y ) = 2, so that i(X) ≤ 2. This contradicts
Proposition 3.4. �

Now, we prove the following corollary.

COROLLARY 3.6. Let G be a finite group that acts freely on a space X of cohomology
type (a, b), characterized by an integer n > 1. If p > 2 a prime and a = 0 (mod p), then
every p-subgroup of G is cyclic.

Proof. Let p be an odd prime and H a p-subgroup of a group G. Then, centre
of H, Z(H) 	= {1}. Let K ⊂ Z(H) such that |K| = p. If K

′ ⊂ H is another subgroup
such that |K ′ | = p, then K ∩ K

′ = {1} so that K ⊕ K
′ ⊂ H. By Theorem 3.1, this is

not possible, and hence there is only one subgroup of order p in H. From ([13],
Theorem 5.46, p. 121), it follows that every p-subgroup of G is cyclic. �

Again, by Theorem 3.2, we have the following.

COROLLARY 3.7. Let G be a group that acts freely on a space X of cohomology type
(a, b), characterized by an integer n > 1, where a and b are even.

(I) If G is finite, then every 2-subgroup of G is either cyclic or a generalized quaternion
group.

(II) If G is infinite, then G cannot contain the rotation group SO(3) as a subgroup.

Proof of Corollary 3.7 is similar to the proof of Corollary 3.6.

THEOREM 3.8. Let X be a space of cohomology type (a, b), characterized by an
integer n > 1. If n is even and a = 0 (mod p) = b, p a prime, then the only finite group
that acts freely on X is �2.

Proof. Suppose that G is finite group acting freely on X . If p is an odd prime and
p| |G|, then �p can be regarded as a subgroup of G, and by Flyod’s formula, we have
χ (X) = χ (X�p ) (mod p). Since n is even, we have χ (X) = 4 and therefore X�p 	= φ, a
contradiction. Therefore, G contains no element of odd prime order. Hence, |G| = 2k,
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for some integer k ≥ 1. If k > 1, then either G has cyclic subgroup of order 4 or
G has exponent 2. In either case, there is a free action of �2 on X/�2 = Y. With
the notations as in Theorem 3.2, we must have d2(1 ⊗ u) = t2 ⊗ 1. Since n is even,
0 = d2((1 ⊗ u)(1 ⊗ u3n)) = t2 ⊗ u3n, a contradiction. Hence, G must be �2. �

Now, we construct example of spaces of cohomology type (0, 0) and show that �2

acts freely on these spaces.

EXAMPLE. Consider the antipodal actions of �2 on �2n and �3n, where n > 1.
Then, �n−1 ⊂ �2n ∩ �3n is invariant under this action. So, we have a free �2-
action on X = �2n ∪�n−1 �3n, obtained by attaching the sphere �2n and �3n along
�n−1. Let A = X − {p} and B = X − {q}, where p ∈ �2n − �n−1 and q ∈ �3n − �n−1.
Then, A � �3n, B � �2n and A ∩ B � �n−1. By Mayer–Vietoris cohomology exact
sequence, we have Hi(X ; �p) = �p for i = 0, n, 2n, 3n and trivial group otherwise. Let
x ∈ Hn(X ; �p), y ∈ H2n(X ; �p) and z ∈ H3n(X ; �p) be generators. Obviously, j∗(x) = 0
so that j∗(x2) = 0 and j∗(xy) = 0, where j∗ : Hk(X ; �p) → Hk(A; �p) ⊕ Hk(B; �p).
Since j∗ is an isomorphism for k = 2n, 3n, we have x2 = xy = 0. Hence, X is a space of
type (a, b), where a = 0 (mod p) = b and n > 1.
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