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We consider the situation of a misalignment between the global temperature gradient and
gravity in thermal convection. In such a case an effective horizontal buoyancy arises
that will significantly influence the transport properties of heat, mass and momentum.
It may also change the flow morphology in turbulent convection. In this paper, we
present an experimental and numerical study, using Rayleigh–Bénard convection as a
platform, to explore systematically the effect of horizontal buoyancy on heat transport
in turbulent thermal convection. Experimentally, a condition of increasing horizontal
Rayleigh number (RaH , which is the non-dimensional horizontal thermal driving strength)
under fixed vertical Rayleigh number (RaV , the non-dimensional vertical driving strength)
is achieved by tilting the convection cell and simultaneously increasing the imposed
temperature difference. We find that, with increasing horizontal to vertical buoyancy
ratio (Λ = RaH/RaV ), the overall heat transport manifests a monotonic increase in
vertical heat transport (NuV ) as well as a monotonic increase in its horizontal component
(NuH). However, the horizontal Nusselt number is found to be approximately one order
of magnitude smaller than the vertical Nusselt for the parameter range explored. We
also show that the non-zero NuH results from the broken azimuthal symmetry of the
system induced by the horizontal buoyancy. We find that the enhancement of vertical
heat transport comes from the increased shear generated by the horizontal buoyancy at
the boundary layer. The effect of Prandtl number (Pr) is also studied numerically. Finally,
we extend the Grossmann–Lohse theory to the case with an effective horizontal buoyancy,
the result of which is successful in predicting NuV(RaV , Λ, Pr).
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1. Introduction

Thermal convection is of crucial importance for understanding many thermally driven
fluid flows in nature, for instance, ocean circulation, mantle convection and convections
in celestial bodies. In certain circumstances involving convective flows, either the
imposed temperature gradient has a non-parallel component with respect to gravity or
the gravitational field itself is altered, resulting in an effective ‘horizontal buoyancy’ with
respect to the temperature gradient, which makes the problem even more complicated; for
example, mantle convection near the subduction zone (Taylor & Mclennan 1995; Wortel &
Spakman 2000; Ritter & Christensen 2007), convection in binary star systems (Kenyon &
Webbink 1984; Podsiadlowski, Joss & Hsu 1992; Heintz 2012) and atmospheric circulation
with wide latitude scales (Emanuel, Neelin & Bretherton 1994). In all these systems, a
(significant) misalignment exists between the global temperature gradient and gravity.

A paradigm for studying thermal convection is the Rayleigh–Bénard convection (RBC)
system (Ahlers, Grossmann & Lohse 2009; Lohse & Xia 2010; Chillà & Schumacher 2012;
Xia 2013), in which a fluid layer is heated at the bottom and cooled from above, therefore
the global temperature gradient is strictly parallel to gravity. During the past few decades,
a vast number of studies on turbulent RBC have been reported, focusing on various aspects
of the system, such as heat transport, dynamics of the large-scale circulation, small-scale
turbulence and the effect of complex boundary conditions.

A simple implementation of the horizontal buoyancy is to tilt the RB convection set-up
by an angle β (figure 1). For small tilting angles, Ahlers, Brown & Nikolaenko (2006)
found an increase of the speed in the large-scale circulation (LSC), but that increase
does not significantly influence the heat transport efficiency. However, measurements in
an aspect ratio Γ = 0.5 cell (Weiss & Ahlers 2013) reveal a very small increase of heat
transport efficiency for tilt angle β ≈ 6◦. This is in contradiction with the result of Chillà
et al. (2004), who reported a slight reduction of Nusselt number with the same aspect
ratio but at higher Rayleigh numbers. Wei & Xia (2013) studied the properties of viscous
boundary layers in RBC with tilt angles up to β = 3.4◦ in a cylindrical cell of Γ = 1. They
found that for small tilt angles (β ≤ 1◦), the scaling of viscous boundary layer thickness
with the Reynolds number (Re) is close to the Prandtl–Blasius laminar boundary layer
scaling, while higher tilt angles result in a reduction in the scaling exponent.

For convection with large tilt angles, sometimes also called the inclined layer
convection, a number of studies (Daniels & Bodenschatz 2002; Daniels, Wiener &
Bodenschatz 2003; Daniels et al. 2008; Subramanian et al. 2016) have been carried out
to try to understand the spatio-temporally chaotic phenomenon and to identify different
flow regimes near onset. Riedinger et al. (2013) studied the convection in a tilted channel
connected by two chambers and identified four different flow regimes. Guo et al. (2014)
reported a monotonic decrease in Nusselt number for increasing β in a rectangular cell
(aspect ratios Γx = 1 and Γy = 0.25). Jiang, Sun & Calzavarini (2019) conducted both
experimental and numerical studies in a similar convection cell but with much higher
Prandtl number (Pr) and they reported a peculiar bimodal Nu–β curve. For low Prandtl
number, on the other hand, Frick et al. (2015), Teimurazov & Frick (2017) and Khalilov
et al. (2018), using liquid sodium as working fluid, found that there exists an optimal
tilting angle for heat transport. Shishkina & Horn (2016) and Zwirner & Shishkina (2018)
conducted direct numerical simulations (DNS) for wide ranges of Rayleigh number,
Prandtl number and different aspect ratios. They found that the normalized Nusselt number
Nu(β)/Nu(0) has a complicated, non-monotonic dependence on β as well as Ra and Pr.
Recently, Wang et al. (2018b,c) conducted two-dimensional DNS for tilted RBC with
different aspect ratios. They identified multiple roll states for cells with large aspect ratios
and studied the relationship between the different flow states and the global heat transport.
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Figure 1. (a) Comparison between the parameter space trajectory explored in the present study (red dashed
line) and that by simply tilting the cell (black dashed curve, which is the case in most of the previous studies);
panel (b) is a schematic drawing of the tilted cell. Here RaV is the vertical Rayleigh number and RaH is the
horizontal Rayleigh number (see (2.4) and (2.5) for definitions). Here RBC stands for ‘levelled’ RBC and VC
stands for vertical convection (Ng, Chung & Ooi 2013; Ng et al. 2015).

While these studies have clearly demonstrated the richness and complexities of the tilted
RBC system, the complicated and sometimes seemingly contradictory results suggest the
need for a different treatment of the effective horizontal buoyancy, which may offer a
unifying understanding of the problem.

In the present study, unlike in most previous studies of tilted RBC, we fix the
vertical thermal driving strength (in the cell frame) while varying the effective horizontal
buoyancy over the vertical buoyancy (see figure 1). With this operation, we are able to
systematically explore the effect of horizontal buoyancy while maintaining a non-zero
vertical buoyancy. Experimentally, this is achieved by tilting the convection cell with
respect to gravity by an angle β and simultaneously raise the temperature difference Δ

across the conducting plates by a corresponding amount.
The rest of the paper is organized as follows. In § 2, we first extend the classical

Rayleigh–Bénard problem to the case in which an effective horizontal buoyancy is
present. This section is further divided into three subsections: in § 2.1, we put forward the
governing equations of the system; we then generalize the Nusselt number to a vector form
in § 2.2 and thereby derive the expression for the global horizontal heat transfer. The exact
balance relationships between the viscous dissipation rate, the thermal dissipation rate
and the global heat transport are then derived in § 2.3. In § 3, details of the experimental
set-up, and procedures of measurements and data analysis are provided. In particular, we
propose in § 3.2 a new method to extract information about the LSC using the multiprobe
temperature measurement data. As we use DNS to verify the experimental findings, a
brief introduction of the DNS code used is presented in § 4. In § 5 we present and discuss
both the experimental and numerical results. In § 6, we extend the Grossmann & Lohse
(2000, 2001, 2002) theory to the case in which an effective horizontal buoyancy is present.
Finally, we summarize the present work in § 7.

2. Problem set-up

2.1. Governing equations
When the global temperature gradient and gravity are misaligned in a convective system
(as with the case in tilted RBC), it can be described by the following governing equations:

∂u
∂t

+ u · ∇u = − 1
ρ

∇p + ν∇2u + αg cos β(T − T0)ẑ + αg sin β(T − T0)x̂, (2.1)
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Figure 2. (a) Schematic drawing of the tilted RBC cell. The Cartesian coordinate system is set in the frame of
the convection cell; (b) the large RBC cell with a home-made rotation frame; (c) the convection cell used for
particle image velocimetry (PIV) measurement, a jacket filled with water is added to compensate the optical
path to reduce image distortions.

∂T
∂t

+ u · ∇T = κ∇2T, (2.2)

∇ · u = 0, (2.3)

where β is the angle between gravity and global temperature gradient, ν is the kinematic
viscosity, κ is the thermal diffusivity, α is the thermal expansion coefficient, g is the
acceleration due to gravity and T0 is a reference temperature. Here, we have adopted
the Oberbeck–Boussinesq approximation, in which all fluid properties are treated as
independent of the temperature, except for the density in the buoyancy term. The Cartesian
coordinate system is set in the frame of the convection cell (see figure 2a), such that ẑ is the
‘vertical’ unit vector pointing from the bottom plate to the top plate, x̂ is the ‘horizontal’
unit vector, and gravitational acceleration g lies in the x–z plane. Hereafter, all ‘vertical’
and ‘horizontal’ quantities mentioned are in the frame of the tilted cell.

In most previous tilted RBC studies, the tilting angle is increased while the temperature
drop across the conducting plates is kept as a constant. This results in an increase in the
effective horizontal buoyancy but a decrease in the vertical buoyancy. In the parameter
space, this corresponds to an arc trajectory (the black dashed curve in figure 1). To explore
the effect of horizontal buoyancy separately, we use τ = √

H/(αΔg cos β) as the typical
time scale (the free fall time for a fluid parcel to travel from the top plate to the bottom
plate when the cell is tilted by an angle β), instead of τ = √

H/(αΔg) (the conventional
free fall time), together with the cell height H, the temperature difference Δ across the two
plates, to normalize the governing equations, which yields

∂ũ
∂ t̃

+ ũ · ∇ũ = −∇p̃ +
√

Pr
RaV

∇2ũ + T̃ ẑ + RaH

RaV
T̃x̂, (2.4)

∂T̃
∂ t̃

+ ũ · ∇T̃ =
√

1
RaVPr

∇2T̃, (2.5)

∇ · ũ = 0, (2.6)

where RaV =αg cos βΔH3/(νκ) is the vertical Rayleigh number, RaH = αg sin βΔH3/(νκ)

is the horizontal Rayleigh number and Pr = ν/κ is the Prandtl number. Note that by this
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definition, RaV differs from the traditionally used Ra = αgΔH3/(νκ) by a factor of cos β,
and it now represents the ‘vertical’ (with respect to the plates) thermal driving strength, as
its name suggests. We stress that (2.4)–(2.6) are exactly the same as those of the traditional
‘levelled’ RBC except for an additional horizontal body force term in the momentum
equation. For simplicity, we define Λ = RaH/RaV = tan β as the buoyancy ratio, which
describes the relative strength of the effective horizontal buoyancy over the vertical one.

With this normalization, it is clear that when we tilt the convection cell by an angle β,
and accordingly raise the temperature difference across the conducting plates by a factor
of 1/ cos β, the vertical thermal forcing with respect to the cell is fixed (see the red dashed
line in figure 1). This procedure enables us to use tilted RBC as a platform to explore the
effect of horizontal buoyancy.

2.2. Generalization of the Nusselt number
Classical RBC is characterized by two response parameters, namely, the Nusselt number
and the Reynolds number,

Nu = Q
kΔ/H

= 〈uzT〉A − κ∂z〈T〉A

κΔ/H
, (2.7)

Re = UH
ν

. (2.8)

In the above, Q is total vertical heat flux, k is the thermal conductivity of the
working fluid, uz is the vertical velocity and 〈·〉A denotes averaging over any horizontal
cross-section. The Nusselt number is a non-dimensional measurement of the total heat
flux and the Reynolds number describes the relative flow strength (Sun & Xia 2005).

In the presence of horizontal buoyancy, there exists a global horizontal heat transport. In
such a case, the overall heat flux of the system must be represented by a vector. Following
(2.7), we can readily write the vector form of the Nusselt number as

Nu = Q
kΔ/H

, (2.9)

where the global heat flux Q can be expressed in the integral form as

Q = 1
V

∫
〈q〉 dV = cρ

V

∫
〈uT − κ∇T〉 dV = − k

V

∮
〈r∇T〉 · dS. (2.10)

Here c is heat capacity and ρ is the density of the working fluid. Physically, Q is just
the volume-averaged local heat flux q over the whole convective domain. In the last step
of (2.10), we have used the no-slip boundary conditions and applied Gauss’s law. With ẑ
being the unit vector pointing from the hot plate to the cold plate (see figure 1a), the vector
form of Nusselt number Nu can be decomposed as

Nu = (ẑ · Q)ẑ + (x̂ · Q)x̂
kΔ/H

= NuV ẑ + NuH x̂. (2.11)

Here, NuV is the vertical component of Nu and NuH is the horizontal component that
represents the strength of the global horizontal heat transfer. In the last step of (2.11), we
have used the fact that the acceleration due to gravity g lies in the x–z plane therefore the
total heat flux Q should have no y component, considering the reflection symmetry on the
y axis after taking ensemble average.
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Figure 3. Schematic drawings of various thermal convection systems as well as their corresponding overall
heat transfer direction (indicated by open arrows). (a) Tilted RBC; (b) thermal convection with mixed boundary
conditions at the top plate; (c) horizontal convection.

In the present study, the sidewall is adiabatic (∇T · dS = 0), therefore the last integral
in 2.10 survives only on the top and bottom surfaces. Substituting (2.10) into (2.11) we
obtain

NuV = 1
V

(∫
z=0

z
∂T
∂z

dS −
∫

z=H
z
∂T
∂z

dS
)/

(Δ/H) = −〈∂T/∂z〉z=H

Δ/H
, (2.12)

NuH = 1
V

(∫
z=0

x
∂T
∂z

dS −
∫

z=H
x
∂T
∂z

dS
)/

(Δ/H). (2.13)

Taking the adiabatic sidewall and no-slip boundary conditions into consideration, we
can see that (2.12) is exactly the same as (2.7). While the definition of the horizontal
Nusselt number NuH (2.13), on the other hand, can be interpreted as an integral of local
heat flux at the plates weighted by its horizontal position.

The horizontal heat transfer is usually ignored in previous studies of tilted RBC. When
horizontal buoyancy is non-zero, as we will see below, the global horizontal heat transfer
is no longer negligible, and NuH becomes the third response parameter of the system. The
non-zero horizontal heat flux may also be understood in term of a symmetry breaking,
which will be discussed in detail in § 5.4.

We stress that the definitions in (2.12) and (2.13) are also applicable in other thermal
convection systems. For example, thermal convection with mixed boundary conditions
(Wang, Huang & Xia 2017) (see figure 3b) and horizontal convection (Hughes & Griffiths
2008; Wang et al. 2016; Wang, Huang & Xia 2018a) (figure 3c). For horizontal convection,
since heating and cooling happen on the same height at the two ends of the cell, the vertical
heat flux is always zero (see (2.12)), and only the horizontal component NuH survives.

2.3. Exact relations
The horizontal Nusselt number NuH makes the description of global heat transport more
complete, it also alters the balance between global transfer properties and the dissipation
rates. In the presence of horizontal buoyancy, the exact relations of volume-averaged
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viscous and thermal dissipation rates can be written as

εu = ν3

H4 RaVPr−2(NuV − 1) + ν3

H4 RaHPr−2

(
NuH +

〈
∂T̃
∂ x̃

〉
V

)
, (2.14)

εθ = κ
Δ2

H2 NuV , (2.15)

where 〈·〉V denotes averaging over the whole convection domain. Comparing with RBC
with just vertical buoyancy (Ahlers et al. 2009), there is now an additional term accounting
for the contribution from the horizontal buoyancy in the exact relation for the energy
dissipation rate (2.14). The thermal dissipation rate (2.15), on the other hand, depends only
on the vertical Nusselt number and has the same form as in the classical case (because no
additional term is involved in the energy equation, (2.5)), except that now the total Nusselt
number is replaced by the vertical one.

3. Experiment set-up and procedures

3.1. The convection cell
A cylindrical convection cell with diameter D = 19.2 cm and height H = 20.0 cm is used
in the experiment, thus the aspect ratio Γ = D/H is approximately unity (see figure 2b).
The top and bottom plates are made of copper and the sidewall is made of Plexiglass with
4 mm thickness. Distilled and deionized water is used as working fluid. The top plate
is cooled by a refrigerator and the bottom plate is heated by a resistive heater. The bulk
temperature is set to be Tbulk = 40 ◦C, corresponding to a Prandtl number of Pr = 4.3.
The whole convection cell is sat on a frame that is able to rotate along a horizontal axis.

Four thermistors (OMEGA Engineering, Model 44031/44032) are embedded in each
plate to monitor the temperatures at the top and bottom boundaries. In addition, we
embed eight thermistors equidistant around the midheight of the sidewall, to monitor the
temperature signals therein and the LSC (Cioni, Ciliberto & Sommeria 1997; Brown &
Ahlers 2006; Xi & Xia 2007; Zhou et al. 2009). The head of thermistor is only 0.2 mm
away from the working fluid to minimize the possible filtering effect. A multichannel
digital multimeter (Keysight, Model 36972A) is used to measure the resistances of these
thermistors at a sampling rate approximately 0.75 Hz, the recorded resistances are then
converted to temperature thereafter using the calibration data. An additional copper basin
is applied to compensate for heat leakage from the bottom plate. Foam plastic, over 5 cm in
thickness, is wrapped around the cell to prevent heat leakage from the sidewall. Finally, the
whole rotating frame is placed into a home-made thermostat, whose temperature is set to
be the same as the bulk temperature of the cell. The temperature stability of the thermostat
is approximately ±0.02 K.

For the D = 19.2 cm cell, measurements are conducted at three vertical Rayleigh
numbers (RaV = 1.0 × 109, 2.2 × 109 and 4.6 × 109) at six tilting angles β = 0, 20◦, 30◦,
40◦, 50◦ and 60◦. The corresponding buoyancy ratios are Λ = 0, 0.36, 0.58, 0.84, 1.19 and
1.73, respectively. In order to expand the parameter range, we use another small cylindrical
cell with H = 9.9 cm, whose aspect ratio is also around unity, to cover a lower vertical
Rayleigh number range (RaV = 1.0 × 108, 2.2 × 108 and 4.6 × 108). The corresponding
tilt angles are the same as those of the larger cell. The sidewall of the small cell is made
of glass, which suffers a severe heat leakage problem. A correction for the sidewall effect
has been made to the data of the small convection cell, the details of the correction are
described in § 3.3.
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3.2. Sidewall temperature profile
In classical RBC, a commonly used method for extracting the information about the LSC
is the so-called sinusoidal function method (SF) (Cioni et al. 1997; Brown & Ahlers 2006;
Xi & Xia 2007; Zhou et al. 2009). This method fits the temperature signals at different
azimuthal locations by T(θ) = T0 + TA sin(θ − φ). Here, T0 is the azimuthally averaged
temperature, TA reflects the strength of the LSC and φ is the phase angle. The SF
method has shown great success in studying the dynamics of the LSC, for example
the meandering, cessation and reversal in RBC. Later, Zhou et al. (2009) developed a
temperature-extrema-extraction (known as TEE) method, based on which they identified a
novel sloshing mode of the LSC (Xi et al. 2009).

With the presence of effective horizontal buoyancy (Λ > 0), the azimuthal temperature
profile may change and an SF description might not be accurate. For this reason, we
introduce in this section a closed-form expression for the azimuthal temperature profile,
which not only gives a better description of the measured temperature profile, but also
quantifies the degree of coherency of the LSC.

As the first step, we modify the sinusoidal function by using the trigonometric identity
sin θ = 2 tan(θ/2)/[1 + tan2(θ/2)] and substitute tan(θ/2) with b tan(θ/2), giving

T(θ) = T0 + TA ×
2b tan

(
θ − φ

2

)

1 + b2 tan2
(

θ − φ

2

) , (3.1)

where b > 0 is a parameter which is related to the off-centre distance of the
LSC (Zhou et al. 2009). One can easily verify that the maximum temperature
in (3.1) occurs at θT,max = 2 arctan(1/b) + φ and the minimum temperature at
θT,min = 2 arctan(−1/b) + φ. The off-centre distance of the line connecting these two
points is

d = R sin[2 arctan(1/b) − π/2], (3.2)

where R is the radius of the convection cell, and the sloshing mode can be exclusively
captured when b is determined.

For the second step, considering that the horizontal buoyancy may separate the hot
and cold plumes and form highly concentrated hot/cold angular regions, we incorporate a
power law function and finally obtain the expression of the temperature profile as

T(θ) = T0 + TA ×
2b tan

(
θ − φ

2

)

1 + b2 tan2
(

θ − φ

2

)
∣∣∣∣∣∣∣∣

2b tan
(

θ − φ

2

)

1 + b2 tan2
(

θ − φ

2

)
∣∣∣∣∣∣∣∣

ζ

, (3.3)

where ζ > −1 is the second parameter that describes the shape of the profile. Other
parameters, T0, TA and φ, as in the SF method, denote the mean temperature, the amplitude
and the phase angle of the LSC. One can check that when b = 1 and ζ = 0, (3.3) reduces
to a sinusoidal function.

Figure 4(a) shows an example of the measured instantaneous azimuthal temperature
profile at the midheight of the large convection cell. The open circles are the temperature
signals of the eight thermistors and the red solid line shows the power law half-angle
formula fitting (PHAF) curve. For comparison, we plot in the same figure the SF fitting by
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Figure 4. (a) Instantaneous azimuthal temperature profile at midheight of the sidewall measured by the
eight thermistors at RaV = 4.6 × 109, Pr = 4.3, Λ = 0, (open circles); fitting by the proposed function (3.3),
(solid line); a sinusoidal fitting, (dashed line). (b) Mean temperature profile at RaV = 4.6 × 109, Pr = 4.3
and buoyancy ratio Λ = 0.84, (open circles); fitting by a power law sinusoidal function (3.4), (solid line); a
sinusoidal fitting, (dashed line).

a black dashed line. It is clearly seen that the PHAF method gives a better description of
the instantaneous profile.

The other parameter ζ , describes the azimuthal range spanned by the hot ascending flow
and the cold descending flow. A large value of ζ corresponds to a narrow hot/cold range
and vice versa. Figure 4(b) shows an example of the time averaged azimuthal temperature
profile at RaV = 4.6 × 109, Pr = 4.3 and Λ = 1.73. In the presence of the horizontal
buoyancy, we can see that the hot/cold plumes indeed move towards the sidewall region
and the hot/cold plumes are confined in a narrower angular range compared with the Λ = 0
case. As a result, the LSC is locked in the x–z plane. Since the reflection symmetry about
the y axis is not affected by the horizontal buoyancy, after taking the long-time average, the
points with maximum and minimum temperatures of the profile should lie in the x–z plane.
For simplicity, hereafter we fix b = 1 (corresponding to the off-centre distance d = 0) for
all time-averaged (over one and a half hours for all runs) temperature profiles. Substituting
b = 1 into (3.3), it reduces to

T(θ) = T0 + TA sin(θ − φ) × | sin(θ − φ)|ζ . (3.4)

The red solid line in figure 4(b) shows the fitting result of (3.4) for the time averaged
case. For comparison, the sinusoidal fitting is also plotted by the dashed line. Clearly,
(3.4) gives a more accurate description of the profile than the SF methods, i.e. all eight
experimental data points fall on the solid curve. It is also evident that the horizontal
buoyancy traps both the hot ascending and cold descending flows in a smaller angular
region, which implies that the ‘coherency’ of the plumes is increased. This feature can
also be reflected by the full width at half-maximum (FWHM) of the profile, which is
related to ζ as

FWHM = 2 arccos[2−1/(1+ζ )]. (3.5)

Note that the FWHM as given above is a monotonic decreasing function of ζ . For
temperature profiles with higher ζ value, the hot and cold plumes are highly concentrated
at the opposite sides of the sidewall. For this reason, we refer to ζ as the ‘coherency index’.
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3.3. Sidewall correction
Since the sidewall of the small convection cell is made of glass, whose thermal
conductivity (1.1 W (m K)−1) being much higher than that of Plexiglass (0.19 W
(m K)−1), the sidewall heat leakage makes a considerable contribution to the measured
overall heat transfer. To subtract this additional heat transfer, we adopt the correction
proposed by Roche et al. (2001). The central idea is to consider that the vertical
temperature profile decreases exponentially in the sidewall and the characteristic length
scale of profile, which also accounts for the sidewall heat leakage, can be expressed as

λ = AR
√

2
2

(
W

Γ NuV

)1/2

, (3.6)

where R is the radius of the conducing plate; Γ is the aspect ratio of the cell; A is a constant
of order unity, we use the value A = 0.8 proposed by Roche et al. (2001) throughout this
work; W is the wall number, defined as the ratio between empty cell heat conductivity and
the quiescent fluid heat conductivity,

W = 2kWe/kf R, (3.7)

where kW and kf are the thermal conductivity of the wall material and the working fluid,
respectively; e is the thickness of the sidewall. Putting everything together, one can obtain
the relation between the corrected Nusselt number and the measured one as

NuV,cor = NuV,mea

/[
1 + A

√
2
(

W
Γ NuV,cor

)1/2
]

. (3.8)

3.4. Flow field measurements
In addition to the heat transport measurements, we also use the PIV technique to quantify
the flow fields. Figure 2(c) shows a photo of the convection cell used for PIV measurement.
To minimize the effect of optical distortion, we add a rectangular jacket to the sidewall,
which is filled with distilled and deionized water. A Litron Nd:YAG 532 nm laser is used
for illumination. The light sheet is approximately 2 mm in thickness and illuminates the
vertical cross-section of the cell through the centreline. Dantec PSP polyamid particles
(with diameter d = 50 μm) are used as seeding particles. The centre temperature of the
convection cell is also set to be 40 ◦C. The vertical Rayleigh number is set to be RaV =
4.8 × 109, which is close to the highest value in our heat transport measurement. The
whole set-up is placed into another transparent home-made thermostat with its temperature
set to be the same as the bulk temperature. Each image sequence is recorded at a frame
rate of f = 15 Hz and lasts for 30 minutes, consisting of 27 000 raw images. The velocity
field is calculated afterwards for each tilting angle using the single frame mode. Six sets
of measurements with buoyancy ratio Λ = 0, 0.36, 0.58, 0.84, 1.19 and 1.73 are made,
corresponding to tilting angles β = 1◦, 20◦, 30◦, 40◦, 50◦ and 60◦, respectively. For the
case of Λ = 0, we deliberately tilt the cell by β = 1◦. Such small tilt angle (β = 1◦) can
lock the LSC in the x–z plane without inducing a noticeable change in the flow strength
compared with the strictly levelled case (Ahlers et al. 2006; Wei & Xia 2013).

4. Direct numerical simulations

To verify the experimental results, we conduct DNS with the same parameter settings.
In addition, the Prandtl number effect is also explored at fixed vertical Rayleigh number
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RaV = 108. We adopt the CUPS code (Chinese University of Hong Kong pencil code
simulation for turbulent convection (Kaczorowski & Xia 2013; Kaczorowski, Chong & Xia
2014; Chong, Ding & Xia 2018)) to solve (2.4)–(2.6) using a fourth-order finite-volume
method on staggered grids. All simulations are conducted in a cylindrical domain with
aspect ratio equal to unity. All boundaries are set to be impermeable and non-slip.
The sidewall is adiabatic while constant temperature conditions are applied at both the
top and bottom plates. A non-uniform mesh with denser grids at all boundaries is adopted
for both the temperature and velocity fields. A multiresolution scheme in which the
temperature mesh is denser than the velocity mesh (see appendix A) is also used to save the
computational cost of the simulations at high Prandtl numbers. For a detailed description
of the code, we refer to Chong et al. (2018).

5. Results and discussions

5.1. The global heat transfer
In figure 5, we plot the vertical Nusselt numbers as a function of the buoyancy ratio (and
the horizontal Rayleigh number). Open and solid circles represent experimental data with
and without sidewall corrections, respectively. The DNS data are shown as open triangles.
It is seen that our experimental results show good agreement with the DNS data. For the
six vertical Rayleigh numbers measured, NuV increases monotonically with the buoyancy
ratio Λ. In other words, the horizontal buoyancy facilitates the vertical heat transport, at
least in a closed cylindrical convection domain with aspect around unity. This finding is
different from most previous studies on tilted RBC (Guo et al. 2014; Shishkina & Horn
2016; Teimurazov & Frick 2017; Jiang et al. 2019). The main reason is that we have
adopted a different normalization scheme and our experiment follows a straight line in
the parameter space shown in figure 1.

To obtain the horizontal Nusselt number (2.13), we need to have the distribution of
temperature gradient on both plates, which is very difficult for the experiment but readily
available in DNS. We plot the calculated horizontal Nusselt numbers from DNS in figure 6.
Points at Λ = 0 are omitted since in such a case, the dynamics of the LSC (e.g. reversal,
cessation and meandering) will result in a zero mean horizontal transport. The absolute
value of NuH is an order of magnitude smaller than NuV for the parameter range explored,
which means that the overall heat transport, defined by (2.11), is always dominated by the
vertical component. For all data sets, the horizontal Nusselt also shows a general increasing
trend with the buoyancy ratio. A small bump is seen for some vertical Rayleigh number
(RaV = 1.0 × 108, 1.0 × 109 and 4.6 × 109) at the lower end of the curve. We do not know
the exact reason for such a bump, it may be related to the change in the overall flow
structure (see § 5.4).

To see the relative enhancement more clearly, we plot the vertical Nusselt number as a
function of the buoyancy ratio Λ for six different Rayleigh numbers RaV in figure 7(a).
Furthermore, to quantify the relative increase in vertical heat transport, we normalize
the vertical Nusselt number with the value of the levelled case NuV(0). The results are
plotted in figure 7(b) with the same symbols. For all six vertical Rayleigh numbers, the
relative enhancements of vertical heat transfer, NuV(Λ)/NuV(0), almost follow the same
trend. A linear fitting of all the data points gives NuV(Λ)/NuV(0) = 1 + 0.14Λ, which
is also plotted as the solid line in figure 7(b). The maximum deviation from this line is
approximately 2.5%.

In previous studies on turbulent RBC, the two response parameters, Nu and Re, are often
described by an effective scaling law on both Rayleigh number and Prandtl number (Siggia
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Figure 5. The vertical Nusselt number (NuV ) as a function of the buoyancy ratio (Λ) for different vertical
Rayleigh numbers (RaV ). The top axes show the corresponding horizontal Rayleigh numbers. Circles are the
experimental data and triangles represent the DNS data. Open and solid symbols represent data with and
without sidewall corrections, respectively. The experimental data in panels (a–c) are measured using the small
cell and correspond to RaV = 1.0, 2.2 and 4.6 × 108, respectively; the data in panels (d–f ) are taken from the
large cell, the corresponding vertical Rayleigh numbers are RaV = 1.0, 2.2 and 4.6 × 109.

1994; Grossmann & Lohse 2000, 2001, 2002). To check whether the power law scaling of
vertical Nusselt number is still valid when horizontal buoyancy is presented, we plot NuV
as a function of the vertical Rayleigh number RaV in figure 8(a). A compensated plot is
also shown in figure 8(b). Different symbols correspond to different horizontal buoyancy
strength. In the same figure, we also plot the results of power law fittings with solid lines.
The scaling exponents and the magnitudes are summarized in table 1. One sees that for a
fixed buoyancy ratio Λ, the vertical heat transports ranges from 0.283 to 0.293, the small
fluctuation in scaling exponent may result from the use of two different convection cells
and the intrinsic uncertainty of the measurement. We conclude that the buoyancy ratio
does not have an evident effect on the scaling exponents.
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Figure 6. The DNS result of horizontal Nusselt number (NuH) as a function of the buoyancy ratio (Λ) for
different vertical Rayleigh numbers (RaV ). The top axes show the corresponding horizontal Rayleigh numbers.
The corresponding vertical Rayleigh number in each subplot is the same as figure 5.

Generally speaking, our experimental results show that the effect of horizontal buoyancy
on vertical heat transfer is two-sided. Firstly, increasing the horizontal buoyancy results in
a monotonic increase of NuV , which can be approximated as a linear function as

NuV(Λ)/NuV(0) = 1 + 0.14Λ. (5.1)

Secondly, for a fixed buoyancy ratio up to Λ = 1.73, the NuV–RaV scaling is not
affected by the horizontal buoyancy. We then propose two qualitative explanations for
this monotonic enhancement. The first one is from the view of energy balance of the exact
relations, as we have already discussed in § 2.3. The second one is from the point of view of
plume coherency. When horizontal buoyancy sets in, it will push the ascending hot plumes
near the bottom plate to the right and the descending cold plumes near the top plate to the
left. The hot/cold plumes will then aggregate, merge and condense on the opposite sides,
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Figure 7. (a) Experimentally measured vertical Nusselt number as function of the buoyancy ratio Λ. From top
to bottom, the corresponding vertical Rayleigh numbers are RaV = 4.6 × 109, 2.2 × 109, 1.0 × 109, 4.6 × 108,
2.2 × 108, 1.0 × 108, respectively. Note for the last three sets of data, sidewall correction has been made.
(b) Normalized Nusselt number as a function of the buoyancy ratio. The symbols are the same as those in panel
(a). The solid line shows a linear fitting with NuV (Λ)/NuV (0) = 1 + 0.14Λ.
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Figure 8. (a) Measured vertical Nusselt number as a function of vertical Rayleigh number. Solid lines are
power law fittings to the data. (b) Compensate plot of vertical Nusselt number by Ra0.29

V , the legends are the
same as those in panel (a).

forming a large bundle of plumes that are more coherent, contain more heat, and finally
increase the overall vertical heat transport (Huang et al. 2013). To verify this assumption,
information about the temperature field as well as the velocity field is required.

5.2. Temperature profile at midheight of the cell
The experimentally measured azimuthal mean temperature profiles for six buoyancy ratios
are plotted in figure 9. The vertical Rayleigh number is RaV = 4.6 × 109. The local
temperatures are measured by the eight thermistors placed equidistant at the midheight of
the sidewall and averaged over more than 90 minutes. The solid lines in figure 9 show the
fitting results of (3.4). It is seen that for large Λ value, the normalized temperature contrast,
T̃A, also increases. Meanwhile, the angular range covered by the hot/cold plumes, seems to
decrease first (for Λ up to 0.58), and then saturates at higher values of Λ. The flat shoulder
suggests that the plumes become increasingly confined spatially with increasing effective
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Ra Λ A γ

1.0 × 108 ∼ 4.6 × 109 0 0.152 0.292
1.0 × 108 ∼ 4.6 × 109 0.36 0.190 0.283
1.0 × 108 ∼ 4.6 × 109 0.58 0.178 0.288
1.0 × 108 ∼ 4.6 × 109 0.84 0.168 0.292
1.0 × 108 ∼ 4.6 × 109 1.19 0.174 0.293
1.0 × 108 ∼ 4.6 × 109 1.73 0.187 0.292

Table 1. Power law fitting parameters of NuV = A × Raγ

V from the experimental data for different
buoyancy ratios.

horizontal buoyancy (this is related to the flow dynamics, i.e. the azimuthal range of the
LSC is reduced). The error bar represents the standard deviation of temperature fluctuation
at each measurement point. The overall temperature fluctuations decrease for increasing
buoyancy ratio, which suggests that the overall flow is more stable. A close inspection
reveals that the fluctuations are highest at θ = 0 and π, corresponding to where most of
the hot plumes are moving upward and cold ones moving downward, respectively. For
comparison, we plot in the same figure the mean temperature profiles obtained from DNS
shown as shaded curves, with the width representing the corresponding standard deviation.
It is seen that the DNS results in general agree well with our experimentally measured
profiles, except for the levelled case (Λ = 0), for which the LSC does not necessarily stay
in the x–z plain. For the highest buoyancy ratio, the fitting curves and the DNS profiles
start to show some deviation. Nevertheless, the experimental points remain on both curves.
This indicates that in such a case, eight thermistors might not be sufficient to describe the
temperature profile.

The fitting parameters for the solid curves in figure 9 are plotted in figure 10. It is
seen that the relative amplitude T̃A of the temperature profile increases as we increase
the horizontal buoyancy Λ (figure 10a). The behaviour of ζ (figure 10b) is a bit more
complicated, it is around zero for the first two buoyancy ratios, and increases rapidly for
Λ > 0.36, while for the largest Λ explored in our experiment it drops again. For a clear
view, we convert ζ to the FWHM of the profile using (3.5), the results are then plotted in
figure 10(c). For the first three points, the FWHM decreases rapidly, while for higher Λ, the
change in FWHM is small. This is consistent with our qualitative description in figure 9.
As a matter of fact, after obtaining these fitting parameters, we are able to estimate the
strength of horizontal heat transfer, for details see appendix 3.

5.3. The mean flow field measured by PIV
In order to quantify the change in the flow field, we conducted PIV measurements. We
first plot the coarse grained mean velocity fields in figure 11, with the colourbar denoting
the magnitude of the velocity vector. Each field is averaged over 27 000 velocity maps to
ensure statistical convergence.

For the strictly levelled case (Λ = 0), the LSC undergoes azimuthal, torsional and
sloshing motion (Funfschilling & Ahlers 2004; Sun, Xi & Xia 2005; Brown & Ahlers
2006; Xi, Zhou & Xia 2006; Xi & Xia 2008; Xi et al. 2009; Zhou et al. 2009). In order
to lock the LSC in the PIV measurement plane, we tilted the cell slightly by β = 1◦
(corresponding to Λ = 0.02), which will serve as a baseline for the ‘levelled’ case. It
is seen from figure 11 that in this case the flow near the sidewalls (where the plumes
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Figure 9. The solid circles are the experimentally measured mean temperature profile at midheight of the
sidewall (normalized by the temperature difference across the plates) for different horizontal buoyancy strength
(RaV = 4.6 × 109, Pr = 4.3). The temperature standard deviations are denoted by error bars. The solid lines are
fits of (3.4) to the experimentally measured data. The shaded curves are the corresponding mean temperature
profiles from DNS, with the width of the curve representing the corresponding standard deviation.
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Figure 10. (a) Normalized amplitude of the temperature contrast T̃A = TA/Δ as a function of the buoyancy
ratio Λ, (b) the coherency index ζ and (c) FWHM of each profile. The corresponding vertical Rayleigh number
is RaV = 4.6 × 109.

are abundant) is intense and the centre of the cell remains quiescent. Also, the LSC is
elliptical, with its long axis along the diagonal of the cross-section, which is similar
to previous observations for nominally levelled cases (Λ ≈ 0) (Xia, Sun & Zhou 2003;
Guo et al. 2014). As the horizontal buoyancy Λ increases, one sees a remarkable change in
the flow field. The LSC becomes more robust with increasing Λ, and expands towards the
sidewall region, resulting in a square-like structure. The cold plumes detach from the top
left-hand corner, accelerate towards the bottom plate, and reach their maximum velocity
at the left-hand bottom corner. The hot plumes, on the other hand, reach their maximum
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Figure 11. Experimentally measured mean velocity fields for different buoyancy ratios at vertical Rayleigh
number RaV = 4.8 × 109. The colourbar denotes velocity magnitude.

velocity around the top right-hand corner. The bulk region remains almost stagnant for
all the buoyancy ratios explored, and the area of this quiescent region is seen to increase
with Λ.

Unfortunately, in our PIV measurement, the jacket fitted to the outside of the sidewall
blocks the light scattered from the seeding particles near both the top and bottom plates,
so we are not able to measure the velocity boundary layer. But a general feature of
the mean wind can still be identified. With increasing buoyancy ratio, the mean ‘wind’
below (above) the top (bottom) plate becomes more confined. In figure 12, we show the
magnitude of the mean vertical velocity at different buoyancy ratios. The hot ascending
flow on the right-hand side and cold descending flow on the left-hand side are indeed
separated by the horizontal buoyancy, aggregating on both sides of the sidewall. This
finding is in line with our temperature profile measurements, suggesting that the plumes
are more coherent.

Our PIV measurement reveals that the horizontal buoyancy can effectively increase the
flow strength, especially the vertical velocity in the plume dominated sidewall region in
the x–z plane.

5.4. Temperature and velocity fields
In figure 13, we plot the instantaneous temperature isosurfaces from DNS for different
buoyancy ratios at vertical Rayleigh numbers RaV = 108 and RaV = 109, respectively. The
general feature of the flow structures in these two RaV sets are similar: the large-scale
circulation expands towards the perimeter of the cell as the buoyancy ratio is increased;
the areas of cold-plume impacting and hot-plume ejecting regions at the bottom (and vice
versa for the top plate) also seem to decrease, resulting in a larger shear dominated region
in the centre of the bottom (top) plate.
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Figure 12. Experimentally measured mean vertical velocity fields for different buoyancy ratios at vertical
Rayleigh number RaV = 4.8 × 109.
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Figure 13. Snapshots of temperature isosurfaces (from DNS) for vertical Rayleigh numbers RaV = 108

(upper) and 109 (lower) at different buoyancy ratios. The Prandtl number is Pr = 4.38.

We plot the temperature snapshots in the x–z plane together with the velocity fields
for different horizontal buoyancy strength in figure 14(a) and their corresponding mean
fields in figure 14(b). The vertical Rayleigh number is fixed at RaV = 108. The flow
fields show similar features as our PIV results (figures 11 and 12), although the vertical
Rayleigh numbers differ by over one order of magnitude. Moreover, near the top/bottom
plate, where PIV measurement is not accessible, we can see a region with high horizontal
velocity. The height of the high-velocity region decreases with increasing buoyancy ratio.
The temperature contrast of the cold and hot plumes increases with Λ. This again is in
agreement with our temperature profile measurements (figure 10).

Figure 14(c) shows the mean shear rate at the bottom plate. We can see that the shear
rate increases dramatically with increasing buoyancy ratio. For large Λ values, a strong
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Figure 14. Cross-sections of various quantities (from DNS) for buoyancy ratios Λ = 0, 0.36, 0.58, 0.84, 1.19
and 1.73 at vertical Rayleigh number RaV = 108 and Prandtl number Pr = 4.38. (a) Snapshots of temperature
and velocity fields in the x–z plane; (b) mean temperature and velocity fields in the x–z plane; (c) mean shear
rates at the bottom plate; (d–f ) temperature snapshots, mean temperature and mean heat flux field at midheight
of the cell; (g,h) snapshots and mean temperature fields at one thermal boundary layer thickness away (z = δT )
from the bottom plate.

914 A15-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

82
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.825


L. Zhang, G.-Y. Ding and K.-Q. Xia

horizontal wind sweeps over the bottom plate, which directly thins the thermal boundary
layer.

In addition, we plot both the instantaneous and mean temperature fields of horizontal
cross-section at midheight of the convection cell in figures 14(d) and 14(e), respectively.
For the case with Λ = 0, the cold and hot plumes are randomly distributed and are able
to meander azimuthally. At small Λ values, the cold and hot plumes start to move towards
opposite sides, forming a cold and a hot spot at the two sides, respectively. Within these
spots, the temperature and vertical velocity are highly correlated, resulting in an extremely
enhanced local heat flux (Xia, Xin & Tong 1995; Shang, Tong & Xia 2008). These heat
transport ‘channels’ can be clearly seen in figure 14( f ), in which we plot the mean heat
flux field at the midheight. Mean local flux as high as 1400 is observed for the highest Λ,
which is approximately 30 times the global averaged vertical Nusselt number.

Figures 14(g) and 14(h), respectively, show the horizontal cross-section of the
instantaneous and mean temperature fields at the vertical position corresponding to one
thermal boundary layer thickness (z = δT ) near the bottom plate for different buoyancy
ratios. For the case with Λ = 0, sheet-like plumes are randomly distributed at the bottom
plate (Zhou, Sun & Xia 2007; Zhou & Xia 2010). Whereas, with increasing Λ, bundles
of cold plumes impinge on the left-hand side of the bottom plate, forming a large
cold area. The hot sheet-like plumes, on the other hand, are pushed to the right-hand
side, and emit incessantly therein. For the two highest values of Λ (the two right-most
panels of figure 14g), the sheet-like plumes propagate towards the right-hand side in a
wavy-like manner. The mean temperature fields are therefore highly inhomogeneous, with
the left-hand side being much colder than the right-hand side (figure 14h). Note that for
levelled RBC, the governing equations satisfy the reflection symmetry about the y–z plane
(ux → −ux, x → −x). In other words, if (T, ux, uy, uz) is the solution of (2.1)–(2.3), so is
(T ′, u′

x, u′
y, u′

z)(x, y, z) = Kx(T, ux, uy, uz)(x, y, z) = (T, −ux, uy, uz)(−x, y, z). Therefore
the ensemble average of the temperature fields, and the temperature gradient on both
plates, should also satisfy the Kx symmetry and the horizontal Nusselt is always zero
(2.13). However, a non-zero Λ (i.e. the last term on the right-hand side of (2.1)) breaks
this symmetry. It is indeed the breaking of the Kx symmetry that gives rise to the observed
global horizontal heat transfer (2.13). It is also worth mentioning that, it appears that the
difference between the integral on the top and bottom plates determines the magnitude
of NuH . In fact, the system conserves the Kxz symmetry (ux → −ux, uz → −uz, T →
−T, x → −x, z → −z) even in the case of non-zero buoyancy ratio. This means that if
one takes the ensemble average, the two surface integrals on the right-hand side of (2.13)
are equal in magnitude and only differ by a sign, and the integral at both plates contribute
equally to the overall NuH . (In appendix 2, we will show rigorously that the properties of
vanishing NuH in the case of levelled RBC, and non-zero NuH in the case of tilted RBC,
are guaranteed by the symmetries of their respective governing equations.)

We also note that, for large buoyancy ratios in figures 14(d) and 14(e), the instantaneous
temperature fields are almost the same as mean fields, implying a reduction in the
global velocity fluctuation as well as the global flow strength. To verify this, we plot
in figure 15(a) the Reynolds number, defined based on the volume-averaged root mean
square velocity Re = 〈u2〉1/2

V H/ν using the DNS data, as a function of the buoyancy ratio.
For all vertical Rayleigh numbers, the Reynolds number increases slightly first and then
decreases monotonically when Λ is further increased. In this sense, at moderate strength,
the horizontal buoyancy acts like a ‘stabilizing force’ (Huang et al. 2013; Chong et al.
2015; Huang & Xia 2016; Chong et al. 2017; Lim et al. 2019). Unlike the viscous drag from
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Figure 15. (a) Reynolds number as a function of the buoyancy ratio for different RaV . From top to bottom,
RaV = 4.6 × 109, 2.2 × 109, 1.0 × 109, 4.6 × 108, 2.2 × 108, 1.0 × 108, respectively. (b) Turbulent intensity
as function of the buoyancy ratio.

the sidewalls, the Coriolis force and the Lorentz force, both of which cannot accelerate the
fluid, the horizontal buoyancy can directly accelerate the fluid and contribute to the overall
viscous dissipation rate (2.14). Therefore such reduction in the overall flow strength is
not expected. In figure 15(b) we plot the volume-averaged turbulent intensity, defined as√

〈u′2〉V/
√

〈U2〉V , as a function of buoyancy ratio. Data points at Λ = 0 are not shown
since the LSC in such cases are not necessarily locked in the x–z plane. At low vertical
Rayleigh numbers, the turbulent intensity also decreases monotonically with buoyancy
ratio. But with increasing RaV , the decline in turbulent intensity gradually levels off, and
for the highest vertical Rayleigh number RaV = 4.6 × 109, the turbulent intensity even
rises again. A possible explanation is that, although the horizontal buoyancy has a direct
impact on the large-scale flow structures, it cannot suppress small-scale fluctuations when
the vertical thermal driven strength is sufficiently large (see figure 13).

In order to see the process of horizontal heat transfer more clearly, we plot the
time-averaged heat flux field 〈√RaPrũT̃ − ∇T̃〉t near the bottom plate in figure 16.
The situation near the top plate is similar due to the Kxz symmetry of the system. The
colourbar represents the magnitude of the horizontal heat flux 〈√RaPrũxT̃ − ∂xT〉t. It is
seen that the heat flux field manifests an intense rightward flux (red) above the bottom
plate, the intensity of which increases with Λ. Directly above the intense rightward flux
region, a region with leftward heat flux (blue) is also observed. This is due to the fact
that the descending cold plumes with negative temperature (T̃ < 0) are also carried by
the rightward mean flow (see figure 14b). This compensatory leftward flux is also a
requirement for the reflection symmetry of the heat flux field at midheight (see figure 14f ).
Since the rightward flux overwhelms the leftward one, a net horizontal flux results, and
this figure shows as a direct illustration of the existence of the horizontal heat flux.

5.5. The effect of Prandtl number
Previous studies on tilted RBC suggest that the Prandtl number also has a significant
effect, especially at the low Prandtl regime (Shishkina & Horn 2016). In order to gain
a comprehensive understanding of the Prandtl number effect, we conduct DNS at three
additional Prandtl numbers, Pr = 0.1, 1 and 10. The vertical Rayleigh number is fixed to
be RaV = 108.
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Figure 16. Mean heat flux field near the bottom plate in the x–z plane (RaV = 108). From top to bottom,
Λ = 0, 0.36, 0.58, 0.84, 1.19 and 1.73, respectively. The height and width of the cell are both unity. The origin
of the coordinates is set in the centre of the cell. Each panel shows the full width in x and a range of 0.05 in z.
The colourbar represents the magnitude of the horizontal heat flux.
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Figure 17. Snapshots of temperature isosurfaces for Prandtl number Pr = 0.1, 1 and 10 at different buoyancy
ratios. The vertical Rayleigh number is RaV = 108.

We plot in figure 17 the instantaneous temperature isosurfaces at different buoyancy
ratios for three Prandtl numbers. The flow fields are quite different, vigorous small-scale
fluctuations exist for the lowest Prandtl number Pr = 0.1. These small-scale fluctuations
are highly suppressed with increasing Prandtl number, resulting in a nearly laminar LSC.
Despite the small-scale structures, the LSC for three sets of Prandtl numbers shows some
common features: with increasing buoyancy ratio, it expands towards the periphery of the
cell and becomes more steady. We also note that such morphology change is less obvious
for low Prandtl numbers.

In figure 18(a), we plot the vertical Nusselt number NuV from DNS as a function
of Λ with open symbols. Experimental data with the same RaV are also plotted using
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Figure 18. (a) Vertical Nusselt number NuV as a function of buoyancy ratio for different Prandtl numbers
at fixed vertical Rayleigh number RaV = 108. Open symbols are DNS data, solid symbols represent our
experimental (EXP) data. (b) Relative enhancement of vertical Nusselt number; the legends are the same as
those in panel (a).

solid symbols for comparison. When horizontal buoyancy is not presented (Λ = 0), the
maximum vertical Nusselt number is located at Pr = 4.3, whereas for the lowest Prandtl
(Pr = 0.1), the Nusselt number is also lowest. The observed local maximum of heat
transport around Pr ∼ 4 is consistent with the prediction of Grossmann–Lohse (GL)
theory (Grossmann & Lohse 2000, 2001, 2002) and subsequent experimental results
(Ahlers & Xu 2001; Xia, Lam & Zhou 2002). When the buoyancy ratio is increased, the
vertical heat transfer increases for all four Prandtl number data sets. For a clear view of the
relative enhancement, we plot in figure 18(b) the normalized vertical Nusselt number. We
can see that the relative enhancement is highest for the smallest Prandtl number Pr = 0.1,
reaching over 40 % at Λ = 1.73; whereas for the data set corresponding to Pr = 4.3, the
enhancement is minimal. Meanwhile the overall Prandtl number dependence of the vertical
heat transfer seems complicated even if we have fixed the vertical buoyancy strength. To
understand this, we have to consider the fact that for high Prandtl number, the thermal
boundary layer is nested in the viscous one and vice versa for low Prandtl number. As
we will show in the next section, the interplay between the thermal and viscous boundary
layers is key to interpreting the intricate Prandtl dependence.

6. An extension of the GL theory

In this section, we extend the GL theory to situations where horizontal buoyancy is present.
Grossmann–Lohse theory is proposed to obtain the Nusselt number and Reynolds number
scaling behaviour in turbulent RBC, it has achieved great success (Grossmann & Lohse
2000, 2001, 2002; Stevens et al. 2013; Shishkina, Grossmann & Lohse 2016) in predicting
the global transport properties over a wide range of control parameters. The central idea
of the theory is to divide both the volume-averaged energy dissipation rate and thermal
dissipation rate into contributions from the boundary layer (subscript BL) region and the
bulk region, as follows:

εu = εu,BL + εu,bulk, (6.1)

εθ = εθ,BL + εθ,bulk. (6.2)

914 A15-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

82
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.825


L. Zhang, G.-Y. Ding and K.-Q. Xia

Combining these two equations with the exact relations ((2.14) and (2.15)), we obtain

RaVPr−2(NuV − 1) + ΛRaVPr−2

(
NuH +

〈
∂T̃
∂ x̃

〉
V

)
= c1

Re2

g(
√

Rec/Re)
+ c2Re3, (6.3)

NuV −1= c3Re1/2Pr1/2

{
f

[
2aNuV√

Rec
g

(√
Rec

Re

)]}1/2

+ c4Pr Re f

[
2aNuV√

Rec
g

(√
Rec

Re

)]
,

(6.4)

where f (x) = (1 + x4)−1/4 and g(x) = x(1 + x4)−1/4. Here c1, c2, c3, c4 and a are
constants determined by existing experimental data. However, when horizontal buoyancy
sets in, the second term on the left-hand side of (6.3) is not zero. In order to close these
equations, an additional equation for NuH + 〈∂T̃/∂ x̃〉V is needed. To do this, we first
rewrite the horizontal Nusselt number as

NuH +
〈
∂T̃
∂ x̃

〉
V

= 〈ũxT̃〉VRa1/2
V Pr1/2, (6.5)

which can be obtained by substituting the volume integral in (2.10) into (2.11). Considering
that the contribution to the volume averaged term 〈ũxT̃〉V is mainly from the boundary
layer region, and for high Prandtl number (Pr > 1), the thermal boundary layer nests in
the viscous one, δT < δu, in such a case we have

〈ũxT̃〉V ∼ (Pr/RaV)1/2Re
∫ δT

0
(z/δu)(1 − z/δT)dz ∼ Re3/2Pr1/2Ra−1/2

V

24aNu2
V

. (6.6)

On the other hand, for small Prandtl number (Pr < 1), the viscous boundary layer,
instead, nests in the thermal one, which results in

〈ũxT̃〉V ∼ (Pr/RaV)1/2Re
∫ δT

0
(1 − z/δT) dz ∼ RePr1/2Ra−1/2

V
4NuV

. (6.7)

Note that (6.7) differs from (6.6) by a factor of 6aNuVRe−1/2 = 3δu/δT , which is just
proportional to the ratio between viscous and thermal boundary layers. Therefore, for the
intermediate value of Prandtl number, we can again ‘smooth by hand’ using f (x), and
obtain the final expression for the generalized GL theory as

RaVPr−2(NuV − 1) + c5
ΛRaVPr−1Re

4NuV
f (6aNuVRe−1/2) = c1

Re2

g(
√

Rec/Re)
+ c2Re3,

(6.8)

Nu − 1 = c3Re1/2Pr1/2

{
f

[
2aNu√

Rec
g

(√
Rec

Re

)]}1/2

+ c4Pr Re f

[
2aNu√

Rec
g

(√
Rec

Re

)]
.

(6.9)

Here, c5 is a new constant. As other parameters, we use the values from Stevens
et al. (2013), namely, c1 = 8.05, c2 = 1.38, c3 = 0.487, c4 = 0.0252, a = 0.922 and
Rec = (2a)2. To determine c5, an experimental data point with non-zero buoyancy ratio
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Figure 19. Predictions of the extended GL theory for the vertical Nusselt number. (a) Here NuV as a function
of vertical Rayleigh number and buoyancy ratio at fixed Prandtl number Pr = 4.38 (open circles, experimental
data). (b) Here NuV as a function of Prandtl number and buoyancy ratio at fixed vertical Rayleigh number
RaV = 108 (solid circles, DNS data; open circles, experimental data). (c) Projections of the data in panel (a) on
the NuV –Λ plane (solid lines, predictions of the generalized theory). The legends are the same as figure 7. (d)
Projections of the data in panel (b) on the NuV –Λ plane (open symbols, from DNS; solid symbols, experimental
(EXP) data).

is required. For this, we use all the experimental data points in figure 7(a) to fit (6.8)
and (6.9), which yields c5 = 13.5. (Choosing single experimental datum at RaV = 108,
Λ = 1.73, Pr = 4.34 and NuV = 41.3 as the fitting point yields c5 = 14.0, which suggests
that the extension we made is valid.)

After c5 is determined, we can now predict the vertical Nusselt number NuV for any
combination of control parameters {RaV , Λ, Pr} by solving (6.8) and (6.9). We first show
the three-dimensional plot of NuV as a function of vertical Rayleigh number and buoyancy
ratio in figure 19(a), at fixed Prandtl number Pr = 4.38. It is seen that all experimental data
basically fall on the surface, which represents the prediction of the extended theory. For
a clear view, we also plot in figure 19(c) the projections of the data on the NuV–Λ plane.
The solid lines are the predictions of the generalized theory, which agree quite well with
the experimental data, especially for the small buoyancy ratio regime. In figure 19(b), we
plot the predicted NuV as a function of Prandtl number and the buoyancy ratio Λ at fixed
vertical Rayleigh number RaV = 108. The DNS and experimental data are also plotted
as solid and open symbols, respectively. We can see that our extended theory not only
captures the general feature of the buoyancy ratio dependence, but also the intricate Prandtl
number dependence. The corresponding two-dimensional projection on the NuV–Λ plane
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is shown in figure 19(d). Although the solid lines deviate slightly from the DNS data at
high Pr and Λ values, the generalized theory is able to capture the overall trend of the
Prandtl dependence.

It is quite remarkable that despite the fact we have assumed a spatially uniform thermal
boundary layer thickness (therefore a zero horizontal Nusselt according to (2.13)), our
generalized theory is successful in predicting the vertical Nusselt number behaviour as a
function of various control parameters. Future work for a more accurate description of the
system should take the inhomogeneity of both thermal and viscous boundary layers (Lui
& Xia 1998; Qiu & Xia 1998a,b) into consideration.

7. Summary and conclusion

In this work, we have conducted a systematic experimental and numerical study on the
effective horizontal buoyancy in tilted turbulent thermal convection. Both heat transfer
and flow field properties are measured, the main results are as follows.

(1) We propose a different treatment of the effective horizontal buoyancy in a thermal
convection system by fixing the vertical Rayleigh number (RaV ) and changing
horizontal Rayleigh number (RaH), or equivalently, the buoyancy ratio (Λ =
RaH/RaV ). This is realized experimentally by simultaneously tilting the convection
cell by an angle β and increasing the temperature difference Δ across the top and
bottom conducting plates by a factor 1/ cos β.

(2) We generalize the Nusselt number to a vector form, whose horizontal component
(NuH) is not negligible in the present system. To the best of our knowledge, such
global horizontal heat transfer is neglected in most previous studies on similar
systems. For the parameter range explored in this study, the horizontal Nusselt
number is approximately one tenth of the vertical Nusselt number. The horizontal
heat transfer can be understood as a result of the inhomogeneity of the temperature
gradient distribution on both conducting plates. We also show that a non-vanishing
horizontal heat flux is guaranteed by the broken azimuthal symmetry of the system.
We note that the definition of the vector formed Nusselt number can be readily
applied to other thermal convection systems.

(3) We propose a PHAF to describe the experimentally measured azimuthal temperature
profile at midheight of the cell. We find this formula to be well suited for the
characterization of both the coherency and the off-centre motion of the LSC, and
the method is applicable to situations with and without the presence of horizontal
buoyancy.

(4) For fixed RaV , the measured global vertical heat transport NuV increases
monotonically with the buoyancy ratio. A simple linear fit gives NuV(Λ)/NuV(0) =
1 + 0.14Λ. This linear growth holds approximately over one and a half decades of
RaV explored in our experiment. On the other hand, for fixed Λ, NuV shows an
effective power law dependence on RaV . The scaling exponent is approximately
0.29 and is not sensitive to changes in buoyancy ratio. We also find that both
the temperature contrast and the coherency index of the LSC increase with Λ,
resulting in a non-negligible NuH . Although the magnitude of NuH is one order
of magnitude smaller than NuV for the parameter range explored in this work, it
has a profound impact on the energy balance equation by contributing to the total
viscous dissipation rates, especially at high buoyancy ratio values. Heat transport
results from DNS show good agreement with our experimental data.
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(5) Particle image velocimetry measurement in the central vertical plane reveals that the
LSC expands towards the periphery of the cell as horizontal buoyancy increases.
The vertical velocity is also increased. These findings are confirmed by DNS
results. Moreover, using DNS data, we identify two ‘heat channels’ with extremely
high local heat flux at the opposite sides of the sidewall. These channels become
more localized with increasing horizontal buoyancy. Meanwhile, the mean shear
rates at the top and bottom plates increase dramatically with horizontal buoyancy,
which may be responsible for the observed enhancement in vertical heat transfer.
For fixed RaV , the Reynolds number, defined by the global averaged root mean
square velocity, increases first and then decreases with increasing Λ. We also
find that the turbulent intensity decreases with Λ for small RaV . This suggests
that the horizontal buoyancy tends to stabilize the overall flow field. However, the
interplay between the horizontal and vertical buoyancies does not belong to the
‘stabilizing–destabilizing’ universality class (Chong et al. 2017; Lim et al. 2019),
because the horizontal buoyancy can perform work on fluid parcel and contributes
directly to the energy dissipation rate (2.14). At low RaV , horizontal buoyancy
inhibits small-scale fluctuations and leads to a monotonic decrease in the turbulent
intensity. To our surprise, an increase in turbulent intensity is observed for the
highest RaV at large buoyancy ratio values. This finding highlights the complex
interaction between shear and thermal instability.

(6) The effect of Prandlt number is also studied using DNS. It is found that the relative
enhancement in NuV is higher for lower Pr. For fixed Λ, small-scale structures in
the flow are more intense at low Pr while the overall flow is almost steady at high
Prandtl number.

(7) We have extended the GL theory to the case in which horizontal buoyancy is present.
The generalized theory is successful in predicting the vertical heat transfer as a
function of various control parameters (vertical Rayleigh number, buoyancy ratio
and Prandtl number).

In summary, our treatment of the effective horizontal buoyancy provides a new
perspective on convective phenomena wherein the global temperature gradient and
gravity are not necessarily aligned, which exists widely in atmospheric, geophysical and
astrophysical systems. In such a case, the classical RB paradigm is not exactly applicable
owing to the complex thermal conditions, geometric boundary constrain and the azimuthal
symmetry breaking of the system. Our experimental and DNS studies conducted in a
cylindrical container with aspect ratio one serve as a first systematic exploration of the
effective horizontal buoyancy under the condition of fixed RaV . The aspect ratio and the
geometry of the convection cell may also have an influence on the global heat transfer
since the ‘heat channels’ of extremely high local heat flux are found adjacent to the vertical
boundary. It will also be of interest to explore the effect of extremely high Pr, which is
relevant to mantle convection, or the extreme low Pr using liquid metal, which is the case
in planetary interiors. Finally, the PHAF method proposed in this study has the potential to
serve as a more general tool in the study of the large-scale flow structures and its dynamics
in various convection systems.
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Appendix A

A.1. The experimental and numerical data sets
The experimental and the numerical data sets in this study are listed in tables 2 and 3,
respectively.

A.2. Symmetry in tilted RBC
We first consider the levelled case. The governing equations for levelled RBC satisfy
the reflection symmetry about the y–z plane (Kx), the x–y plane (Kz) and the rotational
symmetry (Kxz = KxKz) are

(T ′, u′, v′, w′)(x, y, z) = Kx(T, u, v, w)(x, y, z) = (T, −u, v, w)(−x, y, z), (A1)

(T ′, u′, v′, w′)(x, y, z) = Kz(T, u, v, w)(x, y, z) = (−T, u, v, −w)(x, y, −z), (A2)

(T ′, u′, v′, w′)(x, y, z) = Kxz(T, u, v, w)(x, y, z) = (−T, −u, v, −w)(−x, y, −z). (A3)

The ensemble average of the solution should also satisfy the above symmetries. In such
a case, if we consider the ensemble average of horizontal Nusselt number (2.13), we have
(for simplicity of discussion, the origin of the coordinates is set in the centre of the cell,
therefore the boundary condition is invariant with respect to Kx transformation)

2NuH ∼
(∫

z=−H/2
x
∂〈T(x)〉

∂z
dS −

∫
z=H/2

x
∂〈T(x)〉

∂z
dS
)

+
(∫

z=−H/2
x
∂〈T ′(x)〉

∂z
dS −

∫
z=H/2

x
∂〈T ′(x)〉

∂z
dS
)

=
(∫

z=−H/2
x
∂〈T(x)〉

∂z
dS −

∫
z=H/2

x
∂〈T(x)〉

∂z
dS
)

+
(

−
∫

z=−H/2
x
∂〈T(x)〉

∂z
dS +

∫
z=H/2

x
∂〈T(x)〉

∂z
dS
)

= 0, (A4)

in the above we have used the fact that 〈T(x)〉 = 〈T ′(x)〉 = 〈T(−x)〉, and made a change
of integration variable x → −x in the last step.

In the tilted case (Λ > 0), the left–right reflection symmetry (Kx) is broken, resulting in
a non-zero horizontal Nusselt. Note that the Kxz symmetry is preserved in the governing
equations even in the presence of horizontal buoyancy. This means that both T and T ′ =
KxzT are solutions of the governing equations, and so the ensemble average of temperature
gradient satisfies 〈

∂T(x, y, z)
∂z

〉
=
〈
∂T ′(x, y, z)

∂z

〉
=
〈
∂T(−x, y, −z)

∂z

〉
. (A5)

Therefore, we can write the first term on the right-hand side of (2.13) as∫
z=−H/2

x
∂〈T(x)〉

∂z
dS =

∫
z=H/2

x
∂〈T(−x)〉

∂z
dS =

∫
z=H/2

−x
∂〈T(x)〉

∂z
dS. (A6)
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H (cm) β (◦) Δ (K) Pr RaV RaH Λ NuV,mea NuV,cor

9.9 0 2.71 4.34 9.96 × 107 0 0.00 36.31 32.88
9.9 20 2.89 4.34 9.96 × 107 3.63 × 107 0.36 38.26 34.73
9.9 30 3.16 4.34 1.00 × 108 5.79 × 107 0.58 38.79 35.24
9.9 40 3.59 4.34 1.01 × 108 8.46 × 107 0.84 39.74 36.14
9.9 50 4.32 4.34 1.02 × 108 1.21 × 108 1.19 41.40 37.72
9.9 60 5.42 4.34 9.94 × 107 1.72 × 108 1.73 45.16 41.31
9.9 0 5.96 4.34 2.19 × 108 0 0.00 45.08 41.24
9.9 20 6.39 4.34 2.20 × 108 8.01 × 107 0.36 47.92 43.95
9.9 30 6.93 4.34 2.20 × 108 1.27 × 108 0.58 48.75 44.74
9.9 40 7.83 4.34 2.20 × 108 1.85 × 108 0.84 50.07 46.01
9.9 50 9.37 4.34 2.21 × 108 2.63 × 108 1.19 52.58 48.42
9.9 60 11.98 4.34 2.20 × 108 3.81 × 108 1.73 55.79 51.49
9.9 0 12.58 4.34 4.62 × 108 0 0.00 55.21 50.94
9.9 20 13.35 4.34 4.60 × 108 1.68 × 108 0.36 58.88 54.47
9.9 30 14.44 4.34 4.58 × 108 2.65 × 108 0.58 59.98 55.52
9.9 40 16.38 4.34 4.60 × 108 3.86 × 108 0.84 61.68 57.16
9.9 50 19.53 4.35 4.60 × 108 5.48 × 108 1.19 65.38 60.72
9.9 60 25.16 4.34 4.62 × 108 8.00 × 108 1.73 68.56 63.78
20.0 0 3.30 4.34 9.97 × 108 0 0.00 64.62
20.0 20 3.53 4.34 1.00 × 109 3.65 × 108 0.36 67.53 —
20.0 30 3.84 4.34 1.01 × 109 5.80 × 108 0.58 68.78 —
20.0 40 4.34 4.34 1.01 × 109 8.44 × 108 0.84 72.06 —
20.0 50 5.17 4.34 1.00 × 109 1.20 × 109 1.19 76.31 —
20.0 60 6.63 4.34 1.00 × 109 1.73 × 109 1.73 79.29 —
20.0 0 7.27 4.34 2.20 × 109 0 0.00 80.48 —
20.0 20 7.75 4.34 2.20 × 109 8.01 × 108 0.36 84.42 —
20.0 30 8.39 4.34 2.20 × 109 1.27 × 109 0.58 86.20 —
20.0 40 9.48 4.34 2.20 × 109 1.84 × 109 0.84 90.37 —
20.0 50 11.30 4.34 2.20 × 109 2.62 × 109 1.19 95.25 —
20.0 60 14.57 4.34 2.20 × 109 3.82 × 109 1.73 100.36 —
20.0 0 15.19 4.34 4.60 × 109 0 0.00 100.33 —
20.0 20 16.25 4.34 4.62 × 109 1.68 × 109 0.36 103.94 —
20.0 30 17.61 4.34 4.61 × 109 2.66 × 109 0.58 107.06 —
20.0 40 19.79 4.34 4.60 × 109 3.86 × 109 0.84 111.43 —
20.0 50 23.53 4.34 4.58 × 109 5.46 × 109 1.19 117.54 —
20.0 60 30.49 4.34 4.61 × 109 7.99 × 109 1.73 125.15 —

Table 2. Experimental parameters, the measured vertical Nusselt number and the estimated horizontal
Nusselt number from measured temperature profile and vertical Nusselt.

Again, in the last step above a change of integration variable is used. This means that
the ensemble average of the two terms on the right-hand side of (2.13) are equal but
with opposite sign, which leads to a non-zero NuH and which is a requirement of the
Kxz symmetry.

A.3. Experimental evaluation of the horizontal heat transfer
In the experiment, the vertical Nusselt number can be determined directly by measuring
the heating power at the bottom plate and the temperature at both conducting plates (2.7).
However, to determine the horizontal Nusselt number NuH , one needs to know the exact
horizontal distribution of the vertical temperature gradient, i.e. ∂T(x, y)/∂z, on both plates
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Temperature Velocity
field mesh field mesh

RaV RaH Pr Λ (Nz × Nφ × Nr) (Nz × Nφ × Nr) NuV NuH Tavg

108 0 0.1 0.00 512 × 768 × 256 512 × 768 × 256 24.9 — 80
108 3.6 × 107 0.1 0.36 512 × 768 × 256 512 × 768 × 256 29.4 5.14 80
108 5.8 × 107 0.1 0.58 512 × 768 × 256 512 × 768 × 256 30.4 5.83 80
108 8.4 × 107 0.1 0.84 512 × 768 × 256 512 × 768 × 256 31.5 5.93 80
108 1.19 × 108 0.1 1.19 512 × 768 × 256 512 × 768 × 256 33.1 5.00 80
108 1.73 × 108 0.1 1.73 512 × 768 × 256 512 × 768 × 256 35.4 5.80 80
108 0 1 0.00 256 × 512 × 128 256 × 512 × 128 32.2 — 150
108 3.6 × 107 1 0.36 256 × 512 × 128 256 × 512 × 128 35.4 6.14 150
108 5.8 × 107 1 0.58 256 × 512 × 128 256 × 512 × 128 36.0 6.16 150
108 8.4 × 107 1 0.84 256 × 512 × 128 256 × 512 × 128 37.7 5.97 150
108 1.19 × 108 1 1.19 256 × 512 × 128 256 × 512 × 128 40.0 6.21 150
108 1.73 × 108 1 1.73 256 × 512 × 128 256 × 512 × 128 41.7 7.02 150
108 0 4.38 0.00 256 × 512 × 128 256 × 512 × 128 32.93 — 150
108 1.8 × 107 4.38 0.18 256 × 512 × 128 256 × 512 × 128 33.59 3.96 150
108 2.7 × 107 4.38 0.27 256 × 512 × 128 256 × 512 × 128 34.60 4.72 150
108 3.6 × 107 4.38 0.36 256 × 512 × 128 256 × 512 × 128 34.76 4.69 150
108 4.7 × 107 4.38 0.47 256 × 512 × 128 256 × 512 × 128 35.00 4.47 150
108 5.8 × 107 4.38 0.58 256 × 512 × 128 256 × 512 × 128 34.95 4.20 150
108 7.0 × 107 4.38 0.70 256 × 512 × 128 256 × 512 × 128 35.39 4.64 150
108 8.4 × 107 4.38 0.84 256 × 512 × 128 256 × 512 × 128 36.51 4.81 150
108 107 4.38 1.00 256 × 512 × 128 256 × 512 × 128 37.46 5.33 150
108 1.19 × 108 4.38 1.19 256 × 512 × 128 256 × 512 × 128 38.27 6.22 150
108 1.43 × 108 4.38 1.43 256 × 512 × 128 256 × 512 × 128 39.30 6.75 150
108 1.73 × 108 4.38 1.73 256 × 512 × 128 256 × 512 × 128 41.17 7.20 150
108 0 10 0.00 256 × 512 × 128 256 × 512 × 128 32.3 — 150
108 3.6 × 107 10 0.36 256 × 512 × 128 256 × 512 × 128 34.6 2.62 150
108 5.8 × 107 10 0.58 256 × 512 × 128 256 × 512 × 128 34.9 2.17 150
108 8.4 × 107 10 0.84 256 × 512 × 128 256 × 512 × 128 36.9 3.69 150
108 1.19 × 108 10 1.19 256 × 512 × 128 256 × 512 × 128 38.3 5.37 150
108 1.73 × 108 10 1.73 256 × 512 × 128 256 × 512 × 128 41.0 7.11 150
2.2 × 108 0 4.38 0 384 × 768 × 192 192 × 384 × 96 41.27 — 100
2.2 × 108 7.9 × 107 4.38 0.36 384 × 768 × 192 192 × 384 × 96 43.71 5.42 100
2.2 × 108 1.28 × 108 4.38 0.58 384 × 768 × 192 192 × 384 × 96 44.58 5.10 100
2.2 × 108 1.85 × 108 4.38 0.84 384 × 768 × 192 192 × 384 × 96 46.21 5.45 100
2.2 × 108 2.62 × 108 4.38 1.19 384 × 768 × 192 192 × 384 × 96 48.62 5.91 100
2.2 × 108 3.81 × 108 4.38 1.73 384 × 768 × 192 192 × 384 × 96 50.25 8.28 100
4.6 × 108 0 4.38 0 512 × 1024 × 256 256 × 512 × 128 50.26 — 80
4.6 × 108 1.66 × 108 4.38 0.36 512 × 1024 × 256 256 × 512 × 128 54.45 5.80 80
4.6 × 108 2.67 × 108 4.38 0.58 512 × 1024 × 256 256 × 512 × 128 55.20 5.97 80
4.6 × 108 3.86 × 108 4.38 0.84 512 × 1024 × 256 256 × 512 × 128 57.30 6.04 80
4.6 × 108 5.47 × 108 4.38 1.19 512 × 1024 × 256 256 × 512 × 128 60.52 6.53 80
4.6 × 108 7.96 × 108 4.38 1.73 512 × 1024 × 256 256 × 512 × 128 63.71 8.23 80
109 0 4.38 0 512 × 1024 × 256 256 × 512 × 128 64.31 — 60
109 3.6 × 108 4.38 0.36 512 × 1024 × 256 256 × 512 × 128 67.57 6.81 60
109 5.8 × 108 4.38 0.58 512 × 1024 × 256 256 × 512 × 128 68.75 7.49 60
109 8.4 × 108 4.38 0.84 512 × 1024 × 256 256 × 512 × 128 71.50 7.40 60
109 1.19 × 108 4.38 1.19 512 × 1024 × 256 256 × 512 × 128 75.47 7.79 60
109 1.73 × 108 4.38 1.73 512 × 1024 × 256 256 × 512 × 128 79.18 9.02 60

Table 3. See caption on next page.
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Temperature Velocity
field mesh field mesh

RaV RaH Pr Λ (Nz × Nφ × Nr) (Nz × Nφ × Nr) NuV NuH Tavg

2.2 × 109 0 4.38 0 768 × 1536 × 384 384 × 768 × 192 80.90 — 50
2.2 × 109 7.9 × 108 4.38 0.36 768 × 1536 × 384 384 × 768 × 192 85.01 7.46 50
2.2 × 109 1.28 × 109 4.38 0.58 768 × 1536 × 384 384 × 768 × 192 86.67 8.23 50
2.2 × 109 1.85 × 109 4.38 0.84 768 × 1536 × 384 384 × 768 × 192 89.42 8.23 50
2.2 × 109 2.62 × 109 4.38 1.19 768 × 1536 × 384 384 × 768 × 192 94.98 8.57 50
2.2 × 109 3.81 × 109 4.38 1.73 768 × 1536 × 384 384 × 768 × 192 101.09 8.98 50
4.6 × 109 0 4.38 0 1152 × 1536 × 576 576 × 768 × 288 101.49 — 30
4.6 × 109 1.66 × 109 4.38 0.36 1152 × 1536 × 576 576 × 768 × 288 105.80 9.02 30
4.6 × 109 2.67 × 109 4.38 0.58 1152 × 1536 × 576 576 × 768 × 288 106.90 9.47 30
4.6 × 109 3.86 × 109 4.38 0.84 1152 × 1536 × 576 576 × 768 × 288 110.71 9.35 30
4.6 × 109 5.47 × 109 4.38 1.19 1152 × 1536 × 576 576 × 768 × 288 117.29 9.74 30
4.6 × 109 7.96 × 109 4.38 1.73 1152 × 1536 × 576 576 × 768 × 288 125.45 10.08 30

Table 3. Simulation parameters and corresponding vertical Nusselt NuV and horizontal Nusselt number NuH .

(see (2.13)), which is difficult to obtain experimentally. In this subsection, we propose
an indirect method, utilizing the measured azimuthal temperature profile at midheight, to
estimate the horizontal Nusselt number NuH .

To do this, we first consider the fact that when the cold descending plumes impinge
on the left-hand side of the bottom plate, the thermal boundary layer δT,c therein becomes
thinner. Whereas hot plumes aggregate on the right-hand side of the same plate, thicken the
thermal boundary layer δT,h there. We approximate the ratio between the thermal boundary
thicknesses at θ = 0 and π to be

δT,h/δT,c = (0.5 + T̃A)/(0.5 − T̃A), (A7)

here T̃A = TA/Δ is the normalized amplitude of the LSC. In the next step, we further
assume the ratio between the temperature gradients at these two points to be

(∂T̃/∂ z̃)x̃=0

(∂T̃/∂ z̃)x̃=1
= (0.5 − T̃A)2

(0.5 + T̃A)2
≈ 1 − 4T̃A

1 + 4T̃A
. (A8)

Since the local heat flux is proportional to the local temperature gradient, the
normalization condition requires that the integral of ∂T̃/∂ z̃ over the bottom/top plate
equals to NuV . Putting all these together, the local temperature gradient can be estimated
as

∂T̃/∂ z̃ = [1 − 4T̃z̃=0.5(x̃)]NuV . (A9)

Here we have applied our second assumption that the temperature gradient depends only
on the horizontal position ∂z̃T̃/∂ ỹ = 0.

Substitute (A9) into (2.13), and integrating over both the top and bottom plates, we
obtain ∫

z̃=0
x̃
∂T̃
∂ z̃

dS̃ −
∫

z̃=1
x̃
∂T̃
∂ z̃

dS̃ = 4NuVT̃A

∫ π

0
cos2 θ | cos θ |ζ sin θ d(cos θ)

= πNuV

2
T̃Ag(ζ ), (A10)
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Figure 20. Horizontal Nusselt number as a function of buoyancy ratio. The solid circles correspond to an
estimation of (A12) using experimentally measured data; open triangles are from DNS.

where g(ζ ) is a geometrical factor that depends only on the coherency index ζ , which can
be determined by a definite integration as follows:

g(ζ ) = 16
(3 + ζ )π

∫ 1

0

√
1 − ξ2/(3+ζ ) dξ. (A11)

Combining all the above together, the horizontal Nusselt number NuH can be
expressed as

NuH = 2NuVT̃Ag(ζ ). (A12)

In (A12), the horizontal Nusselt is proportional to the vertical Nusselt NuV . This is
indeed as expected for if more heat is supplied at the bottom plate, the large-scale
circulation brings more heat from the left-bottom corner to the top-right corner.

After obtaining ζ and T̃A from the measured mean temperature profiles, we are able to
estimate the horizontal Nusselt number using (A12). We plot the experimentally estimated
NuH along with our DNS data in figure 20. Quantitative agreement is only observed for
intermediate buoyancy ratios. Large deviations are observed at the rightmost point. The
reason for this discrepancy may be that the azimuthal profile (3.4) is not accurate for large
Λ (see figure 9) and the assumption we used in deriving the NuH is not applicable any
more at such high Λ value. Although this indirect method seems to be applicable for a
limited parameter range, we stress that to the best of our knowledge, this is not only the
first attempt to experimentally quantify NuH , but it also gives the right order of magnitude.
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