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Abstract
Deep nets are becoming larger and larger in practice, with no respect for (non)-factors that ought to limit
growth including the so-called curse of dimensionality (CoD). Donoho suggested that dimensionality can
be a blessing as well as a curse. Current practice in industry is well ahead of theory, but there are some
recent theoretical results fromWeinan E’s group suggesting that errors may be independent of dimensions
d. Current practice suggests an even stronger conjecture: deep nets are not merely immune to CoD, but
actually, deep nets thrive on scale.
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1. Introduction
1.1 Deep nets: Method of choice
Following Devlin et al. (2019), deep nets have become the method of choice for a number of tasks
in:

1. Natural language: fill-mask, question answering, sentence similarity, summarization, text
classification, text generation, token classification, translation

2. Audio: audio classification, audio-to-audio, automatic speech recognition, text-to-speech
(speech synthesis)

3. Computer vision: image classification, image segmentation, object detection.

There are dozens/thousands of models on HuggingFace for each of these tasks.a There are also
many secondary sources on deep nets and machine learning including:

1. text books (Bishop 2016; Goodfellow et al., 2016),
2. more practical books (Géron 2019; Chollet 2021),
3. surveysb (LeCun et al., 2015; Pouyanfar et al., 2018; Kumar et al., 2018; Liu et al., 2020; Qiu

et al., 2020; Dong et al., 2021), and
4. tutorials: ACL-2022 (Church et al., 2022a), plus three articles in the Emerging Trends

column in this journal (Church et al., 2021b, 2021a, 2022b).

ahttps://huggingface.co/tasks
bhttps://amatriain.net/blog/transformer-models-an-introduction-and-catalog-2d1e9039f376/
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Table 1. Deep nets are becoming larger and larger over time.

Year Deep nets Billions of parameters

2016 ResNet-50 (He et al., 2016) 0.023
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2019 BERT (Devlin et al., 2019) 0.34
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2019 GPT-2 (Radford et al., 2019) 1.5
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2020 GPT-3 (Brown et al., 2020; Dale 2021) 175
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2022 PaLM (Chowdhery et al., 2022) 540

1.2 Growth is out of control
As illustrated in Table 1, deep nets are becoming larger and larger (for better or for worse). There
have been dramatic increases in size over time, where size can be measured in a variety of different
ways:

1. model size,m (number of parameters),
2. number of dimensions, d (problem size),
3. size of (annotated and unannotated) training data,
4. staff (authors per paper),
5. hardware (number of CPUs, GPUs, TPUs, and data centers), and
6. costs (including externalities such as global warming).

The consensus in industry, at least for practical applications, is that bigger nets are better, espe-
cially if one cares about performance on test sets (and little else). It is not clear why bigger is better,
or even that it is, or that it is a good thing,c though there are quite a few blogs on this topic. Social
mediamay not be a good way to judge consensus; social media can easily become an echo chamber
with multiple blogs promoting the same paper (Bubeck and Sellke 2021).d,e

Most of these larger models are coming from industry; training large models has become
too expensive for academia (Bommasani et al., 2021). A recent model from Google, PaLM
(Chowdhery et al., 2022), for example, produces impressive results, but the size of the invest-
ment is, perhaps, even more impressive. The model was trained on thousands of TPUs, too many
for a single data center. The PaLM paper has dozens of authors. Suffice it to say: PaLM is big in
every imaginable way.

PaLM’s contribution is more in Systems Research than Computational Linguistics. It is an
amazing engineering and logistical feat to make productive use of so much hardware. Before
PaLM, efficiency had been declining. Previous attempts to scale training tended to increase waste
(idle time). PaLM not only produced a larger net (at greater expense), but perhaps more impor-
tantly, they found a more effective approach to scaling, opening a path toward even larger (and
even more expensive) nets, coming soon to an application on a phone near you.

2. Factors that ought to limit growth
There are a number of factors that one might expect to limit growth on deep nets. Of course, none
of these factors matter, as evidenced by the fact that growth is out of control. This paper will focus
on the last (non)-factor: the so-called curse of dimensionality (CoD).

chttps://bdtechtalks.com/2019/11/25/ai-research-neural-networks-compute-costs/
dhttps://www.quantamagazine.org/computer-scientists-prove-why-bigger-neural-networks-do-better-20220210/
ehttps://dataconomy.com/2022/06/bigger-neural-networks-do-better/
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1. budget constraints (including externalities such as global warming),
2. constraints imposed by deployment platforms (such as phones),
3. availability of (annotated and unannotated) training data (including externalities such as

concerns for invisible workers),
4. overfitting, and
5. the CoD.

2.1 Budget constraints and global warming
Budgets are not unlimited, of course, even in industry. Industry would not train such large (and
expensive) nets without compelling motivations to do so.

Budget constraints include capital and expense, as well as less obvious factors such as car-
bon emissions. Following Strubell et al. (2019),f there have been concerns about accounting and
externalities. One might hope that more appropriate taxes on carbon emissions would discourage
industry from training larger and larger nets, though we have our doubts. The cost of training is
a one-time upfront cost. If a net is used by millions of users every day for years, then recurring
costs (inference) dominate one-time costs (training). As a result, it has become standard practice
in industry to train larger and larger nets but reduce costs just in time with compression meth-
ods such as distillation (DistilBERT)g,h (Sanh et al., 2019). Compression makes it possible to train
larger nets but reduce costs before deployment (where costs matter).

2.2 Deployment platforms (phones)
The same just-in-time compression technology will become important as nets migrate to phones.
In the past, most of the computation tended to be in the cloud (at the center of the network),
but more and more computation will likely migrate to edge devices (phones). Given resource
limitations on phones (power, memory, CPU/GPU cycles), one might expect this migration to
limit growth.i However, the same compression methods mentioned above are also being used to
address thesemigration issues. Thus, constraints on deployment (cost, power, etc.) have important
consequences for compression technology, but less so for training, where out-of-control growth
is likely to continue for the foreseeable future.

2.3 Training data are not unlimited
Another non-factor mentioned above is training data. There are many use cases with limitations
on training data. Annotated data are particularly expensive, both in monetary terms and other
terms (impacts on invisible workers).j Because of concerns such as these, there is more and more
interest in prompting (Liu et al., 2021), zero-shot learning and few-shot learning. These methods
reduce demand for annotated (and unannotated) training data. However, many of the most suc-
cessful such methods make use of extremely large pretrained models such as GPT-3 and PaLM.
Thus, it is unlikely that limitations on annotated (and unannotated) training data will stem the
out-of-control growth (for pretrained models).

fhttps://www.technologyreview.com/2022/07/06/1055458/ai-research-emissions-energy-efficient/
ghttps://huggingface.co/models?sort=downloads&search=distil
hhttps://paperswithcode.com/method/distillbert
ihttps://huggingface.co/models?sort=downloads&search=mobile
jhttps://www.technologyreview.com/2020/12/11/1014081/ai-machine-learning-crowd-gig-worker-problem-amazon-

mechanical-turk/
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2.4 Overfitting
With many traditional methods, such as regression, if we have too many parameters, we are likely
to overfit the training set. A number of traditional methods for addressing overfitting will be men-
tioned in Section 3 such as feature selection and regularization. It is widely believed that deep nets
do not suffer from overfitting, even when heavily over-parameterized.k Deep nets have developed
methods such as stochastic gradient descent with random restarts. There are a few theoretical sug-
gestions that such methods are effective (Li and Liang 2018) and over-parameterization does not
lead to overfitting (Brutzkus et al., 2018; Allen-Zhu et al., 2019; Oymak and Soltanolkotabi 2020).

Overfitting can be viewed as a special case of the CoD.

2.5 Curse of dimensionality (COD)
One might expect the CoD to limit out-of-control growth. Donoho (2000) provides some hints
why this might not be the case. He introduces a novel perspective, suggesting that large d (dimen-
sions) can be both a blessing and a curse. Donoho starts with Bellman’s original argument
(Bellman 1966). Bellman’s argument introduced the term, CoD, to motivate his work on dynamic
programming:

Bellman reminded us that, if we consider a cartesian grid of spacing 1/10 on the unit cube in 10
dimensions, we have 1010 points; if the cube in 20 dimensions was considered, we would have of
course 1020 points. His interpretation: if our goal is to optimize a function over a continuous product
domain of a few dozen variables by exhaustively searching a discrete search space defined by a crude
discretization, we could easily be faced with the problem of making tens of trillions of evaluations
of the function. Bellman argued that this curse precluded, under almost any computational scheme
then foreseeable, the use of exhaustive enumeration strategies, and argued in favor of his method of
dynamic programming. (Donoho 2000)

How can CoD be a blessing?While it may be easy to find examples where large d causes trouble,
there are also examples where large d is a blessing. Donoho calls out concentration of measure
(Ledoux 2001) as one of the better examples of a blessing.

The concentration of measure phenomenon in product spaces roughly states that, if a set A in a
product �N of probability spaces has measure at least one half, “most” of the points of �N are “close”
to A. (Talagrand 1995)

This observation has many applications. Donoho, for example, uses the concentration of
measure in a widely cited paper on compressed sensing (Donoho 2006).

Blessings show up in many practical applications. Consider web search, for example. Web
search is more effective in larger networks. Enterprise search can be frustrating. Why is it easier to
find good stuff on the web than on a small website for a company or a university? Larger networks
can be a blessing because there are more links to what you are looking for in larger communities.
Page rank (Page et al., 1999), for example, has more dynamic range on larger graphs.

UnderMetcalfe’s Law,l larger graphs have advantages because edges scale faster than vertices. A
telephone network is a popular example of Metcalfe’s Law. The cost of adding another cell phone
to the network is a constant, but the benefits scale with the number of other phones already in the
network. It is said that Metcalfe’s Law makes it hard for second movers to challenge an establish
incumbent with a dominant position in the market. When benefits scale with edges and costs scale
with vertices, then the rich get richer.

khttps://medium.com/mlearning-ai/intuitive-explanations-of-why-over-parameterised-deep-nets-dont-overfit-
8a323b223ba6

lhttps://en.wikipedia.org/wiki/Metcalfe%27s_law
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There are many examples of methods that thrive on scale such as approximate nearest neigh-
borsm (Indyk and Motwani 1998), random projections (Li et al., 2006), and sketches (a method
originally designed to remove near duplicate web pages from large crawls (Broder 2000), but has
many generalizations (Li and Church 2007)).

Consider eigenvector and node2vec-like embeddings of graphs (Grover and Leskovec 2016;
Zhou et al., 2020). Again, larger graphs have advantages. If we use vectors to represent vertices in
a graph (such as a telephone network or web pages), and we estimate similarity of two vertices as
a cosine of two vectors, then estimates of similarity improve with larger graphs and longer vectors
with more hidden dimensions.

This paper is more concerned with deep nets. Are there reasons to believe that scale could
be a blessing for deep nets? Before addressing that question, we will discuss some historical
background. Why did we used to believe that scale was a problem?

3. What is our problemwith scale?
Researchers today have become comfortable with scale, but we used to feel differently. It is com-
mon practice these days to use models with more parameters than observations, especially when
discussing topics such as zero-shot and few-shot learning.

It is hard for people from our generation to get used to this new world order. We used to
assume, as a matter of faith, that we need more observations than parameters. By Occam’s razor,
we preferred models with fewer degrees of freedom. At least in the case of regression, if there are
too many degrees of freedom, and not enough training data, then regression coefficients will not
reach significance. Even when the coefficients reach significance, if there are toomany parameters,
then overfitting is likely, producing large errors on the test set.

We used to assume that concepts such as degrees of freedom, significance, and feature selec-
tion were important for most models under consideration, not just regression. Much has been
written on methods to avoid over-parameterization such as feature selection (LeCun et al., 1989;
Dash and Liu 1997; Guyon and Elisseeff 2003; Fan and Lv 2010; Kumar and Minz 2014; Li et al.,
2017), ANOVA (Scheffe 1999), regularization (Tibshirani 1996; Bickel et al., 2006, 2009), invari-
ant features (Fant 1973; Stevens and Blumstein 1981; Acero and Stern 1991; Lowe 1999; Brown
and Lowe 2002), feature engineering (Scott and Matwin 1999), and term weighting (Salton and
Buckley 1988). Over-parameterization is problematic for many/most traditional methods (Fan
and Lv 2008), though there may be a few exceptions (Bartlett et al., 2020).

These days, hill-climbing is the method of choice for fitting deep nets. But we were warned by
our teachers that hill-climbing cannot possibly scale up to problems with large d and rich (non-
convex) structure (with many local minima)n (Minsky 1961; Minsky and Papert 1969). Bishop
rejects our teachers’ concerns as “incorrect conjecture” on page 193 (Bishop 2006), but it took the
field many decades to appreciate that hill-climbing is feasible in high dimensions, and we are still
trying to figure out why that is the case.

It has been claimed that certain methods such as support vector machines (Cortes and Vapnik
1995; Hearst et al., 1998) work relatively well in high dimensional spaces (Joachims 1998),
but those technologies did not lead to out-of-control growth like we are seeing for deep nets.
Apparently, deep nets are not merely robust to high dimensions, but they thrive on them. How
can that be?

4. Weinan E: A mathematical perspective onmachine learning
It is generally accepted, at least among practitioners, that deep nets thrive on scale. The big
question is: why. Is there a theoretical justification for what we are all doing?

mhttps://pypi.org/project/gensim/
nRecent work (Kawaguchi 2016; Du et al., 2019) suggests local minima may not be as much a problem as once thought.
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Weinan E recently gave a theoretical talk on recent progress on somewhat related questions.o,p
The discussion below will use slide numbers and page numbers to refer to the talkq and an
overview article (E, 2020), respectively.

This work is very much a work in progress. Currently, their results are better for two-level nets;
extensions to multi-layer networks are “unsatisfactory” (slide 37). Of course, much work remains
to be done, as explained in a paper with a brutally honest title that ends with: what we know and
what we don’t (E et al., 2020). Actually, the theory community has a long tradition of sharing
lists of promising open problems with their students. Our field would have less (pointless) SOTA-
chasing (Church and Kordoni 2022) if we produced more brutally honest papers like this. Such
papers help students find good projects to work on.

Weinan E’s talk is divided into three sections:

1. Introduction (slides 1–20): Apparently, deep nets are better than alternatives (polynomials)
in high dimensions

2. Theoretical discussion of errors

(a) Approximation error, Ea (slides 21–37; pp. 17–19): errors due to the choice of the
hypothesis space

(b) Estimation error, Ee (slides 38–45; pp. 19–21): additional errors due to finiteness of
data

(c) Optimization error, Eo (slides 46–54): additional errors caused by training
3. Applications of deep nets to solve problems in high dimensions (slides 56–70).

The discussion of errors starts with an example of the CoD (slide 13). Suppose we want to
approximate a function f ∗ with fm using a classical method such as piecewise linear functions
over a mesh of size h. Assuming h∼m1/d, where d is the dimensionality of the problem and m is
the size of the model (in terms of free parameters), then computational costs grow exponentially
with d. That is, errors, E= |f ∗ − fm|, scale in a nasty way with d:

E= |f ∗ − fm| ∼ h2|∇2f ∗| ∼m−2/d|∇2f ∗| (1)

Thus, to reduce the error by a factor of 10, we need to increasem by a factor of 10d/2.
Weinan E concludes with the observation:

Compared with polynomials, neural networks provide a much more effective tool for approximat-
ing functions in high dimension. (slide 68)

Similar comments probably hold for regression-like methods and other traditional methods
that are being replaced by neural nets.

The crux of Weinan E’s talk is to replace grid-based methods with Monte Carlo estimation.
Slide 24 suggests that newer methods (based on Monte Carlo estimation) have error rates that are
independent of dimensions d, in contrast to older methods (slide 23) based on uniform grids.

Much of the Weinan E’s talk attempts to make this intuition more rigorous and more general.
The discussion on slides 23 and 24 is specific to a number of particulars: a particular type of error
(approximation error), and a particular type of network (a two-layer network), and a particular
method on a particular grid.

They are making great progress, with many recent promising results, and there will be more
results in the future. The discussion of approximation errors, Ea, is relatively long (16 slides
on Ea versus 7 slides on Ee and 8 slides on Eo), suggesting there has been more progress on
approximation errors.

ohttps://www.youtube.com/watch?v=xjQ8PcIMrf8
phttps://www.youtube.com/watch?v=VwIj3d6Lp24
qhttp://web.math.princeton.edu/~weinan/ICM-update.pdf
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The three types of errors are defined on slide 20. Weinan E splits the error, E= |f ∗ − f̂ |, into
three sub-errors, E= Ea + Ee + Eo, by introducing two milestones between f ∗ and f̂ :

1. milestone fm: best approximation of f ∗ in a hypothesis space,H
2. milestone f̃n,m: best approximation of fm using only the dataset, S.

The three sub-errors defined in terms of these milestones:

• Approximation error: gap from goal, f ∗, to first milestone,
• Estimation error: gap between two milestones, and
• Optimization error: gap from last milestone to approximation, f̂ .

The discussion of these errors mentions CoD, but in different ways:

1. Approximation error (slide 23; on p. 17): CoD is challenging for grid-based approximation
methods, where errors scale in a nasty way with d.

2. Estimation error (slide 43; p. 18): size of training data grows exponentially quickly with d.
3. Optimization error (slide 48): convergence rate for gradient-based training algorithms

must suffer from CoD.

One of the more exciting results is a bound on approximation errors that is independent of d
(E 2022) (slide 34; p. 19). This result establishes that certain types of nets are immune to CoD,
though there is some fine-print. This result is currently limited to two-layer nets, and it only covers
one type of error (approximation errors).

5. Conclusions
As mentioned above, current practice is well ahead of theory; some even compare what we do to
alchemy (Church and Liberman 2021).r Over the last few years, industry has been producing deep
nets that are bigger in every imaginable way (for better and for worse): model size (m), dimensions
(d), cost, training data, staff, hardware, carbon emissions, negative impacts on invisible workers,
etc. Recent progress on the theory side is not able to keep up with practice in industry, but there
are some exciting theoretical results suggesting that approximation errors for two-layer nets may
be independent of d. There will likely be more progress on the theory side, relaxing much of the
fine-print.

Eventually, theory will catch up to practice and explain why it makes sense for industry to do
what it is doing. Theory is on a path toward explaining why deep nets might be immune to the
CoD, but the out-of-control growth suggests a more bullish conjecture: deep nets are succeeding
because of scale (West 2018), not in spite of scale.
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