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Abstract. Including resistive effects in relativistic magnetized plasmas is a challenging task,
that a number of authors have recently tackled employing different methods. From the numerical
point of view, the difficulty in including non-ideal terms arises from the fact that, in the limit
of very high plasma conductivity (i.e., close to the ideal MHD limit), the system of governing
equations becomes stiff, and the standard explicit integrating methods produce instabilities that
destroy the numerical solution. To deal with such a difficulty, we have extended the relativistic
MHD code MR-GENESIS, to include a number of Implicit Explicit Runge-Kutta (IMEX-RK)
numerical methods. To validate the implementation of the IMEX-RK schemes, two standard
tests are presented in one and two spatial dimensions, covering different conductivity regimes.
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1. Introduction
The equations of Relativistic Magnetohydrodynamics form a system of balance laws
where stiffness can arise because of the unbound increase of the electric conductivity,
σ, in the ideal limit, which makes numerically ill-defined the electric density current,
J = σW [E + V×B− (E ·V)V] + qV (where W , V, q E, and B are the Lorentz factor, the
velocity, the electric charge, the electric and the magnetic field, respectively). Inspired
by the work of Dedner et al. (2002), we consider an augmented system of equations (see
below), where two scalar potentials ψ and φ enforce the conservation of q and of the
solenoidal constraint, ∇ · B = 0, respectively, to the extent determined by the order of
the numerical method employed. The inclusion of these extra potentials adds extra flux
terms in the equations of E and B, as well as additional source terms in the energy density
(τ) equation, though the energy flux Fτ remains unchanged. The rest of the equations
for the rest-mass density D, and for the momentum density S, and their respective fluxes
FD , and FS are the same as in the standard equations.

To deal with the stiffness of the system, a number of alternatives have been proposed
(Komissarov 2007, Palenzuela et al. 2009). We have included several Implicit-Explicit
Runge Kutta methods (IMEX-RK; Higueras et al. 2012, Pareschi et al. 2005) in the
MRGENESIS code (Aloy et al. 1999) and present several test problems.

∂tψ = −∇ · E + q − κψ
∂tφ = −∇ · B − κφ
∂t E = ∇× B −∇ψ − J

∂t B = −∇× E −∇φ

∂t q = −∇ · J

∂tD = −∇ · FD

∂t τ = −∇ · Fτ − B · ∇φ − E · ∇ψ
∂t S = −∇ · FS − (∇ · B)B

64

https://doi.org/10.1017/S1743921314001732 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921314001732


Numerical relativistic non-ideal MHD code 65

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-1.5 -1 -0.5  0  0.5  1  1.5

M
ag

ne
tic

 F
ie

ld
 B

z

X

SIMILAR CURRENT SHEET 

            t = 1  
Analytic    t = 10 

SSP3(3,3,2) t = 10 

Figure 1. Left: Self-similar current sheet at t = 1 (initial state; solid line), analytic solution
at t = 10 (open circles) and numerical solution computed with 800 points at t = 10 (filled
circles). Right: Thermal pressure for the cylindrical explosion test computed with a uniform
grid of 400 × 400 cells, and a CFL of 0.2, and using the DP2A(242) scheme.

2. Test Problems
Due to space restrictions, we only show a couple of standard tests also considered by

other authors (Komissarov 2007, Palenzuela et al. 2009, Bucciantini & Del Zanna 2013).
These tests encompass from one-dimensional, smooth flows driven by resistive effects
(Sect. 2.1) to two-dimensional tests in the ideal limit (Sect. 2.2).

2.1. Resistive Self-similar Current Sheet
The initial conditions of this test are set at t = 1, when we take σ = 100, ρ = 1, p = 50,

E = V = 0 and B = (0, 0, Bz (x, 1)), such that Bz (x, t) = B0erf( 1
2

√
σ x 2

t
), where erf is the

error function. In Fig. 1 (left) we show that at t = 10, the numerical solution found with the
SSP3(3,3,2) IMEX-RK method matches satisfactory the analytical one.

2.2. Cylindrical Explosion
The set up consists of a plane with dimensions (x, y) ∈ [−6, 6] having a central circle
with radius r = 0.8, where the pressure (p = 1) and the density ρ = 0.01 are higher
than elsewhere (p = ρ = 0.001; r > 1). The central region is continuously connected with
the surroundings using an exponentially decreasing pressure and density in the region
0.8 � r � 1. The magnetic field, B = (0.05, 0, 0), is uniform, and V = 	0. This test is used
to validate the new resistive code in the ideal limit (a uniform conductivity σ = 106 is
set everywhere). Our results (Fig. 1 right) are comparable with the those obtained with
our relativistic ideal MHD code (Leismann et al. 2005, Anton et al. 2010).
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