
Mathematical Structures in Computer Science (2023), 33, pp. 311–426
doi:10.1017/S096012952300018X

PAPER

CHAD for expressive total languages
Fernando Lucatelli Nunes and Matthijs Vákár

Department of Information and Computing Sciences, Utrecht University, Utrecht, Netherlands
Corresponding author:Matthijs Vákár; Email: matthijsvakar@gmail.com

(Received 1 October 2021; revised 3 April 2023; accepted 22 May 2023; first published online 14 July 2023)

Abstract
We show how to apply forward and reverse mode Combinatory Homomorphic Automatic Differentiation
(CHAD) (Vákár (2021). ESOP, 607–634; Vákár and Smeding (2022). ACM Transactions on Programming
Languages and Systems 44 (3) 20:1–20:49.) to total functional programming languages with expressive type
systems featuring the combination of

• tuple types;
• sum types;
• inductive types;
• coinductive types;
• function types.

We achieve this by analyzing the categorical semantics of such types in �-types (Grothendieck construc-
tions) of suitable categories. Using a novel categorical logical relations technique for such expressive type
systems, we give a correctness proof of CHAD in this setting by showing that it computes the usual
mathematical derivative of the function that the original program implements. The result is a princi-
pled, purely functional and provably correct method for performing forward- and reverse-mode automatic
differentiation (AD) on total functional programming languages with expressive type systems.

Keywords: Automatic differentiation; Software correctness; Programming languages; Scientific computing; Program
transformations; Type systems; Dependently typed languages; Artin gluing; Comma categories; Logical relations; Initial
algebra semantics; Creation of initial algebras; Coalgebras; Grothendieck construction; Exponentiability; Fibered cate-
gories; Polynomial functors; Linear types; Variant types; Inductive types; Coinductive types; Cartesian closed categories;
Denotational semantics; Extensive indexed categories; Extensive categories; (Co)monadicity; Free cocompletion under
coproducts

1. Introduction
Automatic differentiation (AD) is a popular technique for computing derivatives of functions
implemented by computer programs, essentially by applying the chain rule across the program
code. It is typically the method of choice for computing derivatives in machine learning and sci-
entific computing because of its efficiency and numerical stability. AD has two main variants:
forward-mode AD, which calculates the derivative of a function, and reverse-mode AD, which
calculates the (matrix) transpose of the derivative. Roughly speaking, for a function f :Rn →R

m,
reverse mode is the more efficient technique if n�m and forward mode is if n�m. Seeing that
we are usually interested in computing derivatives (or gradients) of functions f :Rn →R with
very large n, reverse AD tends to be the more important algorithm in practice (Baydin et al. 2017).

© The Author(s), 2023. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and
reproduction, provided the original article is properly cited.

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X
https://orcid.org/0000-0003-4603-0523
mailto:matthijsvakar@gmail.com
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S096012952300018X&domain=pdf
https://doi.org/10.1017/S096012952300018X

312 F. Lucatelli Nunes and M. Vákár

While the study of AD has a long history in the numerical methods community, which we will
not survey (see, e.g., Griewank andWalther 2008), there has recently been a proliferation of work
by the programming languages community examining the technique from a new angle. New goals
pursued by this community include

• giving a concise, clear, and easy-to-implement definition of various AD algorithms;
• expanding the languages and programming techniques that AD can be applied to;
• relating AD to its mathematical foundations in differential geometry and proving that AD
implementations correctly calculate derivatives;

• performing AD at compile time through source code transformation, to maximally expose
optimization opportunities to the compiler and to avoid interpreter overhead that other
AD approaches can incur;

• providing formal complexity guarantees for AD implementations.

We provide a brief summary of some of this more recent work in Section 16. The present paper
adds to this new body of work by advancing the state of the art of the first four goals. We
leave the fifth goal when applied to our technique mostly to future work (with the exception of
Corollary 130). Specifically, we extend the scope of the Combinatory Homomorphic Automatic
Differentiation (CHAD) method of forward and reverse AD (Vákár 2021; Vákár and Smeding
2022) (from the previous state of the art: a simply typed λ-calculus) to apply to total functional
programming languages with expressive type systems, that is, the combination of:

• tuple types, to enable programs that return or take as an argument more than one value;
• sum types, to enable programs that define and branch on variant data types;
• inductive types, to include programs that operate on labeled-tree-like data structures;
• coinductive types, to deal with programs that operate on lazy infinite data structures such as
streams;

• function types, to encompass programs that use popular higher-order programming idioms
such as maps and folds.

This conceptually simple extension requires a considerable extension of existing techniques in
denotational semantics. The payoffs of this challenging development are surprisingly simple AD
algorithms as well as reusable abstract semantic techniques.

The main contributions of this paper are as follows:

• developing an abstract categorical semantics (Section 3) of such expressive type systems in
suitable �-types of categories (Section 6);

• presenting, as the initial instantiation of this abstract semantics, an idealized target language
for CHAD when applied to such type systems (Section 7);

• deriving the forward and reverse CHAD algorithms (Section 8) when applied to expressive
type systems as the uniquely defined homomorphic functors (Section 4) from the source
(Section 5) to the target language (Section 7);

• introducing (categorical) logical relations techniques (aka sconing) for reasoning about
expressive functional languages that include both inductive and coinductive types
(Section 11);

• using such a logical relations construction over the concrete denotational semantics
(Section 10) of the source and target languages (Section 9) that demonstrates that CHAD
correctly calculates the usual mathematical derivative (Section 12), even for programs
between inductive types (Section 13);

• discussing examples (Section 14) and applied considerations around implementing this
extended CHADmethod in practice (Section 15).

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 313

We start by giving a high-level overview of the key insights and theorems in this paper in
Section 2.

2. Key Ideas
2.1 Origins in semantic derivatives and chain rules
CHAD starts from the observation that for a differentiable function:

f :Rn →R
m

it is useful to pair the primal function value f (x) with f ’s derivative Df (x) at x if we want to cal-
culate derivatives in a compositional way (where we underline the spaces Rn of tangent vectors
to emphasize their algebraic structure and we write a linear function type for the derivative to
indicate its linearity in its tangent vector argument):

T f : Rn →R
m × (Rn �R

m)
x �→ (f (x),Df (x)).

Indeed, the chain rule for derivatives teaches us that we compute the derivative of a composition
g ◦ f of functions as follows, where we write T1f def= π1 ◦ T f and T2f

def= π2 ◦ T f for the first and
second components of T f , respectively:

T(g ◦ f)(x)= (T1g(T1f (x)), T2g(T1f (x)) ◦ T2f (x)).
We make two observations:

(1) the derivative of g ◦ f does depend not only on the derivatives of g and f but also on the
primal value of f ;

(2) the primal value of f is used twice: once in the primal value of g ◦ f and once in its derivative;
we want to share these repeated subcomputations.

Insight 1. This shows that it is wise to pair up computations of primal function values and deriva-
tives and to share computation between both if we want to calculate derivatives of functions
compositionally and efficiently.

Similar observations can be made for f ’s transposed (adjoint) derivative Df t , which propagates
not tangent vectors but cotangent vectors and which we can pair up as:

T ∗f : Rn →R
m × (Rm �R

n)
x �→ (f (x),Df t(x))

to get the following chain rule:
T ∗(g ◦ f)(x)= (T ∗

1 g(T ∗
1 f (x)), T ∗

2 f (x) ◦ T ∗
2 g(T ∗

1 f (x))).

CHAD directly implements the operations T and T ∗ as source code transformations −→D and←−D on a functional language to implement forward- and reverse-mode AD, respectively. These
code transformations are defined compositionally through structural induction on the syntax, by
making use of the chain rules above.

2.2 CHAD on a first-order functional language
We first discuss what the technique looks like on a standard typed first-order functional language.
Despite our different presentation in terms of a λ-calculus rather than Elliott’s categorical com-
binators, this is essentially the algorithm of Elliott (2018). Types τ , σ , ρ are either statically sized

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

314 F. Lucatelli Nunes and M. Vákár

arrays of n real numbers realn or tuples τ∗σ of types τ , σ . We consider programs t of type σ in
typing context � = x1 : τ1, . . . , xn : τn, where xi are identifiers. We write such a typing judgment
for programs in context as � 	 t : σ . As long as our language has certain primitive operations
(which we represent schematically)

� 	 t1 : realn1 · · · � 	 tk : realnk
� 	 op(t1, . . . , tk) : realm

such as constants (as nullary operations), (elementwise) addition and multiplication of arrays,
inner products and certain nonlinear functions like sigmoid functions, we can write complex pro-
grams by sequencing together such operations. For example, writing real for real1, we can write a
program x1 : real, x2 : real, x3 : real, x4 : real	 s : real by:

let y= x1 ∗ x4 + 2 ∗ x2 in
let z= y ∗ x3 in
letw= z+ x4 in sin (w),

where we indicate shared subcomputations with let-bindings.
CHAD observes that we can define for each language type τ associated types of

• forward-mode primal values−→D (τ)1;
we define−→D (realn)= realn and−→D (τ∗σ)1 =−→D (τ)1∗−→D (σ)1, that is, for now

−→D (τ)1 = τ ;
• reverse-mode primal values←−D (τ)1;
we define←−D (realn)= realn and←−D (τ)∗(σ)1 =←−D (τ)1∗←−D (σ)1; that is, for now

←−D (τ)1 = τ ;
• forward-mode tangent values−→D (τ)2;
we define−→D (realn)2 = realn and−→D (τ∗σ)=−→D (τ)2∗−→D (σ)2;

• reverse-mode cotangent values←−D (τ)2;
we define←−D (realn)2 = realn and←−D (τ∗σ)=←−D (τ)2∗←−D (σ)2.

Indeed, the justification for these definitions is the crucial observation that a (co)tangent vector
to a product of spaces is precisely a pair of tangent (co)vectors to the two spaces. Put differently,
the space T(x,y)(X× Y) of (co)tangent vectors to X× Y at a point (x, y) equals the product space
(TxX)× (TyY) (Tu 2011).

We write the (co)tangent types associated with realn as realn to emphasize that it is a linear
type and to distinguish it from the cartesian type realn. In particular, we will see that tangent and
cotangent values are elements of linear types that come equipped with a commutative monoid
structure (0,+). Indeed, (transposed) derivatives are linear functions: homomorphisms of this
monoid structure1. We extend these operations−→D and←−D to act on typing contexts �:

−→D (x1 : τ1, . . . , xn : τn)1 = x1 : −→D (τ1)1, . . . , xn : −→D (τn)1
←−D (x1 : τ1, . . . , xn : τn)1 = x1 :←−D (τ1)1, . . . , xn :←−D (τn)1
−→D (x1 : τ1, . . . , xn : τn)2 =−→D (τ1)2∗ · · · ∗−→D (τn)2
←−D (x1 : τ1, . . . , xn : τn)2 =←−D (τ1)2∗ · · · ∗←−D (τn)2.

To each program� 	 t : σ , CHAD associates programs calculating the forward-mode and reverse-
mode derivatives −→D �(t) and

←−D �(t), which are indexed by the list � of identifiers that occur
in �:

−→D (�)1 	−→D �(t) :
−→D (σ)()∗

(−→D (�)2 �
−→D (σ)(

)

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 315

←−D (�)1 	←−D �(t) :
←−D (σ)∗

(←−D (σ)�←−D (�)2
)
.

Observing that each program t computes a differentiable function �t� between Euclidean spaces,
as long as all primitive operations op are differentiable, the key property that we prove for these
code transformations is that they actually calculate derivatives:

Theorem A (Correctness of CHAD, Theorem 124). For any well-typed program:

x1 : realn1 , . . . , xk : realnk 	 t : realm

we have that �
−→D x1,...,xk(t)�= T�t� and �

←−D x1,...,xk(t)�= T ∗�t�.
Once we fix the semantics for the source and target languages, we can show that this theorem

holds if we define−→D and←−D on programs using the chain rule. The proof works by plain induction
on the syntax. For example, we can correctly define reverse-mode CHAD on a first-order language
as follows:
←−D �(op(t1, . . . , tk))

def= let 〈x1, x′1〉 =
←−D �(t1) in · · ·

let 〈xk, x′k〉 =
←−D �(tk) in

〈op(x1, . . . , xk), λv.let v= Dopt(x1, . . . , xk;v) in
x′1 • proj1 v+ · · · + x′k • projk v〉

←−D �(x)
def= 〈x, λv.coprojidx(x;�) (v)〉

←−D �(let x= t in s) def= let 〈x, x′〉 = ←−D �(t) in

let 〈y, y′〉 = ←−D �,x(s) in
〈y, λv.let v= y′ • v in fst v+ x′ • (snd v)〉

←−D �(〈t, s〉) def= let 〈x, x′〉 = ←−D �(t) in

let 〈y, y′〉 = ←−D �(s) in
〈〈x, y〉, λv.x′ • (fst v)+ y′ • (snd v)〉

←−D �(fst t)
def= let 〈x, x′〉 = ←−D �(t) in 〈fst x, λv.x′ • 〈v, 0〉〉

←−D �(snd t)
def= let 〈x, x′〉 = ←−D �(t) in 〈snd x, λv.x′ • 〈0, v〉〉

Here, we write λv.t for a linear function abstraction (merely a notational convention – it can
simply be thought of as a plain function abstraction) and t • s for a linear function application
(which again can be thought of as a plain function application). Furthermore, given �;v : α 	 t :
(σ 1∗ · · · ∗σ n), we write �;v : α 	 proji (t) : σ i for the i-th projection of t. Similarly, given �;v : α 	
t : σ i, we write the i-th coprojection �;v : α 	 coproji (t)= 〈0, . . . , 0, t, 0, . . . , 0〉 : (σ 1∗ · · · ∗αn)
andwewrite idx(xi;x1, . . . , xn) = i for the index of an identifier in a list of identifiers. Finally,Dopt
here is a linear operation that implements the transposed derivative of the primitive operation op.

Note, in particular, that CHAD pairs up primal and (co)tangent values and shares common
subcomputations. We see that what CHAD achieves is a compositional efficient reverse-mode
AD algorithm that computes the (transposed) derivatives of a composite program in terms of the
(transposed) derivatives Dopt of the basic building blocks op.

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

316 F. Lucatelli Nunes and M. Vákár

2.3 CHAD on a higher-order language: a categorical perspective saves the day
So far, this account of CHADhas been smooth sailing: we can simply follow the usual mathematics
of (transposed) derivatives of functions Rn →R

m and implement it in code. A challenge arises
when trying to extend the algorithm to more expressive languages with features that do not have
an obvious counterpart in multivariate calculus, like higher-order functions.

Vákár and Smeding (2022) and Vákár (2021) solve this problem by observing that we
can understand CHAD through the categorical structure of Grothendieck constructions (aka
�-types of categories). In particular, they observe that the syntactic category of the target lan-
guage for CHAD, a language with both cartesian and linear types, forms a locally indexed
category LSyn :CSynop →Cat, that is, functor to the category of categories and functors for
which obj

(
LSyn

)
(τ)= obj

(
LSyn

)
(σ) for all τ , σ ∈ obj

(
CSyn

)
and LSyn(τ t−→ σ) : LSyn(σ)→

LSyn(τ) is identity on objects. Here, CSyn is the syntactic category whose objects are cartesian
types τ , σ , ρ and morphisms τ → σ are programs x : τ 	 t : σ , up to a standard program equiv-
alence. Similarly, LSyn(τ) is the syntactic category whose objects are linear types α, σ , γ and
morphisms α → γ are programs x : τ ;v : α 	 t : γ of type γ that have a free variable x of cartesian
type τ and a free variable v of linear type α. The key observation then is the following.

Theorem B (CHAD from a universal property, Corollary 69). Forward- and reverse-mode CHAD
are the unique structure-preserving functors:

−→D (−) : Syn→�CSynLSyn
←−D (−) : Syn→�CSynLSynop

from the syntactic category Syn of the source language to (opposite) Grothendieck construction of the
target language LSyn :CSynop →Cat that send primitive operations op to their derivative Dop and
transposed derivative Dopt , respectively.

In particular, they prove that this is true for the unambiguous definitions of CHAD for a source
language that is the first-order functional language we have considered above, which we can see
as the freely generated category Syn with finite products, generated by the objects realn and mor-
phisms op. That is, for this limited language, “structure-preserving functor” should be interpreted
as “finite product-preserving functor.”

This leads (Vákár 2021; Vákár and Smeding 2022) to the idea to try to use Theorem B as a
definition of CHAD on more expressive programming languages. In particular, they consider a
higher-order functional source language Syn, that is, the freely generated cartesian closed category
on the objects realn and morphisms op and try to define −→D (−) and ←−D (−) as the (unique)
structure-preserving (meaning: cartesian closed) functors to �CSynLSyn and �CSynLSynop for a
suitable linear target language LSyn :CSynop →Cat. The main contribution then is to identify
conditions on a locally indexed category L : Cop →Cat that guarantee that �CL and �CLop are
cartesian closed and to take the target language LSyn :CSynop →Cat as a freely generated such
category.

Insight 2. To understand how to perform CHAD on a source language with language feature X
(e.g., higher-order functions), we need to understand the categorical semantics of language feature
X (e.g., categorical exponentials) in categories of the form �CL and �CLop. Giving sufficient
conditions on L for such a semantics to exist yields a suitable target language for CHAD, with the
definition of the algorithm falling from the universal property of the source language.

Furthermore, we observe in these papers that Theorem A again holds for this extended def-
inition of CHAD on higher-order languages. However, to prove this, plain induction no longer
suffices and we instead need to use a logical relations construction over the semantics (in the form
of categorical sconing) that relates differentiable curves to their associated primal and (co)tangent

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 317

curves. This is necessary because the program t may use higher-order constructions such as
λ-abstractions and function applications in its definition, even if the input and output types are
plain first-order types that implement some Euclidean space.

Insight 3. To obtain a correctness proof of CHAD on source languages with language feature X,
it suffices to give a concrete denotational semantics for the source and target languages as well
as a categorical semantics of language feature X in a category of logical relations (a scone) over
these concrete semantics. The main technical challenge is to analyze logical relations techniques
for language feature X.

Finally, these papers observe that the resulting target language can be implemented as a shal-
lowly embedded DSL in standard functional languages, using a module system to implement
the required linear types as abstract types, with a reference Haskell implementation available at
https://github.com/VMatthijs/CHAD. In fact, Vytiniotis et al. (2019) had proposed the same
CHAD algorithm for higher-order languages, arriving at it from practical considerations rather
than abstract categorical observations.

Insight 4. The code generated by CHAD naturally comes equipped with very precise (e.g., linear)
types. These types emphasize the connections to its mathematical foundations and provide scaf-
folding for its correctness proof. However, they are unnecessary for a practical implementation of
the algorithm: CHAD can be made to generate standard functional (e.g., Haskell) code; the type
safety can even be rescued by implementing the linear types as abstract types.

2.4 CHAD for sum types: a challenge – (co)tangent spaces of varying dimension
A natural approach, therefore, when extending CHAD to yet more expressive source languages
is to try to use Theorem B as a definition. In the case of sum types (aka variant types), there-
fore, we should consider their categorical equivalent, distributive coproducts, and seek conditions
on L : Cop →Cat under which �CL and �CLop have distributive coproducts. The difficulty is
that these categories tend not to have coproducts if L is locally indexed. Instead, the desire to
have coproducts in �CL and �CLop naturally leads us to consider more general strictly indexed
categories L : Cop →Cat.

In fact, this is compatible with what we know from differential geometry (Tu 2011): coprod-
ucts allow us to construct spaces with multiple connected components, each of which may have a
distinct dimension. To make things concrete, the space Tx(R2 �R

3) of tangent vectors toR2 �R
3

is either R2 or R3 depending on whether the base point x is chosen in the left or right component
of the coproduct. More generally, a differentiable function f : X→ Y between spaces of varying
dimension (which can be formalized as manifolds with multiple connected components) induces
functions on the spaces of tangent and cotangent vectors2:

T f :�x∈X�y∈Y (TxX� TyY)
T ∗f :�x∈X�y∈Y (T ∗

y Y � T ∗
x X),

whose first component is f itself and whose second component is the action on (co)tangent vectors
that f induces.

If the types −→D (τ)2 and
←−D (τ)2 are to represent spaces of tangent and cotangent vectors to the

spaces that −→D (τ)1 and ←−D (τ)1 represent, we would expect them to be types that vary with the
particular base point (primal) we choose. This leads to a refined view of CHAD: while 	−→D (τ)1 :
type and 	←−D (τ)1 : type can remain (closed/nondependent) cartesian types, p : −→D (τ)1 	−→D (τ)2 :
ltype and p :←−D (τ)1 	←−D (τ)2 : ltype are, in general, linear dependent types.

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://github.com/VMatthijs/CHAD
https://doi.org/10.1017/S096012952300018X

318 F. Lucatelli Nunes and M. Vákár

Insight 5. To accommodate sum types in CHAD, it is natural to consider a target language with
dependent types: this allows the dimension of the spaces of (co)tangent vectors to vary with the
chosen primal. In categorical terms, we need to consider general strictly indexed categories L :
Cop →Cat instead of merely locally indexed ones.

The CHAD transformations of the program now becomes typed in the following more precise
way:

−→D (�)1 	−→D �(t) :�p : −→D (τ)1.
−→D (�)2 �

−→D (τ)2←−D (�)1 	←−D �(t) :�p :←−D (τ)1.
←−D (τ)2 �

←−D (�)2,

where the action of −→D (−)2 and ←−D (−)2 on typing contexts � = x1 : τ1, . . . , xn : τn has been
refined to
−→D (�)2

def= (−→D τ1)2[x1/p]∗ · · · ∗−→D τn)2[xn/p])
←−D (�)2

def= (←−D (τ1)2[x1/p]∗ · · · ∗←−D (τn)2[xn/p]).
All given definitions remain valid, where we simply reinterpret some tuples as having a �-type
rather than the more limited original tuple type.

We prove the following novel results.

Theorem C (Bicartesian closed structure of �-categories, Propositions 17 and 18, Theorems 25,
26, and 39, and Corollaries 35 and 36). For a category C and a strictly indexed category L : Cop →
Cat, �CL and �CLop have

• (fibered) finite products, if C has finite coproducts and L has strictly indexed products and
coproducts;

• (fibered) finite coproducts, if C has finite coproducts and L is extensive;
• exponentials, if L is a biadditive model of the dependently typed enriched effect calculus (we
intentially keep this vague here to aid legibility – the point is that these are relatively standard
conditions).

Furthermore, the coproducts in �CL and �CLop distribute over the products, as long as those in C
do, even in the absence of exponentials. Notably, the exponentials are not generally fibered over C.
The crucial notion here is our (novel) notion of extensivity of an indexed category, which general-
izes well-known notions of extensive categories. In particular, we callL : Cop →Cat extensive if the
canonical functorL(�n

i=1 Ci)→∏n
i=1 L(Ci) is an equivalence. Furthermore, we note that we need

to reestablish the product and exponential structures of�CL and�CLop due to the generalization
from locally indexed to arbitrary strictly indexed categories L.

Using these results, we construct a suitable target language LSyn :CSynop →Cat for CHAD
on a source language with sum types (and tuple and function types) and derive the forward and
reverse CHAD algorithms for such a language and reestablish Theorems A and B in this more
general context. This target language is a standard dependently typed enriched effect calculus with
cartesian sum types and extensive families of linear types (i.e., dependent linear types that can be
defined through case distinction). Again, the correctness proof of Theorem A uses the universal
property of Theorem B and a logical relations (categorical sconing) construction over the denota-
tional semantics of the source and target languages. This logical relations construction is relatively
straightforward and relies on well-known sconing methods for bicartesian closed categories. In
particular, we obtain the following formulas for a sum type {�1τ1 | · · · | �nτn} with constructors
�1, . . . , �n that take arguments of type τ1, . . . , τn:

−→D {�1τ1 | · · · | �nτn})1 def=
{
�1
−→D τ1)1 | · · · | �n−→D τn)1

}
−→D {�1τ1 | · · · | �nτn})2 def= case p of {�1p→−→D τ1)2 | · · · | �np→−→D τn)2}

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 319

←−D ({�1τ1 | · · · | �nτn})1 def=
{
�1
←−D (τ1)1 | · · · | �n←−D (τn)1

}
←−D ({�1τ1 | · · · | �nτn})2 def= case p of {�1p→−→D τ1)2 | · · · | �np→←−D (τn)2},

mirroring our intuition that the (co)tangent bundle to a coproduct of spaces decomposes
(extensively) into the (co)tangent bundles to the component spaces.

2.5 CHAD for (co)inductive types: where do we begin?
If we are to really push forward the dream of differentiable programming, we need to learn how
to perform AD on programs that operate on data types. To this effect, we analyze CHAD for
inductive and coinductive types. If we want to follow our previous methodology to find suitable
definitions and correctness proofs, we first need a good categorical axiomatization of such types.
It is well known that inductive types correspond to initial algebras of functors, while coinduc-
tive types are precisely terminal coalgebras. The question, however, is what class of functors to
consider. That choice makes the vague notion of (co)inductive types precise.

Following Santocanale (2002), we work with the class of μν-polynomials, a relatively standard
choice, that is functors that can be defined inductively through the combination of

• constants for primitive types realn;
• type variables α;
• unit and tuple types 1 and τ∗σ of μν-polynomials;
• sum types {�1τ1 | · · · | �nτn} of μν-polynomials;
• initial algebras μα.τ of μν-polynomials;
• terminal coalgebras να.τ of μν-polynomials.

Notably, we exclude function types, as the non-fibered nature of exponentials in �CL and
�CLop would significantly complicate the technical development. While this excludes cer-
tain examples like the free state monad (which for type σ state would be the intial algebra
μα. {Get(σ → α) | Put(σ∗α)}), it still includes the vast majority of examples of eager and lazy
types that one uses in practice, for example, lists μα.

{
Empty 1 | Cons(σ∗α)

}
, (finitely branching)

labeled trees like μα.
{
Leaf 1 |Node(σ∗α∗α)

}
, streams να.σ∗α, and many more.

We characterize conditions on a strictly indexed category L : Cop →Cat that guarantee that
�CL and �CLop have this precise notion of inductive and coinductive types. The first step is to
give a characterization of initial algebras and terminal coalgebras of split fibration endofunctors on
�CL and�CLop. For legibility, we state the results here for simple endofunctors and (co)algebras,
but they generalize to parameterized endofunctors and (co)algebras.

Theorem D (Characterization of initial algebras and terminal coalgebras in �-categories,
Corollary 49 and Theorem 52). Let E be a split fibration endofunctor on�CL (resp.�CLop) and let
(E, e) be the corresponding strictly indexed endofunctor onL. Then, E has a (fibered) initial algebra if

• E : C → C has an initial algebra inE : E(μE)→μE;
• L(inE)−1eμE :L(μE)→L(μE) has an initial algebra (resp. terminal coalgebra);
• L(f) preserves initial algebras (resp. terminal coalgebras) for all morphisms f ∈ C;

and E has a (fibered) terminal coalgebra if

• E : C → C has a terminal coalgebra outE : νE→ E(νE);
• L(outE)eμE :L(νE)→L(νE) has a terminal coalgebra (resp. initial algebra)
• L(f) preserves terminal coalgebras (resp. initial algebras) for all morphisms f ∈ C.

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

320 F. Lucatelli Nunes and M. Vákár

We use this result to give sufficient conditions for (fibered) μν-polynomials (including their
fibered initial algebras and terminal coalgebras) to exist in�CL and�CLop. In particular, we show
that it suffices to extend the target language LSyn :CSynop →Cat with both cartesian and linear
inductive and coinductive types to perform CHAD on a source language Syn with inductive and
coinductive types. Again, an equivalent of Theorem B holds.

We write roll x for the constructor of inductive types (applied to an identifier x), unroll x for
the destructor of coinductive types, and τ .roll−1 x def= fold xwith y→ τ [y	roll y/α], where we write
τ [y	roll y/α] for the functorial action of the parameterized type τ with type parameter α on the
term roll y in context y. This yields the following formula for spaces of primals and (co)tangent
vectors to (co)inductive types where:

−→D (α)1
def= α

−→D (α)2 = α

−→Dμα.(τ)1
def= μα.−→D (τ)1

−→Dμα.(τ)2
def= μα.−→D (τ)2[

−→D (τ)1.roll−1p/p]
−→D να.(τ)1

def= να.−→D (τ)1
−→D να.(τ)2

def= να.−→D (τ)2[unroll p/p]
←−D (α)1

def= α
←−D (α)2 = α

←−D (μα.(τ)1
def= μα.←−D (τ)1

←−D (μα.(τ)2
def= να.←−D (τ)2[

−→D (τ)1.roll−1p/p]
←−D (να.(τ)1

def= να.←−D (τ)1
←−D (να.τ)2

def= μα.←−D (τ)2[unroll p/p]

Insight 6. Types of primals to (co)inductive types are (co)inductive types of primals, types of
tangents to (co)inductive types are linear (co)inductive types of tangents, and types of cotangents
to inductive types are linear coinductive types of cotangents and vice versa.

For example, for a type τ =μα.
{
Empty 1 | Cons(σ∗α)

}
of lists of elements of type σ , we have

a cotangent space:
←−D (τ)2 = να.case roll−1 p of {Empty _→ 1 | Cons p→←−D (σ)2[fst p/p]∗α} where

roll−1 p= fold pwith y→ case y of {Empty y→ Empty y | Cons y→ Cons〈fst y, roll (snd y)〉}
and, for a type τ = να.σ∗α of streams, we have a cotangent space:

←−D (τ)2 =μα.←−D (σ)2[fst (unroll p)/p]∗α.

We demonstrate that the strictly indexed category FVect : Setop →Cat of families of vector
spaces also satisfies our conditions, so it gives a concrete denotational semantics of the target lan-
guage LSyn :CSynop →Cat, by Theorem B. To reestablish the correctness Theorem A, existing
logical relations techniques do not suffice, as far as we are aware. Instead, we achieve it by devel-
oping a novel theory of categorical logical relations (sconing) for languages with expressive type
systems like our AD source language.

Insight 7. We can obtain powerful logical relations techniques for reasoning about expressive
type systems by analyzing when the forgetful functor from a category of logical relations to the
underlying category is comonadic and monadic.

In almost all instances, the forgetful functor from a category of logical relations to the under-
lying category is comonadic and in many instances, including ours, it is even monadic. This gives
us the following logical relations techniques for expressive type systems:

Theorem E (Logical relations for expressive types, Section 11). Let G : C →D be a functor. We
observe

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 321

• If D has binary products, then the forgetful functor from the scone (the comma category) D ↓
G→D× C is comonadic (Theorem 97).

• If G has a left adjoint and C has binary coproducts, then D ↓G→D× C is monadic
(Corollary 99).

This is relevant because:

• comonadic functors create initial algebras (Theorem 109);
• monadic functors create terminal coalgebras (Theorem 109);
• monadic–comonadic functors create μν-polynomials (Corollary 110);
• if E is monadic–comonadic over E ′, then E is finitely complete cartesian closed if E ′ is
(Proposition 103).

As a consequence, we can lift our concrete denotational semantics of all types, including inductive
and coinductive types to our categories of logical relations over the semantics.

These logical relations techniques are suffient to yield the correctness Theorem A. Indeed, as
long as derivatives of primitive operations are correctly implemented in the sense that �Dop�=
Dop and �Dopt�=D�op�t , Theorem E tells us that the unique structure-preserving functors:

(�−�, �−→D (−)�) : Syn→ Set×�SetFVect

(�−�, �←−D (−)�) : Syn→ Set×�SetFVectop

lift to the scones of Hom((Rk, (Rk,Rk)),−) : Set×�SetFVect→ Set and Hom((Rk,
(Rk,Rk)),−) : Set×�SetFVectop → Set where we lift the image of realn, respectively, to
the logical relations:{

(f , (g, h)) | f = g and h=Df
}

↪→ (Set×�SetFVect)
(
(Rk, (Rk,Rk)), (Rn, (Rn,Rn))

)
{
(f , (g, h)) | f = g and h=Df t

}
↪→ (Set×�SetFVectop)

(
(Rk, (Rk,Rk)), (Rn, (Rn,Rn))

)
.

We see that �
−→D (t)� and �

←−D (t)� propagate derivatives and transposed derivatives of differen-
tiable k-surfaces (differentiable functions R

k → dom�t�) correctly for all programs t. Seeing
that (id, (id, x �→ id)) is one such k-surface in the logical relation associated with realk, we see
that (�t�, (π1 ◦ �

−→D (t)�, π2 ◦ �
−→D (t)�)) and (�t�, (π1 ◦ �

←−D (t)�), π2 ◦ �
←−D (t)�)) are k-surfaces in the

relations as well, for any x : realk 	 t : realn. That is, Theorem A holds.
Our novel logical relations machinery is in no way restricted to the context of CHAD, however.

In fact, it is widely applicable for reasoning about total functional languages with expressive type
systems.

2.6 Inductive types and derivatives
So far, we have only phrased the CHAD correctness Theorem A only for programs t with
domain/codomain isomorphic to some Euclidean spaceRn, even if tmaymake use of any complex
types (including variant, inductive, coinductive, and function types) in its computation. The rea-
son for this restriction is that this limited context of functions f :Rn →R

m is an obvious setting
where we have a simple, canonical, unambiguous notion of derivative T f :Rn →R

m × (Rn �
R
m), allowing us to phrase an obvious correctness criterion.
More generally, for f : X→ Y where X and Y are manifolds, we also have an unambiguous

notion of derivative T f :�x∈X�y∈YTxX� TyY , which allows us to strengthen our correctness
result. In fact, for our purposes, it suffices to consider the relatively simple context of differentiable
functions f :∐

i∈I
R
ni →∐

j∈J
R
mj between very simple manifolds that arise as disjoint unions of

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

322 F. Lucatelli Nunes and M. Vákár

(finite-dimensional) Euclidean spaces. Such functions f decompose uniquely as copairings f =
[ιφ(i) ◦ gi]i∈I where we write ιk for the k-th coprojection and where φ : I→ J is some function
and gi :Rni →R

mφ(j) . That is, f can be understood as the family (gi)i∈I and its derivative T f
decomposes uniquely as the family of plain derivatives Tgi in the usual sense. We have a similar
decomposition for the transposed derivatives T ∗f .

This notion of derivatives of functions between disjoint unions of Euclidean spaces is relevant
to our context, as we have the following result.

Theorem F (Canonical form of μ-polynomial semantics, Corollary 127). For any types τi built
from Euclidean spaces realn, tuple types τi∗τj, variant types {�1τ1 | · · · | �nτn}, type variables α, and
inductive types μα.τi (so-called μ-polynomials), its denotation �τi� is isomorphic to a manifold of
the form

∐
i∈I

R
ni for some countable set I and some ni ∈N.

Consequently, we can strengthen Theorem A in the following form:

Theorem G (Correctness of CHAD (Generalized), Theorem 129). For any well-typed program

x1 : τ1, . . . , xk : τn 	 t : σ ,
where τi, σ are all (closed) μ-polynomials, we have that �

−→D x1,...,xk(t)�= T�t� and �
←−D x1,...,xk(t)�=

T ∗�t�.
Again, t can make use of coinductive types and function types in the middle of its computation,

but they may not occur in the input or output types. The reason is that, as far as we are aware,
there is no canonical3 notion of semantic derivative for functions between the sort of infinite-
dimensional spaces that co-datatypes such as coinductive types and function types implement.
This makes it challenging to even phrase what semantic correctness at such types would mean.

2.7 How does CHAD for expressive types work in practice?
The CHAD code transformations we describe in this papers are well behaved in practical
implementations in the sense of the following compile-time complexity result.

Theorem H (No code blowup, Corollary 130). The size of the code of the CHAD transformed
programs−→D �(t) and

←−D �(t) grows linearly with the size of the original source program t.

We have ensured to pair up the primal and (co)tangent computations in our CHAD trans-
formation and to exploit any possible sharing of common subcomputations, using let-bindings.
However, we leave a formal study of the runtime complexity of our technique to future work.

As formulated in this paper, CHAD generates code with linear dependent types. This seems
very hard to implement in practice. However, this is an illusion: we can use the code generated
by CHAD and interpret it as less precise types. We sketch how all type dependency can be erased
and how all linear types other than the linear (co)inductive types can be implemented as abstract
types in a standard functional language like Haskell. In fact, we describe three practical imple-
mentation strategies for our treatment of sum types, none of which require linear or dependent
types. All three strategies have been shown to work in the CHAD reference implementation. We
suggest how linear (co)inductive types might be implemented in practice, based on their concrete
denotational semantics, but leave the actual implementation to future work.

3. Background: Categorical Semantics of Expressive Total Languages
In this section, we fix some notation and recall the well-known abstract categorical semantics of
total functional languages with expressive type systems (Crole 1993; Pitts 1995; Santocanale 2002),
which builds on the usual semantics of the simply typed λ-calculus in Cartesian closed categories

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 323

(Lambek and Scott 1988). In this paper, we will be interested in a few particular instantiations (or
models) of such an abstract categorical semantics C:

• the initial model Syn (Section 5), which represents the programming language under
consideration, up to βη-equivalence; this will be the source language of our AD code
transformation;

• the concrete denotational model Set (Section 9) in terms of sets and functions, which
represents our default denotational semantics of the source language;

• models �CL and �CLop (Section 6) in the the �-types of suitable indexed categories L :
Cop →Cat;

• in particular, the models �CSynLSyn and �CSynLSynop (Section 7) built out of the target
language, which yield forward and reverse-mode CHAD code transformations, respectively;

• sconing (categorical logical relations) constructions
←−→Scone and←−→Scone (Section 11) over the

models Set×�SetFVect and Set×�SetFVectop that yield the correctness arguments for
forward- and reverse-mode CHAD, respectively, where FVect : Setop →Cat is the strictly
indexed category of families of real vector spaces.

We deem it relevant to discuss the abstract categorical semantic framework for our language as
we need these various instantiations of the framework.

3.1 Basics
We use standard definitions from category theory; see, for instance, Mac Lane (1971), Leinster
(2014). A category C can be seen as a semantics for a typed functional programming language,
whose types correspond to objects of C and whose programs that take an input of type A and pro-
duce an output of type B are represented by the homset C(A, B). Identity morphisms idA represent
programs that simply return their input (of type A) unchanged as output and composition g ◦ f of
morphisms f and g represents running the program g after the program f . Notably, the equations
that hold between morphisms represent program equivalences that hold for the particular notion
of semantics that C represents. Some of these program equivalences are so fundamental that we
demand them as structural equalities that need to hold in any categorical model (such as the asso-
ciativity law f ◦ (g ◦ h)= (f ◦ g) ◦ h). In programming languages terms, these are known as the β-
and η-equivalences of programs.

3.2 Tuple types
Tuple types represent a mechanism for letting programs take more than one input or produce
more than one output. Categorically, a tuple type corresponds to a product

∏
i∈I Ai of a finite

family of types {Ai}i∈I , which we also write 1 orA1 ×A2 in the case of nullary and binary products.
For basic aspects of products, we refer the reader to Mac Lane (1971, Chapter III).

We write
(
fi
)
i∈I : C→∏

i∈I Ai for the product pairing of
{
fi : C :Ai

}
i∈I and πj :∏i∈I Ai →Aj

for the j-th product projection, for j ∈ I. As such, we say that a categorical semantics C models
(finite) tuples if C has (chosen) finite products.

3.3 Primitive types and operations
We are interested in programming languages that have support for a certain set Ty of ground
types such as integers and (floating point) real numbers as well as certain sets Op(T1, . . . , Tn;S),
for T1, . . . , Tn, S ∈ Ty, of operations on these basic types such as addition, multiplication, and
sine functions. We model such primitive types and operations categorically by demanding that
our category has a distinguished object CT for each T ∈ Ty to represent the primitive types

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

324 F. Lucatelli Nunes and M. Vákár

and a distinguished morphism fop ∈ C(CT1 × . . .× CTn , CS) for all primitive operations op ∈
Op(T1, . . . , Tn;S). For basic aspects of categorical type theory, see, for instance, Crole (1993,
Chapters 3&4).

3.4 Function types
Function types let us type popular higher-order programming idioms such as maps and folds,
which capture common control flow abstractions. Categorically, a type of functions from A to B is
modeled as an exponential A⇒ B. We write ev : (A⇒ B)×A→ B (evaluation) for the counit of
the adjunction (−)×A�A⇒ (−) and� for the Currying natural isomorphism C(A× B, C)→
C(A, B⇒ C). We say that a categorical semantics C with tuple types models function types if C has
a chosen right adjoint (−)×A�A⇒ (−).

3.5 Sum types (aka variant types)
Sum types (aka variant types) let usmodel data that exists inmultiple different variants and branch
in our code on these different possibilities. Categorically, a sum type is modeled as a coproduct∐

i∈I Ai of a collection of a finite family {Ai}i∈I of types, which we also write 0 or A1 �A2 in
the case of nullary and binary coproducts. We write

[
fi
]
i∈I :

∐
i∈I Ci →A for the copairing of{

fi : Ci →A
}
i∈I and ιj :Aj →∐

i∈I Ai for the j-th coprojection. In fact, in presence of tuple types,
a more useful programming interface is obtained if one restricts to distributive coproducts, that is,
coproducts

∐
i∈I Ai such that the map [(ιi ◦ π1) π2]i∈I :

∐
i∈I (Ai × B)→ (

∐
i∈I Ai)× B is an iso-

morphism; see, for instance, Carboni et al. (1993), Lack (2012). Note that in presence of function
types, coproducts are automatically distributive since the left adjoint functors (−)×A preserve
colimits; see, for instance, Leinster (2014, 6.3). As such, we say that a categorical semantics C
models (finite) sum types if C has (chosen) finite distributive coproducts.

3.6 Inductive and coinductive types
We employ the usual semantic interpretation of inductive and coinductive types as, respectively,
initial algebras and terminal coalgebras of a certain class of functors. We refer the reader, for
instance, to Barr and Wells (2005, Chapter 9), Santocanale (2002), and Adamek et al. (2010).

Most of this section is dedicated to describing precisely which class of functors we consider ini-
tial algebras and terminal coalgebras, a class we call μν-polynomials. Roughly speaking, we define
μν-polynomials to be functors that can be constructed from products, coproducts, projections,
diagonals, constants, initial algebras, and terminal coalgebras.

To fix terminology and for future reference of the detailed constructions, we recall below basic
aspects of parameterized initial algebras and parameterized terminal coalgebras.

Definition 1 (The category of E-algebras). Let E :D→D be an endofunctor. The category of E-
algebras, denoted by E-Alg, is defined as follows. The objects are pairs (W, ζ) in whichW ∈D and ζ :
E(W)→W is a morphism of D. A morphism between E-algebras (W, ζ) and (Y , ξ) is a morphism
g :W → Y of D such that

E(W) E(Y)

W Y

E(g)

ζ ξ

g

(1)

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 325

commutes. Dually, we define the category E-CoAlg of E-coalgebras by:

E-CoAlg := (Eop-Alg)op (2)

in which Eop :Dop →Dop is the image of E by op :Cat→Cat.

Definition 2 (Initial algebra and terminal coalgebra). Let E :D→D be an endofunctor. Provided
that they exist, the initial object (μE, inE) of E-Alg and the terminal object (νE, outE) of E-CoAlg
are, respectively, referred to as the initial E-algebra and the terminal E-coalgebra.

Remark 3. By Lambek’s Theorem, provided that the initial algebra (μE, inE) of an endofunctor E
exists, we have that inE is invertible. Dually, we get the result for terminal coalgebras.

Assuming the existence of the initial E-algebra and the terminal E-coalgebra, we denote by:

foldE(Y , ξ) :μE→ Y , unfoldE(X, �) : X→ νE (3)

the unique morphisms in D such that

E(μE) E(Y)

μE Y

E(foldE(Y ,ξ))

inE ξ

foldE(Y ,ξ)

X νE

E(X) E(νE)

unfoldE(X,�)

� outE

E(unfoldE(X,�))

(4)

commute. Whenever it is clear from the context, we denote foldE(Y , ξ) by foldEξ , and
unfoldE(X, �) by unfoldE�.

Given a functor H :D′ ×D→D and an object X of D′, we denote by HX the endofunctor:

H(X,−) :D→D. (5)

In this setting, if μHX exists for any object X ∈D′ then the universal properties of the ini-
tial algebras induce a functor denoted by μH :D′ →D, called the parameterized initial algebra.
In the following, we spell out how to construct parameterized initial algebras and terminal
coalgebras.

Proposition 4 (μ-operator and ν-operator). Let H :D′ ×D→D be a functor. Assume that, for
each object X ∈D′, the functor HX =H(X,−) is such that μHX exists. In this setting, we have the
induced functor:

μH :D′ → D
X �→ μHX(

f : X→ Y
) �→ foldHX

(
inHY ◦H(f ,μHY)

)
.

Dually, assuming that, for each object X ∈D′, νHX exists, we have the induced functor:

νH :D′ → D
X �→ νHX(

f : X→ Y
) �→ unfoldHY

(
H(f , νHX) ◦ outHX

)
.

Proof. We assume that the functor H :D′ ×D→D is such that, for any object X ∈D′, μHX

exists. For each morphism f : X→ Y , we define μH(f)= foldHX
(
inHY ◦H(f ,μHY)

)
as above.

We prove below that this makes μH(f) a functor.

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

326 F. Lucatelli Nunes and M. Vákár

Given X ∈D′,
μH(idX)
= foldHX

(
inHX ◦H(idX ,μHX)

)
= foldHX

(
inHX

)
= idμHX .

Moreover, given morphisms f : X→ Y and g : Y → Z in D′, we have that
μH(g) ◦μH(f) ◦ inHX

=μH(g) ◦ inHY ◦H (f ,μH(f)
) { μH(f)= foldHX

(
inHY ◦H(f ,μHY)

) }
= inHZ ◦H (g,μH(g)

) ◦H (f ,μH(f)
) { μH(g)= foldHY

(
inHZ ◦H(g,μHZ)

) }
= inHZ ◦H (gf ,μH(g) ◦μH(f)

)
= inHZ ◦H

(
gf ,μHZ

)
◦H (X,μH(g) ◦μH(f)

)
and, hence, the diagram:

H
(
X,μHX) H

(
X,μHZ)

μHX μHZ

H(X,μH(g)◦μH(f))

inHX inHZ ◦H
(
g◦f ,μHZ)

μH(g)◦μH(f)

commutes. By the universal property of the initial algebra
(
μHX , inHX

)
, we conclude that

μH(g) ◦μH(f)

= foldHX

(
inHZ ◦H

(
g ◦ f ,μHZ

))
=μH(g ◦ f). { definition }

It is worth noting that in Proposition 4, D′ can be any category. However, in the standard
setting of initial algebra semantics, there is a special interest in the case where D′ =Dn−1 and
n> 1, which is described below.

Proposition 5 (Parameterized initial algebras and terminal coalgebras). Let H :Dn →D be a
functor in which n> 1. Assume that, for each object X ∈Dn−1, μHX exists. In this setting, we have
the induced functor:

μH :Dn−1 → D
X �→ μHX(

f : X→ Y
) �→ foldHX

(
inHY ◦H(f ,μHY)

)
.

Dually, if νHX exists for any X ∈Dn−1, we have the induced functor:

νH :Dn−1 → D
X �→ νHX(

f : X→ Y
) �→ unfoldHY

(
H(f , νHX) ◦ outHX

)
.

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 327

In order to model inductive and coinductive types coming from parameterized types not
involving function types, we introduce the following notions.

Definition 6 (μν-polynomials). Assuming that D has finite coproducts and finite products, the
category μνPolyD is the smallest subcategory of Cat satisfying the following.

(O) The objects are defined inductively by:
(O1) the terminal category 1 is an object of μνPolyD ;
(O2) the category D is an object of μνPolyD ;
(O3) for any pair of objects

(
D′,D′′) ∈μνPolyD ×μνPolyD , the product D′ ×D′′ is an

object of μνPolyD .
(M) The morphisms satisfy the following properties:

(M1) for any object D′ of μνPolyD , the unique functor D′ → 1 is a morphism of μνPolyD ;
(M2) for any object D′ of μνPolyD , all the functors 1→D′ are morphisms of μνPolyD ;
(M3) the binary product× :D×D→D is a morphism of μνPolyD ;
(M4) the binary coproduct � :D×D→D is a morphism of μνPolyD ;
(M5) for any pair of objects

(
D′,D′′) ∈μνPolyD ×μνPolyD , the projections:

π1 :D′ ×D′′ →D′, π2 :D′ ×D′′ →D′′

are morphisms of μνPolyD ;
(M6) given objects D′,D′′,D′′′ of μνPolyD , if E :D′ →D′′ and J :D′ →D′′′ are morphisms

of μνPolyD , then so is the induced functor (E, J) :D′ →D′′ ×D′′′;
(M7) if D′ is an object of μνPolyD , H :D′ ×D→D is a morphism of μνPolyD and μH :

D′ →D exists, then μH is a morphism of μνPolyD ;
(M8) if D′ is an object of μνPolyD , H :D′ ×D→D is a morphism of μνPolyD and νH :

D′ →D exists, then νH is a morphism of μνPolyD .

We say thatD hasμν-polynomials ifD has finite coproducts and products and, for any endofunctor
E :D→D in μνPolyD , μE and νE exist. We say that D has chosen μν-polynomials if we have
additionally made a choice of initial algebras and terminal coalgebras for all μν-polynomials.

Remark 7 (Self-duality). A categoryD hasμν-polynomials if and only ifDop hasμν-polynomials
as well.

Another suitably equivalent way of defining μνPolyD is the following. The category μνPolyD
is the smallest subcategory of Cat such that:

– the inclusion μνPolyD →Cat creates finite products;
– D is an object of the subcategory μνPolyD ;
– for any object D′ of μνPolyD , all the functors 1→D′ are morphisms of μνPolyD ;
– and the binary product× :D×D→D is a morphism of μνPolyD ;
– the binary coproduct � :D×D→D is a morphism of μνPolyD ;
– ifD′ is an object ofμνPolyD ,H :D′ ×D→D is amorphism ofμνPolyD andμH :D′ →D
exists, then μH is a morphism of μνPolyD ;

– ifD′ is an object ofμνPolyD ,H :D′ ×D→D is a morphism ofμνPolyD and νH :D′ →D
exists, then νH is a morphism of μνPolyD .

Lemma 8. Let C be a category with μν-polynomials. If D is an object of μνPolyC and

H :D× C → C

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

328 F. Lucatelli Nunes and M. Vákár

is a functor in μνPolyC , then μH :D→ C and νH :D→ C exist (and, hence, they are morphisms
of μνPolyC).

Proof. Let X be any object of D. Denoting by X : 1→D the functor constantly equal to X, the
functor HX is the composition below.

C 1× C D× C C(1,idC)

HX

(X◦π1,idC◦π2) H

Since all the morphisms above are in μνPolyC , we conclude that HX is an endomorphism of
μνPolyC . Therefore, since C has μν-polynomials, μHX and νHX exist.

By Proposition 4, since μHX and νHX exist for any X in D, μH and νH exist.

We say that a categorical semantics C with (finite) sum and tuple types supports inductive and
coinductive types if C has chosen μν-polynomials. Note that we do not consider the more general
notion of (co)inductive types defined by endofunctors that may contain function types in their
construction.

4. Structure-Preserving Functors
In this paper, the definition of our ADmacro, the definitions of the concrete semantics, and logical
relations are all framed in terms of appropriate structure-preserving functors. This fact highlights
the significance of the suitable notions of structure-preserving functors in our work.

A structure-preserving functor between bicartesian closed categories are, of course, bicartesian
closed functors. We usually assume that those are strict, which means that the functors preserve
the structure on the nose.

It remains to establish the notion of structure-preserving functor between categories
with μν-polynomials. We do it below, starting by establishing the notion of preserva-
tion/creation/reflection of initial algebras and terminal coalgebras.

4.1 Preservation, reflection, and creation of initial algebras
We begin by recalling a fundamental result on lifting functors from the base categories to the cat-
egories of algebras in Lemma 9. This is actually related to the universal property of the categories
of algebras.

Lemma 9. Let F :D→ C be a functor. Given endofunctors E : C → C, E′ :D→D and a natural
transformation γ : E ◦ F−→ F ◦ E′, we have an induced functor defined by:

F̌γ : E′-Alg → E-Alg
(X, ζ) �→ (F(X), F(ζ) ◦ γX)

g �→ F(g).

Proof. Indeed, if g :W → Z is the underlying morphism of an algebra morphism between (W, ζ)
and (Z, ξ), we have that

F(g) ◦ F(ζ) ◦ γW
= F(ξ) ◦ FE′(g) ◦ γW { f : (W, ζ)→ (Z, ξ) }
= F(ξ) ◦ γZ ◦ EF(g) { naturality of γ }

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 329

which proves that F(g) in fact gives a morphism between the algebras (F(W), F(ζ) ◦ γW) and
(F(Z), F(ξ) ◦ γZ). The functoriality of F̌γ follows, then, from that of F.

Dually, we have:

Lemma 10. Let E : C → C, G : C →D, and E′ :D→D be functors. Each natural transformation
β :G ◦ E−→ E′ ◦G induces a functor:

G̃β : E-CoAlg → E′-CoAlg
(W, ξ) �→ (G(W), βW ◦G(ξ))

f �→G(f).

Below, whenever we talk about strict preservation, we are assuming that we have chosen initial
objects (terminal objects) in the respective categories of (co)algebras.

We can, now, establish the definition of preservation, reflection, and creation of initial algebras
using the respective notions for the induced functor. More precisely:

Definition 11 (Preservation, reflection, and creation of initial algebras). We say that a functor
F :D→ C (strictly) preserves the initial algebra/reflects the initial algebra/creates the initial algebra
of the endofunctor E : C → C if, whenever E′ :D→D is such that γ : E ◦ F∼= F ◦ E′ (or, in the strict
case, F ◦ E′ = E ◦ F), the functor:

F̌γ : E′-Alg → E-Alg
(X, ζ) �→ (F(X), F(ζ) ◦ γX)

g �→ F(g).

induced by γ strictly) preserves the initial object/reflects the initial object/creates the initial object.
Finally, we say that a functor F :D→ C (strictly) preserves initial algebras/reflects initial alge-

bras/creates initial algebras if F (strictly) preserves initial algebras/reflects initial algebras/creates
initial algebras of any endofunctor on D.

Remark 12. In other words, let F :D→ C be a functor.

(I) We say that F (strictly) preserves initial algebras, if: for any natural isomorphism γ :
E ◦ F∼= F ◦ E′ (or, in the strict case, for each identity E ◦ F= F ◦ E′) in which E and
E′ are endofunctors, assuming that

(
μE′, inE′

)
is the initial E′-algebra, the E-algebra(

F
(
μE′

)
, F (inE′) ◦ γμE′

)
is an initial object of E-Alg (the chosen initial object of E-Alg,

in the strict case).
(II) We say that F reflects initial algebras, if: for any natural isomorphism γ : E ◦ F∼= F ◦ E′ in

which E and E′ are endofunctors, if (F(Y), F (ξ) ◦ γY) is an initial E-algebra and (Y , ξ) is an
E′-algebra, then (Y , ξ) is an initial E′-algebra.

(III) We say that F creates initial algebras if: (A) F reflects and preserves initial algebras and,
moreover, (B) for any γ : E ◦ F∼= F ◦ E′ in which E and E′ are endofunctors, E′-Alg has an
initial algebra if E-Alg does.

Definition 13 (Preservation, reflection, and creation of terminal coalgebras). We say that a func-
tor G : C →D (strictly) preserves the initial algebra/reflects the initial algebra/creates the initial
algebra of an endofunctor E : C → C if, for any natural isomorphism β :G ◦ E∼= E′ ◦G (or, in the
strict case, GE= E′G), the functor:

G̃β : E-CoAlg → E′-CoAlg

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

330 F. Lucatelli Nunes and M. Vákár

(W, ξ) �→ (G(W), βW ◦G(ξ))
f �→G(f).

induced by β (strictly) preserves the terminal object/reflects the terminal object/creates the terminal
object.

Finally, we say that G : C →D (strictly) preserves terminal coalgebras/reflects terminal coal-
gebras/creates terminal coalgebras if G (strictly) preserves terminal coalgebras/reflects terminal
coalgebras/creates terminal coalgebras of any endofunctor on C.

4.2 μν-polynomial-preserving functors
Finally, we can introduce the concept of a structure-preserving functor for μν-polynomials.

Definition 14. A functor G :D→ C (strictly) preserves μν-polynomials if it strictly preserves finite
coproducts, finite products, as well as initial algebras and terminal coalgebras of μν-polynomials.

5. An Expressive Functional Language as a Source Language for AD
We describe a source language for our AD code transformations. We consider a standard total
functional programming language with an expressive type system, over ground types realn for
arrays of real numbers of static length n, for all n ∈N, and sets Opmn1,...,nk of primitive operations
op, for all k,m, n1, . . . , nk ∈N. These operations op will be interpreted as differentiable functions
(Rn1 × · · · ×R

nk)→R
m, and the reader can keep the following examples in mind:

• constants c ∈Opn for each c ∈R
n, for which we slightly abuse notation and write c(〈〉) as c;

• elementwise addition and product (+), (∗)∈Opnn,n and matrix-vector product (�)∈
Opnn·m,m;

• operations for summing all the elements in an array: sum ∈Op1n;
• some nonlinear functions like the sigmoid function ς ∈Op11.
Its kinds, types, and terms are generated by the grammar in Fig. 1. We write �	 τ : type

to specify that the type τ is well kinded in kinding context �, where � is a list of the form
α1 : type, . . . , αn : type. The idea is that the type variables identifiers α1, . . . , αn can be used in the
formation of τ . These kinding judgments are defined according to the rules displayed in Fig. 2.We
write � | � 	 t : τ to specify that the term t is well typed in the typing context �, where � is a list of
the form x1 : τ1, . . . , xn : τn for variable identifiers xi and types τi that are well kinded in kinding
context �. These typing judgments are defined according to the rules displayed in Fig. 3. As Fig. 4
displays, we consider the terms of our language up to the standard βη-theory. To present this
equational theory, we define in Fig. 5, by induction, some syntactic sugar for the functorial action
�,�′ | �, x : τ [σ/α]	 τ [x	t/α] : τ [ρ/α] in argument α of parameterized types �, α : type	 τ : type
on terms �′ | �, x : σ 	 t : ρ.

We employ the usual conventions of free and bound variables and write τ [σ/α] for the capture-
avoiding substitution of the type σ for the identifier α in τ (and similarly, t[s/x] for the capture-
avoiding substitution of the term s for the identifier x in t). We define make liberal use of the
standard syntactic sugar let 〈x, y〉 = t in s def= let z= t in let x= fst z in let y= snd z in s.

This standard language is equivalent to the freely generated bicartesian closed category Syn
with μν-polynomials on the directed polygraph (computad) given by the ground types realn as
objects and primitive operations op as arrows. Equivalently, we can see it as the initial category
that supports tuple types, function types, sum types, inductive and coinductive types, and primi-
tive types Ty= {realn | n ∈N

}
and primitive operations Op(realn1 , . . . , realnk ;realm)=Opmn1,...,nk

(in the sense of Section 3). Syn effectively represents programs as (categorical) combinators,

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 331

Figure 1. Grammar for the kinds, types, and terms of the source language for our AD transformations.

Figure 2. Kinding rules for the AD source language. Note that we only consider the formation of function types of
nonparameterized types (shaded in gray).

also known as “point-free style” in the functional programming community. Concretely, Syn has
types as objects, homsets Syn(τ , σ) consist of (α)βη-equivalence classes of terms · | x : τ 	 t : σ ,
identities are · | x : τ 	 x : τ , and the composition of · | x : τ 	 t : σ and · | y : σ 	 s : ρ is given by
· | x : τ 	 let y= t in s : ρ.

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

332 F. Lucatelli Nunes and M. Vákár

Figure 3. Typing rules for the AD source language.

Figure 4. We consider the standard βη-laws above for our language. Wewrite #x1,...,xn= to indicate that the variables x1, . . . , xn
need to be fresh in the left-hand side. Equations hold on pairs of terms of the same type. As usual, we only distinguish terms
up to α-renaming of bound variables.

Corollary 15 (Universal property of Syn). Given any bicartesian closed category with μν-
polynomials C, any consistent assignment of F(realn) ∈ obj (C) and F(op) ∈ C(F(realn1)× · · · ×
F(realnk), F(realm)) for op ∈Opmn1,...,nk extends to a unique μν-polynomial-preserving bicartesian
closed functor F : Syn→ C.

6. Modeling Expressive Functional Languages in Grothendieck Constructions
In this section, we present a novel construction of categorical models (in the sense of Section 3)
�CL and �CLop of expressive functional languages (like our AD source language of Section 5)
in �-types of suitable indexed categories L : Cop →Cat. In particular, the problem we solve in
this section is to identify suitable sufficient conditions to put on an indexed category L : Cop →
Cat, whose base category we think of as the semantics of a cartesian type theory and whose fiber

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 333

Figure 5. Functorial action �,�′ | �, x : τ [σ/α]	 τ [x	t/α] : τ [ρ/α] in argument α of parameterized types �, α : type	 τ : type
on terms�′ | �, x : σ 	 t : ρ of the source language.

categories we think of as the semantics of a dependent linear type theory, such that �CL and
�CLop are categorical models of expressive functional languages in this sense. We call such an
indexed category a �-bimodel of language feature X if it satifies our sufficient conditions for �CL
and �CLop to be categorical models of language feature X.

This abstract material in many ways forms the theoretical crux of this paper. We consider two
particular instances of this idea later:

• the case where L is the syntactic category LSyn :CSynop →Cat of a suitable target lan-
guage for AD translations (Section 7); the universal property of the source language
Syn then yields unique structure-preserving functors −→D :Syn→�CSynLSyn and ←−D :Syn→
�CSynLSynop implementing forward and reverse-mode AD;

• the case where L is the indexed category of families of real vector spaces FVect : Setop →
Cat (Section 9); this gives a concrete denotational semantics to the target language, which
we use in the correctness proof of AD.

6.1 Basics: the categories�CL and�CLop

Recall that for any strictly indexed category, that is, a (strict) functor L : Cop →Cat, we can con-
sider its total category (or Grothendieck construction) �CL, which is a fibered category over C
(see Johnstone 2002, Sections A1.1.7, B1.3.1). We can view it as a �-type of categories, which
generalizes the cartesian product. Further, given a strictly indexed category L : Cop →Cat, we
can consider its fiberwise dual category Lop : Cop →Cat, which is defined as the composition
Cop L−→Cat

op−→Cat, where op is defined by A �→Aop. Thus, we can apply the same construction
to Lop to obtain a category �CLop.

Concretely, �CL is the following category:

• objects are pairs (W,w) of an objectW of C and an object w of L(W);
• morphisms (W,w)→ (X, x) are pairs (f , f ′) with f :W → X in C and f ′ :w→L(f)(x) in
L(W);

• identities id(W,w) are (idW , idW);

• composition of (W,w)
(f ,f ′)−−→ (X, x) and (X, x)

(g,g′)−−−→ (Y , y) is given by:

(g ◦ f ,L(f)(g′) ◦ f ′).

Concretely, �CLop is the following category:

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

334 F. Lucatelli Nunes and M. Vákár

• objects are pairs (W,w) of an objectW of C and an object w of L(W);
• morphisms (W,w)→ (X, x) are pairs (f , f ′) with f :W → X in C and f ′ :L(f)(x)→w in
L(W);

• identities id(W,w) are (idW , idW);

• composition of (W,w)
(f ,f ′)−−→ (X, x) and (X, x)

(g,g′)−−−→ (Y , y) is given by:

(g ◦ f , f ′ ◦L(f)(g′)).

6.2 Products in total categories
We start by studying the cartesian structure of �CL. We refer to Gray (1966) for a basic reference
for fibrations/indexed categories and properties of the total category.

Definition 16. A strictly indexed category L has strictly indexed finite (co)products if

(i) each fiber L(C) has chosen finite (co)products (×, 1) (respectively, (�, 0));
(ii) change of base strictly preserves these (co)products in the sense that L(f) preserves finite

products (respectively, finite coproducts) for all morphisms f in C.

We recall the well-known fact that �CL (�CLop) has finite products if C has finite products
and L has indexed finite products (coproducts).

Proposition 17 (Cartesian structure of �CL). Assuming that C has finite products (1,×) and L
has indexed finite products (1,×), we have that �CL has (fibered) terminal object 1= (1, 1) and
(fibered) binary product (W,w)× (Y , y)= (W × Y ,L(π1)(w)×L(π2)(y)).

Proof. We have (natural) bijections:

�CL((X, x), (1, 1))
=�f∈C(X,1)L(X)(x,L(f)(1)) { by definition }
∼=�f∈C(X,1)L(X)(x, 1) { indexed 1 }
∼= 1× 1 { 1 terminal in C andL(X) }
∼= 1

�CL ((X, x), (W × Z,L(π1)(w)×L(π2)(z)))
=�(f ,g)∈C(X,W×Y)L(X)(x,L(f , g)(L(π1)(w)×L(π2)(z))) { by definition }
∼=�(f ,g)∈C(X,W×Z)L(X)(x,L(f , g)L(π1)(w)×L(f , g)L(π2)(z)) { indexed× }
=�(f ,g)∈C(X,W×Z)L(X)(x,L(f)(w)×L(g)(z)) { functorialityL }
∼=�(f ,g)∈C(X,W×Z)L(X)(x,L(f)(w))×L(X)(x,L(g)(z)) { × product inL(A1) }
∼=�f∈C(X,W)�g∈C(X,Z)L(X)(x,L(f)(w))×L(X)(x,L(g)(z)) { × product in C }
∼= (�f∈C(X,W)L(X)(x,L(f)(w))

)× (�g∈C(X,Z)L(X)(x,L(g)(z))
) { Beck-Chevalley for � in Set }

=�CL((X, x), (W,w))×�CL((X, x), (Z, z)).

In particular, finite products in�CL are fibered in the sense that the projection functor�CL→
C preserves them, on the nose. Codually, we have:

Proposition 18 (Cartesian structure of �CLop). Assuming that C has finite products (1,×) and
L has indexed finite coproducts (0, �), we have that �CLop has (fibered) terminal object 1= (1, 0)
and (fibered) binary product (W,w)× (Y , y)= (W × Y ,L(π1)(w) �L(π2)(y)).

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 335

That is, in our terminology, L : Cop →Cat is a �-bimodel of tuple types if C has chosen finite
products and L has finite strictly indexed products and coproducts.

Wewill, in particular, apply the results above in the situation whereL has indexed finite biprod-
ucts in the sense of Definition 19, in which case the finite product structures of �CL and �CLop

coincide.

Definition 19 (Strictly indexed finite biproducts). A category with finite products and coproducts
is semi-additive if the binary coproduct functor is naturally isomorphic to the binary product functor;
see, for instance, Lack (2012), Lucatelli Nunes (2019). In this case, the product/coproduct is called
biproduct, and the biproduct structure is denoted by (×, 1) or (+, 0).

A strictly indexed category L has strictly indexed finite biproducts if

– L has strictly indexed finite products and coproducts;
– each fiber L(C) is semi-additive.

6.3 Generators
In this section, we establish the obvious sufficient (and necessary) conditions for �CL and �CLop

to model primitive types and operations in the sense of Section 3. These conditions are an
immediate consequence of the structure of �CL and �CLop as cartesian categories.

Definition 20. We say that L : Cop →Cat is a �-bimodel of primitive types Ty and operations
Op if

• for all T ∈ Ty, we have a choice of objects CT ∈ obj (C) and LT , L′T ∈ obj (L) (CT);
• for all op ∈Op(T1, . . . , Tn;S), we have a choice of morphisms:

fop ∈ C(CT1 × . . .× CTn , CS)
gop ∈L(CT1 × . . .× CTn)(L(π1)(LT1)× · · · ×L(πn)(LTn),L(fop)(LS))
g′op ∈L(CT1 × . . .× CTn)(L(fop)(L′S),L(π1)(L′T1) � · · · �L(πn)(L′Tn)).

We say that such a model has self-dual primitive types in case LT = L′T for all T ∈ Ty.

6.4 Cartesian closedness of total categories
The question of Cartesian closure of the categories �CL and �CLop is a lot more subtle. In par-
ticular, the formulas for exponentials tend to involve �- and �-types; hence, we need to recall
some definitions from categorical dependent type theory. As also suggested by Kerjean and Pédrot
(2021), these formulas relate closely to the Diller–Nahm variant (Diller 1974; Hyland 2002; Moss
and von Glehn 2018) of the Dialectica interpretation (Gödel 1958) and Altenkirch et al. (2010)’s
formula for higher-order containers. We plan to explain this connection in detail in future work
as it would form a distraction from the point of the current paper.

We use standard definitions from the semantics of dependent type theory and the depen-
dently typed enriched effect calculus. An interested reader can find background on this material
in Vákár (2017, Chapter 5) and Ahman et al. (2016). We briefly recalling some of the usual
vocabulary (Vákár 2017, Chapter 5).

Definition 21. Given an indexed category D : Cop →Cat, we say:

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

336 F. Lucatelli Nunes and M. Vákár

• it satisfies the comprehension axiom if: C has a chosen terminal object 1; D has strictly
indexed terminal objects 1 (i.e., chosen terminal objects 1 ∈D(X), such that D(g)(1)= 1 ∈
D(W) for all g :W → X in C); and, for each object (X, x) ∈�CD, the functor:

re(X,x) : (C/X)op → Set(
W,W

f−→ X
)
�→D(W)(1,D(f)(x))

are representable by an object
(
X.x, X.x

pX,x−−→ X
)
of C/X:

re(X,x)

(
W,W

f−→ X
)
=D(W)(1,D(f)(x))∼= C/X

((
W, f

)
,
(
X.x, pX,x

))
b �→ (f , g).

We write vX,x for the unique element of D(X.x)(1,D(pX,x)(x)) such that (pX,x, vX,x)= idpX,x
(the universal element of the representation).
Furthermore, given f :W → X, we write qf ,b for the unique morphism (f ◦
pW,D(f)(x), vW,D(f)(x))making the square below a pullback:

W.D(f)(x) X.x

W X

pf ,x

pX,D(f)(x) pX,x

f

We henceforth call such squares p-squares;
• it supports �-types if we have left adjoint functors �w �D(pW,w) :D(W.w)�D(W) sat-
isfying the left Beck–Chevalley condition for p-squares w.r.t. D (this means that D(f) ◦(
�D(f)(x) →�x

) ◦D(pf ,x) are the identity);
• it supports �-types if Dop supports �-types; explicitly, that is the case iff we have right
adjoint functors D(pW,w)��w :D(W)�D(W.w) satisfying the right Beck–Chevalley con-
dition for p-squares in the sense that the canonical maps �D(f)(x) ◦

(
D(f)→D(pf ,x)

) ◦�x
are the identity.

Definition 22. In case D : Cop →Cat satisfies the comprehension axiom, we say that

• it satisfies democratic comprehension if the comprehension functor:

D(W)(w′,w)
pW,−−−−→ C/W

((
W.w′, pW,w′

)
,
(
W.w, pW,w

))
d �→ (pW,w′ ,D(pW,w′)(d) ◦ vW,w′)

defines an isomorphism of categories D(1)∼= C/1∼= C;
• it satisfies full/faithful comprehension if the comprehension functor is full/faithful;
• it supports (strong) �-types (i.e., �-types with a dependent elimination rule, which in par-
ticular makes D support �-types) if dependent projections compose: for all triple (W,w, s)
where W ∈ C, w ∈ obj (D(W)) and s ∈ obj (D(W.w)), we have

pW,w ◦ pW.w,s ∼= pW,�ws;

then, in particular, W.�ws∼=W.w.s; further, we have projection morphisms π1 ∈
D(W)(�ws,w) and π2 ∈D(W.w)(1, s);

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 337

Remark 23 (�- and�- as dependent product and function types). In case,D satisfies fully faithful
comprehension,

• �wD(pW,w)(v) gives the categorical product w× v of w and v in D(W);
• �wD(pW,w)(v) gives the categorical exponential w⇒ v of w and v in D(W).

Definition 24 (�-bimodel for function types). We call a strictly indexed category L : Cop →Cat
a �-bimodel for function types if it is a biadditive model of the dependently typed enriched effect
calculus in the sense that it comes equipped with

(LA) amodel of cartesian dependent type theory in the sense of a strictly indexed category C′ : Cop →
Cat that satisfies full, faithful, democratic comprehension with �-types and strong �-types;

(LB) strictly indexed finite biproducts in the sense of Definition 19 in L;
(LC) �- and �-types in L;
(LD) a strictly indexed functor�:Lop ×L→ C′ and a natural isomorphism:

L(W)(w, x)∼= C′(A)(1,w� x).

We can immediately note that our notion of �-bimodel of function types is also a �-bimodel
of tuple types. Indeed, strong �-types and comprehension give us, in particular, chosen finite
products in C.

We next show why this name is justified: we show that the Grothendieck construction of a
�-bimodel of function types is cartesian closed.4

In the following, we slightly abuse notation to aid legibility:

• denoting by !W :W → 1 the only morphism, we will sometimes conflate Z ∈ objC′(1) and
1.Z ∈ obj (C) as well as f ∈ C′(W)(1, C′(!W)(Z)) and (!W , f) ∈ C(W, 1.Z)); this is justified by
the democratic comprehension axiom;

• we will sometimes simply write z forD(pW,w)(z) where the weakeningmapD(pW,w) is clear
from context.

Given X, Y ∈ C we will write ev1 for the obvious C-morphism

ev1 :�X�YZ.X→ Y ,
that is, the morphism obtained as the composition (where we write π1 for the projection �YZ→
Y):

�X�YZ.X∼= (�X�YZ)× X (�Xπ1)×X−−−−−−→ (�XY)× X∼= (X⇒ Y)× X ev−→ Y
With these notational conventions in place, we can describe the cartesian closed structure of
Grothendieck constructions.

Theorem 25 (Exponentials of the total category). For a �-bimodel L for function types, �CL has
exponential:

(X, x)⇒ (Y , y)= (�X�YL(π1)(x)�L(π2)(y),�XL(ev1)(y)).

Proof. We have (natural) bijections:

�CL((W,w)× (X, x), (Y , y))=
=�CL((W × X,L(π1)(w)×L(π2)(x)), (Y , y)) { by Prop. 17 }
=�f∈C(W×X,Y)L(W × X)(L(π1)(w)×L(π2)(x),L(f)(y)) { by definition }

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

338 F. Lucatelli Nunes and M. Vákár

∼=�f∈C(W×X,Y)L(W × X)(L(π1)(w),L(f)(y))×L(W × X)(L(π2)(x),L(f)(y)) { × coproduct inL(W × X) }
∼=�f∈C(W×X,Y)L(W)(w,�XL(f)(y))×L(W × X)(L(π2)(x),L(f)(y)) { �-types inL }
∼=�f∈C(W×X,Y)L(W)(w,�XL(f)(y))× C′(W × X)(1,L(π2)(x)�L(f)(y)) {�-types in C′ }
∼=�(f ,g)∈�f∈C(W×X,Y)C′(W×X)(1,L(π2)(x)�L(f)(y))L(W)(w,�XL(f)(y)) { �-types in Set }
∼=�(f ,g)∈�f∈C′(W×X)(1,Y)C′(W×X)(1,L(π2)(x)�L(f)(y))L(W)(w,�XL(f)(y)) { comprehension }
∼=�(f ,g)∈C′(W×X)(1,�YL(π2◦π1)(x)�L(π2)(y))L(W)(w,�XL(f)(y)) { strong �-types in C′ }
=�(f ,g)∈C′(W×X)(1,�YL(π2◦π1)(x)�L(π2)(y))L(W)(w,�XL(ev1 ◦ ((f , g), π2))((y))) { definition ev1 }
=�(f ,g)∈C′(W×X)(1,�YL(π2◦π1)(x)�L(π2)(y))L(W)(w,�XL(((f , g), π2))(L(ev1)(y))) { functoriality ofL }
=�(f ,g)∈C′(W×X)(1,�YL(π2◦π1)(x)�L(π2)(y))L(W)(w,L((f , g))(�XL(ev1)(y))) { Beck–Chevalley for �-types }
∼=�h∈C′(W×X)(1,�YL(π2◦π1)(x)�L(π2)(y))L(W)(w,L(h)(�XL(ev1)(y))) { strong �-types in C′ }
=�h∈C′(W×X)(L(π1)(1),�YL(π2◦π1)(x)�L(π2)(y))L(W)(w,L(h)(�XL(ev1)(y))) { indexed 1 in C′ }
∼=�h∈C′(W)(1,�X�YL(π2◦π1)(x)�L(π2)(y))L(W)(w,L(h)(�XL(ev1)(y))) { �-types in C′ }
∼=�h∈C(W,�X�YL(π1)(x)�L(π2)(y))L(W)(w,L(h)(�XL(ev1)(y))) { comprehension }
=�CL((W,w), (�X�YL(π1)(x)�L(π2)(y),�XL(ev1)(y)))
=�CL((W,w), (X, x)⇒ (Y , y)).

Codually, we have

Theorem 26. For a �-bimodel L for function types, �CLop has exponential:

(X, x)⇒ (Y , y)= (�X�YL(π2)(y)�L(π1)(x),�XL(ev1)(y)).

Note that these exponentials are not fibered over C in the sense that the projection functors
�CL→ C and �CLop → C are generally not cartesian closed functors. This is in contrast with the
interpretation of all other type formers we consider in this paper.

6.5 Coproducts in total categories
We, now, study the coproducts in the total categories �CL and �CLop. We are particularly inter-
ested in the case of extensive indexed categories, a notion introduced in Section 6.6. For future
reference, we start by recalling the general case: see, for instance, Gray (1966) for a basic reference
on properties of the total categories.

Proposition 27 (Initial object in �CL). Let L : Cop →Cat be a strictly indexed category. We
assume that

(i) C has initial object 0;
(ii) L(0) has initial object, denoted, by abuse of language, by 0.

In this case, (0, 0) is the initial object of �CL.

Proof. Assuming the hypothesis above, given any object (Y , y) ∈�CL,

�CL
(
(0, 0), (Y , y)

)
=

∐
n∈C(0,Y)

L(0)(0,L(n)(y)) { by definition }

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 339

∼=
∐

n∈C(0,Y)
1 { 0 initial inL(0) }

∼= 1. { 0 initial in C }

Proposition 28 (Coproducts in�CL). LetL : Cop →Cat be a strictly indexed category.We assume
that

(i) ((Wi,wi))i∈I is family of objects of �CL;
(ii) the category C has the coproduct:⎛

⎝ Wt
∐
i∈I

Wi
ιWt

⎞
⎠

t∈I
(6)

of the objects in ((Wi,wi))i∈I ;
(iii) there is an adjunction L(ιWi)! �L(ιWi) for each i ∈ I;

(iv) L
(∐

i∈I
Wi

)
has the coproduct

∐
i∈I

L(ιWi)!(wi) of the objects
(
L(ιWi)!(wi)

)
i∈I .

In this case, (∐
i∈I

Wi,
∐
i∈I

L(ιWi)!(wi)

)

is the coproduct of the objects ((Wi,wi))i∈I in �CL.

Proof. Assuming the hypothesis above, given any object (Y , y) ∈�CL,∏
i∈I

�CL
(
(Wi,wi), (Y , y)

)

=
∏
i∈I

⎛
⎝ ∐

n∈C(Wi,Y)
L(Wi)(wi,L(n)(y))

⎞
⎠ { by definition }

∼=
∐

(ni)i∈I∈∏i∈I C(Wi,Y)

(∏
i∈I

L(Wi)(wi,L(ni)(y))
)

{ distributivity }

∼=
∐

h∈C(∐i∈I Wi,Y)

(∏
i∈I

L(Wi)(wi,L(h ◦ ιWi)(y))

)
{ coprod. univ. property }

∼=
∐

h∈C(∐i∈I Wi,Y)

(∏
i∈I

L(Wi)
(
wi,L(ιWi) ◦L(h)(y)

))

∼=
∐

h∈C(∐i∈I Wi,Y)

(∏
i∈I

L
(∐

i∈I
Wi

) (
L(ιWi)!(wi),L(h)(y)

)) { adjunctions }

∼=
∐

h∈C(∐i∈I Wi,Y)

(
L
(∐

i∈I
Wi

)(∐
i∈I

L(ιWi)!(wi),L(h)(y)
))

{ coprod. univ. property }

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

340 F. Lucatelli Nunes and M. Vákár

=�CL
((∐

i∈I
Wi,

∐
i∈I

L(ιWi)!(wi)

)
, (Y , y)

)
. { coprod. univ. property }

Codually, we get results on the initial objects and coproducts in the category �CLop below.

Corollary 29 (Initial object in �CLop). Let L : Cop →Cat be a strictly indexed category. We
assume that

(i) C has initial object 0;
(ii) L(0) has terminal object 1.

In this case, (0, 1) is the initial object of �CL.

Corollary 30 (Coproducts in�CLop). LetL : Cop →Cat be a strictly indexed category.We assume
that

(i) ((Wi,wi))i∈I is family of objects of �CL;
(ii) the category C has the coproduct:⎛

⎝ Wt
∐
i∈I

Wi
ιWt

⎞
⎠

t∈I
(7)

of the objects in ((Wi,wi))i∈I ;
(iii) there is an adjunction L(ιWi)�L(ιWi)∗ for each i ∈ I;

(iv) L
(∐

i∈I
Wi

)
has the product

∏
i∈I

L(ιWi)
∗(wi) of the objects

(
L(ιWi)∗(wi)

)
i∈I .

In this case, (∐
i∈I

Wi,
∏
i∈I

L(ιWi)
∗(wi)

)

is the coproduct of the objects ((Wi,wi))i∈I in �CLop.

6.6 Extensive indexed categories and coproducts in total categories
We introduce a special property that fits our context well. We call this property extensivity because
it generalizes the concept of extensive categories (see Section 6.12 for the notion of extensive
category).

As we will show, the property of extensivity is a crucial requirement for our models. One sig-
nificant advantage of this property is that it allows us to easily construct coproducts in the total
categories, even under lenient conditions. We demonstrate this in Theorem 35.

• We assume that the category C has finite coproducts. GivenW, X ∈ C, we denote by:

W W � X Xι1=ιW ι2=ιX (8)

the coproduct (and coprojections) in C, and by 0 the initial object of C.

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 341

Definition 31 (Extensive indexed categories). We call an indexed category L : Cop →Cat exten-
sive if, for any (W, X) ∈ C × C, the unique functor:

L(W � X) L(W)×L(X)(L(ιW),L(ιX)) (9)

induced by the functors:

L(W) L(W � X) L(X)L(ιX)L(ιW) (10)

is an equivalence. In this case, for each (W, X) ∈ C × C, we denote by:
S(W,X) :L(W)×L(X)→L(W � X) (11)

an inverse equivalence of (L(ιW),L(ιX)).

Since the products of Cop are the coproducts of C, the extensive condition described above is
equivalent to say that the (pseudo)functorL : Cop →Cat preserves binary (bicategorical) products
(up to equivalence).

Since our cases of interest are strict, this leads us to consider strict extensivity, that is to say,
whenever we talk about extensive strictly indexed categories, we are assuming that (9) is invertible.
In this case, it is even clearer that extensivity coincides with the well-known notion of preservation
of binary products.

Lemma 32 (Extensive strictly indexed categories). Let L : Cop →Cat be an indexed category. L is
strictly extensive if, and only if, L is a functor that preserves binary products.

Recall that, in general, preservation of binary products implies preservation of preterminal
objects; see, for instance, Lucatelli Nunes (2022, Remark 4.14). Lemma 33 is the appropriate ana-
log of this observation suitably applied to the context of extensive indexed categories. Moreover,
Lemma 33 can be seen as a generalization of Carboni et al. (1993, Proposition 2.8).

Lemma 33 (Preservation of terminal objects). Let L : Cop →Cat be an extensive indexed category
which is not (naturally isomorphic to the functor) constantly equal to 0. The unique functor

L(0)→ 1 (12)
is an equivalence. If, furthermore, (9) is an isomorphism, then (12) is invertible.

Proof. Firstly, given any X ∈ C such that L(X) is not (isomorphic to) the initial object of Cat, we
have that L(iX : 0→ X) is a functor from L(X) to L(0). Hence, L(0) is not isomorphic to the
initial category as well.

Secondly, since ι0 : 0→ 0 � 0 is an isomorphism,
(
L(ι0),L(ι0)

)
is an equivalence and

L(0 � 0) L(0)×L(0) L(0),

L(ι0)

(
L(ι0),L(ι0)

)
πL(0) (13)

we conclude that πL(0) is an equivalence. This proves that L(0)→ 1 is an equivalence by
Appendix A, Lemma 132.

We proceed to study the cocartesian structure of �CL (and �CLop) when L is extensive. We
start by proving in Theorem 34 that, in the case of extensive indexed categories, the hypothesis of
Proposition 27 always holds.

Theorem 34. Let L : Cop →Cat be an extensive (strictly) indexed category. Assume that X is an
object of C such that L(X) has initial object 0. In this case, for any W ∈ C, we have an adjunction:

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

342 F. Lucatelli Nunes and M. Vákár

L(W � X) ⊥ L(W)

L(ιW)

S(W,X)◦(idL(W),0)

(14)

in which, by abuse of language, 0 :L(W)→L(X) is the functor constantly equal to 0. Dually, we
have an adjunction:

L(W) ⊥ L(W � X)

S(W,X)◦(idL(W),1)

L(ιW)

(15)

provided thatL(X) has terminal object 1 and, by abuse of language, we denote by 1 :L(W)→L(X)
the functor constantly equal to 1.

Proof. Assuming that L(X) has initial object 0, we have the adjunction:

L(W)×L(X) ⊥ L(W)

πL(W)

(idL(W),0)

(16)

whose unit is the identity and counit is pointwise given by ε(w,x) = (idw, 0→ x). Therefore, we
have the composition of adjunctions:

L(W � X) ⊥ L(W)×L(X) ⊥ L(W).

L(ιW)

(L(ιW),L(ιX))

S(W,X)

πL(W)

(idL(W),0)

S(W,X)◦(idL(W),0)

Corollary 35 (Cocartesian structure of �CL). Let L : Cop →Cat be an extensive strictly
indexed category, with initial objects 0 ∈L(W) for each W ∈ C. In this case, the category �CL
has initial object 0= (0, 0) ∈�CL, and (fibered) binary coproduct given by (W,w) � (X, x)=(
W � X, S(W,X)(w, x)

)
.

Proof. In fact, by Proposition 27, we have that (0, 0) is the initial object of �CL. Moreover, given
((W,w), (X, x)) ∈�CL×�CL, we have that

S(W,X) ◦ (idL(W), 0
)=L(ιW)! � L(ιW)

S(W,X) ◦ (0, idL(X))=L(ιX)! � L(ιX)
by Theorem 34. Therefore, we get that(

W � X, S(W,X) (w, x)
)

∼=
(
W � X, S(W,X) (w, 0) � S(W,X) (0, x)

)
{ S (W,X) preserves coproducts }

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 343

∼=
(
W � X, S(W,X) ◦ (idL(W), 0

)
(w) � S(W,X) ◦ (0, idL(X)) (x))

∼= (W � X,L(ιW)!(w) �L(ιX)!(x)) { Theorem 34 }
∼= (W,w) � (X, x). { Proposition 28 }

In particular, finite coproducts in �CL are fibered in the sense that the projection functor
�CL→ C preserves them, on the nose.

Codually, we have:

Corollary 36 (Cocartesian structure of�CLop). Let L : Cop →Cat be an extensive strictly indexed
category, with terminal objects 1 ∈L(W) for each W ∈ C. In this case, the category �CLop has
(fibred) initial object 0= (0, 1) ∈�CLop, and (fibered) binary coproduct given by:

(W,w) � (X, x)=
(
W � X, S(W,X)(w, x)

)
. (17)

Definition 37 (�-bimodel for sum types). A strictly indexed category L : Cop →Cat is a �-
bimodel for sum types if L is an extensive strictly indexed category such that L(W) has initial and
terminal objects.

6.7 Distributive property of the total category
We refer the reader to Carboni et al. (1993) and Lack (2012) for the basics on distributive
categories.

As we proved,�CL is bicartesian closed provided thatL : Cop →Cat is�-bimodel for function
types and sum types. Therefore, in this setting, we get that �CL is distributive.

However, even without the assumptions concerning closed structures, whenever we have a �-
bimodel for sum types, we can inherit distributivity from C. Namely, we have Theorem 39.

Recall that a category C with finite products and coproducts is a distributive category if, for each
triple (W, Y , Z) of objects in C, the canonical morphism:〈

W × ιY�ZY ,W × ιY�ZZ

〉
: (W × Y) � (W × Z)→W × (Y � Z) , (18)

induced by W × ιY and W × ιZ is invertible. It should be noted that, in a such a distributive
category C, for any such a triple (W, Y , Z) of objects in C, the diagram

W × (Y � Z)

(W × Y) � (W × Z) W(Y � Z)

π
W×(Y�Z)
W

〈
πW×Y
W , πW×Z

W

〉

∼= 〈W × ιY ,W × ιZ〉
π
W×(Y�Z)
(Y�Z)

〈
ιY ◦πW×Y

Y ,ιZ◦πW×Z
Z

〉

πW×Y
Y � πW×Z

Z

commutes. Therefore, we have:

Lemma 38. Let L : Cop →Cat be an extensive strictly indexed category, in which C is a distributive
category. For each triple (W, Y , Z) of objects in C, the diagrams

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

344 F. Lucatelli Nunes and M. Vákár

L (W × (Y � Z))

L (W × Y)×L (W × Z)

L (W)L ((W × Y) � (W × Z))

∼=L (〈W × ιY ,W × ιZ〉)

S(W×Y ,W×Z) (L(ιW×Y),L(ιW×Z))

L
(〈

πW×Y
W , πW×Z

W

〉)

L
(
π
W×(Y�Z)
W

)

(
L
(
πW×Y
W

)
,L
(
πW×Z
W

))
(19)

L (W × (Y � Z))

L (W × Y)×L (W × Z)

L (Y � Z)L ((W × Y) � (W × Z))

L (Y)×L (Z)

∼=L (〈W × ιY ,W × ιZ〉)

S(W×Y ,W×Z) (L(ιW×Y),L(ιW×Z))

L
(〈

πW×Y
Y , πW×Z

Z

〉)

L
(
π
W×(Y�Z)
(Y�Z)

)

S(Y ,Z)(L(ιY),L(ιZ))

L
(
πW×Y
Y

)
×L

(
πW×Z
Z

)
(20)

commute.

Theorem 39. Let L : Cop →Cat be �-bimodel for sum and tuple types, in which C is a distributive
category. In this setting, the category �CL is a distributive category.

Proof. By Proposition 17 and Corollary 35, we have that �CL indeed has finite coproducts and
finite products.

LetD be a category with finite coproducts and products. A category is distributive if the canon-
ical morphisms (18) are invertible. However, by Lack (2012, Theorem 4), the existence of any
natural isomorphism (W × Y) � (W × Z)∼=W × (Y � Z) implies that D distributive. Hence, we
proceed to prove below that such a natural isomorphism exists in the case of �CL, leaving the
question of canonicity omitted.

We indeed have the natural isomorphisms in
(
(W,w) ,

(
Y , y

)
, (Z, z)

) ∈�CL×�CL×�CL :
(W,w)× ((Y , y) � (Z, z)

)
∼= (W,w)×

(
Y � Z, S(Y ,Z)(y, z)

)
{ Corollary 35 }

∼=
(
W × (Y � Z) ,L(πW)(w)×L(πY�Z)S(Y ,Z)(y, z)

)
, { Proposition 17 }

which, by the distributive property of C, is (naturally) isomorphic to(
(W × Y) � (W × Z) ,L (〈W × ιY ,W × ιZ〉)

(
L(πW)(w)×L(πY�Z)S(Y ,Z)(y, z)

))
. (21)

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 345

Moreover, we have the natural isomorphisms
L(〈W×ιY ,W×ιZ〉)

(
L(πW)(w)×L(πY�Z)S(Y ,Z)(y,z)

)
∼=L(〈W×ιY ,W×ιZ〉)(L(πW)(w))×L(〈W×ιY ,W×ιZ〉)

(
L(πY�Z)S(Y ,Z)(y,z)

) { L (〈W × ιY ,W × ιZ〉) invertible }
=S(W×Y ,W×Z)(L(πW)(w),L(πW)(w))×L(〈W×ιY ,W×ιZ〉)◦L(πY�Z)◦S(Y ,Z)(y,z) { Diagram (19) }i
=S(W×Y ,W×Z)(L(πW)(w),L(πW)(w))×S(W×Y ,W×Z)(L(πY)(y),L(πZ)(z)), { Diagram (20) }

which is naturally isomorphic to

S(W×Y ,W×Z) (L(πW)(w)×L(πY)(y),L(πW)(w)×L(πZ)(z)
)
. (22)

since S(W×Y ,W×Z) is invertible. Therefore, we have the natural isomorphisms:
(W,w)× ((Y , y) � (Z, z)

)
∼=((W×Y)�(W×Z),L(〈W×ιY ,W×ιZ〉)

(
L(πW)(w)×L(πY�Z)S(Y ,Z)(y,z)

)) { Eq. (21) }
∼=((W×Y)�(W×Z),S(W×Y ,W×Z)(L(πW)(w)×L(πY)(y),L(πW)(w)×L(πZ)(z))

) { Eq. (22) }
∼=(W×Y ,L(πW)(w)×L(πY)(y))�(W×Z,L(πW)(w)×L(πZ)(z)) { Corollary 35 }(
(W,w)× (Y , y)) � ((W,w)× (Z, z)) , { Proposition 17 }

which completes our proof.

Codually, we have:

Theorem40. LetL : Cop →Cat be a�-bimodel for sum and tuple types, in which C is a distributive
category. Then, we conclude that �CLop is a distributive category.

6.8 Extensive property of the total category
As per the definition provided in Carboni et al. (1993, Definition2.1), a category C is considered
extensive if the basic (codomain) indexed category C/− : Cop →Cat is an extensive indexed cat-
egory as introduced at Definition 31. Recall that every extensive category is distributive (Carboni
et al. 1993, Proposition 4.5).

The result below also holds for the nonstrict scenario.

Theorem 41. LetL : Cop →Cat be an extensive strictly indexed category, in which C is an extensive
category. Assume that we have initial objects 0 ∈L (W). In this case, the category �CL is extensive
and, hence, distributive.

Proof. We denote by S(W,X)

L :L(W)×L(X)→L(W � X) the isomorphisms of the extensive
strictly indexed category L.

The first step is to see that, indeed, �CL has coproducts by Corollary 35. We, then, note that,
for each pair (W,w) and (X, x) of objects in �CL, we note that, in fact, we have that

S((W,w),(X,x))
�CL/− :�CL/(W,w)×�CL/(X, x)→�CL/ ((W,w) � (X, x)) (23)

defined by the coproduct of the morphisms is an equivalence. Explicitly, given
objects A= ((W0,w0), (f :W0 →W, f ′ :w0 →L

(
f
)
w)
)

of �CL/(W,w) and B=(
(X0, x0), (g : X0 → X, g′ : x0 →L

(
g
)
x)
)
of �CL/(X, x), S((W,w),(X,x))

�CL/− (A, B) is given by:((
W0 � X0, S(W,X)

L (w0, x0)
)
,
(
f � g :W0 � X0 →W � X, S(W,X)

L
(
f ′, g′

)))
which is clearly an equivalence given that the functor

(
(W0, f), (X0, g)

) �→ (
W0 � X0, f � g

)
is an

equivalence C/W × C/X→ C/W � X.

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

346 F. Lucatelli Nunes and M. Vákár

Theorem 42. Let L : Cop →Cat be an extensive strictly indexed category, in which C is an exten-
sive category. Assume that we have terminal objects 1 ∈L (W). In this case, the category �CLop is
extensive and, hence, distributive.

It is worth mentioning that free cocompletions under (finite) coproducts are extensive, as shown
in Carboni et al. (1993, Proposition 2.4) for the infinite case. This implies that freely generated
models on languages featuring variant types are extensive. Therefore, having an extensive base
category C is a common occurrence in our setting.

6.9 Strictly indexed categories and split fibrations
Before we specialize to our setting of μν-polynomials, we need to establish and prove general
results on parameterized initial algebras (and terminal coalgebras) in the total category of a split
fibration (see Sections 6.10 and 6.11).

In order to talk about these results, we need to talk about strictly indexed functors and split
fibration functors and the one-to-one correspondence between them. For this purpose, we shortly
recall the equivalence between strict indexed categories and split fibrations below.

Definition 43 (Strictly indexed functor). Let L′ :Dop →Cat and L : Cop →Cat be two strictly
indexed categories. A strictly indexed functor between L′ and L consists of a pair (H, h) in which
H :D→ C is a functor and

h :L′ −→
(
L ◦Hop

)
(24)

is a natural transformation, where Hop denotes the image of H by op. Given two strictly indexed
functors (E, e) :L′′ →L′ and (H, h) :L′ →L, the composition is given by:(

HE, (hEop) · e :L′′ −→
(
L ◦ (HE)op)) . (25)

Strictly indexed categories and strictly indexed functors do form a category, denoted herein by Ind.

It is well known that the Grothendieck construction provides an equivalence between indexed
categories and fibrations. Restricting this to our setting, we get the equivalence:∫

: Ind → SpFib

L : Cop →Cat �→ (PL :�CL→ C)

(E, e) �→ (E, E)

between the category of strictly indexed categories (with strictly indexed functors) and the
category of (Grothendieck) split fibrations.

Although not necessary to your work, we refer to Gray (1966) and Johnstone (2002,
Theorem 1.3.6) for further details. We explicitly state the relevant part of this result below.

Proposition 44. Given two strictly indexed categories, L′ :Dop →Cat and L : Cop →Cat, there is
a bijection between strictly indexed functors:(

H :D→ C, h :L′ −→
(
L ◦Hop

))
:L′ →L

and pairs (H,H) in which H :�DL′ →�CL is a functor satisfying the following two conditions.

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 347

�A) The diagram

�DL′ �CL

D C

H

PL′ PL

H

(26)

commutes.
�B) For any morphism (f : X→ Y , id :L′(f)(y)→L′(f)(y)) between (X,L′(f)(y)) and (Y , y) in

�DL′,
H(f , id)= (H(f), id) :H(X,L′(f)(y))→H(Y , y). (27)

Proof. Although, as mentioned above, this result is just a consequence of the well-known result
about the equivalence between indexed categories and fibrations, we recall below how to construct
the bijection.

For each strictly indexed functor (H, h) :L′ →L, we define
H(f : X→ Y , f ′ : x→L′(f)y) := (H(f), hX(f ′)). (28)

Reciprocally, given a pair (H,H) satisfying (26) and (27), we define
hX(f ′ :w→ x) :=H

(
(idX , f ′) : (X,w)→ (X, x)

)
(29)

for each object X ∈D and each morphism f ′ :w→ x of L′(X).

Definition 45 (Split fibration functor). A pair (H,H) : PL′ → PL satisfying (26) and (27) is herein
called a split fibration functor. Whenever it is clear from the context, we omit the split fibrations PL′ ,
PL, and the functor H.

Following the above, given a strictly indexed functor (H, h) :L′ →L, we denote∫
L = (PL :�CL→ C)∫ (

H, h
) = (

H,H
)

in which H
(
f : X→ Y , f ′ : x→L(f)(y)

)= (H(f), hX(f ′)).
Let L′ :Dop →Cat and L : Cop →Cat be strictly indexed categories. We denote by L′ ×L the

product of the strict indexed categories in Ind. Explicitly,
L′ ×L : (D× C)op →Cat

(X, Y) �→L′(X)×L(Y)
(f , g) �→L′(f)×L(g).

It should be noted that(∫
L′ ×L

)
∼=
(∫

L′
)
×
(∫

L
)
= (PL′ × PL : (�DL′)× (�CL)→D× C

)
, (30)

which means that the product in SpFib coincides with the usual product of functors PL × PL′ .
Moreover, given indexed functors (H, h) :H→H′ and (E, e) :L→L′, we have that

(H, h)× (E, e)= (H × E, h× e
)

and, since the product of split fibrations is given by the usual product of functors:∫ (
(H, h)× (E, e)

)=(∫ (H, h)
)
×
(∫

(E, e)
)
. (31)

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

348 F. Lucatelli Nunes and M. Vákár

Codually, given a strictly indexed category L : Cop →Cat, we have the Grothendieck codual
construction:

∫ op L= (PLop :�CLop → C),
∫ op (H, h

)= (H,H
)

in which H
(
f : X→ Y , f ′ :L(f)(y)→ x

)= (H(f), hX(f ′)). This construction gives an equivalence
between the indexed categories and split op-fibrations (if we consider the opposite of

∫ op L). We,
of course, have the codual observations above.

6.10 General result on initial algebras in total categories
In order to study the μν-polynomials of total categories in our setting in Section 6.12, we start by
establishing general results about parameterized initial algebras in the Grothendieck construction
of split fibrations. More precisely, in Theorem 47, we investigate when a total category �CL has
the parameterized initial algebra of a split fibration functor:

H : (�DL′)× (�CL)→�CL. (32)

We start by studying initial algebras os strictly indexed endofunctors:

Theorem 46 (Initial algebras of strictly indexed endofunctors). Let (E, e) be a strictly indexed
endofunctor on L : Cop →Cat and E :�CL→�CL the corresponding split fibration endofunctor.
Assume that

(e1) the initial E-algebra
(
μE, inE

)
exists;

(e2) the initial
(
L(inE)−1eμE

)
-algebra

(
μ
(
L(inE)−1eμE

)
, in(L(inE)−1eμE

)) exists.

Denoting by e the endofunctor L(inE)−1eμE on L(μE), the initial E-algebra exists and is given by:

μE= (μE, μe
)
, inE =

(
inE, L(inE)

(
ine
))

. (33)

Moreover, for each E-algebra:(
(Y , y), (ξ , ξ ′) : E(Y , y)→ (Y , y)

)= ((Y , y), (ξ : E(Y)→ Y , ξ ′ : eY (y)→L(ξ)(y)
))
,

we have that

foldE
(
ξ , ξ ′

)= (foldEξ , folde
(
L
(
E(foldE ξ) · in−1

E

)
(ξ ′)

))
. (34)

Proof. In fact, under the hypothesis above, given an E-algebra:(
ξ : E(Y)→ Y , ξ ′ : eY (y)→L(ξ)(y)

)
on (Y , y), we have that there is a unique morphism:(

folde L
(
E(foldEξ) · in−1

E

)
(ξ ′)

)
:μe→L

(
foldEξ

)
(y)

in L(μE) such that

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 349

e(μe) e ◦L (foldEξ) (y)

L
(
E(foldEξ) · in−1

E

)
◦ eY (y)

L
(
ξ · E(foldEξ) · in−1

E

)
(y)

μe L
(
foldEξ

)
(y)

e
(
folde L

(
E(foldEξ)·in−1

E

)
(ξ ′)

)

ine L
(
E(foldEξ)·in−1

E

)
(ξ ′)

(
folde L

(
E(foldEξ)·in−1

E

)
(ξ ′)

)

commutes. Since L(inE) is invertible, this implies that(
folde L

(
E(foldEξ) · in−1

E

)
(ξ ′)

)
:μe→L

(
foldEξ

)
(y)

is the unique morphism in L
(
E(μE)

)
such that

eμE(μe) eμE ◦L
(
foldEξ

)
(y)

L
(
E(foldEξ)

) ◦ eY (y)

L
(
E(foldEξ)

) ◦L (ξ) (y)

L(inE)(μe) L
(
inE
) ◦L (foldEξ) (y)

eμE
(
folde L

(
E(foldEξ)·in−1

E

)
(ξ ′)

)

L(inE)(ine) L(E(foldEξ))(ξ
′)

L(inE)
(
folde L

(
E(foldEξ)·in−1

E

)
(ξ ′)

)

commutes. Finally, by the above and the universal property of foldEξ , this completes the proof
that

u=
(
foldEξ ,

(
folde L

(
E(foldEξ) · in−1

E

)
(ξ ′)

))
(35)

is the unique morphism in �CL such that

(ξ , ξ ′) ◦ E(u)= u ◦ (inE, L(inE) (ine)) .
This completes the proof that

(
(μE,μe),

(
inE, L(inE)

(
ine
)))

is the initial object of E-Alg, and that
foldE((Y , y), (ξ , ξ ′))= u.

Let L : Cop →Cat, L′ :Dop →Cat be strictly indexed categories as above. We denote by
L′ ×L : (D× C)op →Cat the product of the indexed categories (see Section 6.9). An object
of �D×C

(
L′ ×L

)∼= (�DL′)× (�CL) can be seen as a quadruple ((X, x), (W,w)) in which
x ∈L′(X) and w ∈L(W). Moreover, a morphism between objects ((X0, x0), (W0,w0)) and
((X1, x1), (W1,w1)) consists of a quadruple

(
(f , f ′), (g, g′)

)
in which (f , g) : (X0,W0)→ (X1,W1)

is a morphism in D× C, and (f ′, g′) : (x0,w0)→
(
L′(f)(x1),L(g)(w1)

)
is a morphism in L′(X0)×

L(W0).

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

350 F. Lucatelli Nunes and M. Vákár

Given a strictly indexed functor (H, h) :L′ ×L→L and an object (X, x) of
(
�DL′), we

can consider the restriction (HX , h(X,x)) in which HX =H(X,−) and h(X,x) :L−→
(
L ◦HX

)
is

pointwise defined by:

h(X,x)Y : L(Y) →L ◦HX(Y)
f ′ : y→ z �→ h(X,Y)(x, f ′)

in which we denote by (X, Y) ∈D× C. To be consistent with the notation previously introduced
(in Proposition 4), we also denote by hx(X,Y) the morphism h(X,x)Y above.

As a consequence of Theorem 46, we have that, under suitable conditions, parameterized initial
algebras of split fibration functors are split fibration functors, namely, we have:

Theorem 47 (Parameterized initial algebras are split fibration functors). Let (H, h) be a strictly
indexed functor from L′ ×L : (D× C)op →Cat to L : Cop →Cat, and

H : (�DL′)× (�CL)→�CL

the corresponding split fibration functor. Assume that:

(h1) for each object X of D, the initial HX-algebra
(
μHX , inHX

)
exists;

(h2) for each object (X, x) in �DL′, denoting by hX the functor:

L(inHX)−1h(X,μHX) :L′(X)×L(μHX)→L(μHX) (36)

is such that the initial hxX-algebra
(
μhxX , inhxX

)
exists;

(h3) for each morphism g : X→ Y in D and y ∈L′(Y), Eq. (37) holds

L
(
μH(g)

)
(inhyY)= in

hL
′(g)(y)

X
(37)

In this setting, the parameterized initial algebra μH :�DL′ →�CL exists and is a split fibration
functor.

Proof. Assuming the hypothesis, we conclude that, for each (X, x) in �DL′, the category �CL has
the initial H(X,x)-algebra, by Theorem 46. Hence, we have that

μH :�DL′ →�CL

exists by Proposition 4. More precisely, given a morphism (f , f ′) : (X, x)→ (Y , y) in �DL′, we
compute μH(f , f ′) below:

μH(f , f ′)

= foldH(X,x)

(
inH(Y ,y) ◦H

(
(f , f ′),μH(Y ,y)

))
{ Proposition 4 }

= foldH(X,x)

((
inHY ,L(inHY)(inhyY)

)
◦H

(
(f , f ′),μH(Y ,y)

))
{ Eq. (33) }

= foldH(X,x)

((
inHY ,L(inHY)(inhyY)

)
◦
(
H(f ,μHY), h(X,μHY)(f

′,μhyY)
))

{ indexed functor }
= foldH(X,x)

(
inHY ◦H(f ,μHY),L

(
inHY ◦H(f ,μHY)

)
(inhyY)

◦
(
h(X,μHY)(f

′,μhyY)
))

{ composing }

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 351

which, by denoting ξ = inHY ◦H(f ,μHY) and ξ ′ =L (ξ) (inhyY) ◦
(
h(X,μHY)(f

′,μhyY)
)
, is equal to

foldH(X,x)

(
inHY ◦H(f ,μHY), ξ ′

)
=
(
foldHX

(
inHY ◦H(f ,μHY)

)
,
(
foldhxX L

(
HX(foldHXξ) · in−1

HX

)
(ξ ′)

))
{ Eq. (34) }

=
(
μH(f),

(
foldhxX L

(
HX(foldHXξ) · in−1

HX

)
(ξ ′)

))
. { Proposition 4 }

The above shows that

μH(f , f ′)=
(
μH(f),

(
foldhxX L

(
HX(foldHXξ) · in−1

HX

)
(ξ ′)

))
. (38)

Now, we can proceed to prove that μH is actually a split fibration functor. Firstly, by Eq. (38),
we have that

�DL′ �CL

D C

μH

PL′ PL

μH

(39)

commutes.
Let

(
g, id

) : (X,L′(g)(y)
)→ (

Y , y
)
be a morphism in

(
�DL′). Denoting, again,

ξ = inHY ◦H(g,μHY) and ξ ′ =L (ξ) (inhyY) ◦
(
h(X,μHY)(id,μh

y
Y)
)
,

we have that(
fold

hL
′(g)(y)

X
L
(
HX(foldHXξ) · in−1

HX

)
(ξ ′)

)

=
(
fold

hL
′(g)(y)

X
L
(
ξ ·HX(foldHXξ) · in−1

HX

)
(inhyY)

)
{ h(X,μHY)(id,μh

y
Y)= id }

=
(
fold

hL
′(g)(y)

X
L
(
(foldHXξ) · inHX · in−1

HX

)
(inhyY)

)
{ foldHX ξ }

=
(
fold

hL
′(g)(y)

X
L
(
μH(g)

)
(inhyY)

)
{ Proposition 4 }

= id
μhL

′(g)(y)
X

{ Eq. (37) }
By Eq. (38), the above proves that

μH
(
g, id

)= (μH(g), id
)

and, hence, we completed the proof that μH is a split fibration functor.

We can, then, reformulate our result in terms of the existence of parameterized initial algebras
in the base category and in the fibers. That is to say, we have:

Theorem 48 (Parameterized initial algebras are strictly indexed functors). Let (H, h) be a strictly
indexed functor from L′ ×L : (D× C)op →Cat to L : Cop →Cat, and H : (�DL′)× (�CL)→
�CL the corresponding split fibration functor. Assume that:

(h1) the parameterized initial algebra μH :D→ C exists;
(h2) for any X ∈D, the parameterized initial algebra μhX exists;

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

352 F. Lucatelli Nunes and M. Vákár

(h3) for each morphism g : X→ Y in D and y ∈ Y, Eq. (40) holds

L
(
μH(g)

)
(inhyY)= in

hL
′(g)(y)

X
(40)

In this setting, the parameterized initial algebra:

μH :�DL′ →�CL
is a split fibration functor coming from the strictly indexed functor

(
μH,μ

(
h(−)

))
in which, for each

X ∈D,

μ
(
h(X)

)=μhX =μ

(
L(inHX)−1h(X,μHX)

)
:L′(X)→L(μHX). (41)

Proof. By Theorem 47 (Eq. (38)) and Proposition 44 (Eq. (28)), we have that

μH :�DL′ →�CL
comes from the indexed category (μH, h) in which, for each X ∈D and each morphism f ′ : x→w
in L′(X),

hX(f ′)
=μH(idX , f ′)

=
(
id

μHX , foldhxX
(
inhwX ◦L

(
in−1

HX

) (
h(X,μHX)(f

′,μhwX)
)))

{ Eq. (38) }
=
(
id

μHX , foldhxX
(
inhwX ◦ hX

(
f ′,μhwX

)))
=
(
id

μHX , μhX(f
′)
)

{ Proposition 4 }

Finally, for strictly indexed categories respecting initial algebras (see Definition 50), we get a
cleaner version of Theorem 48 below.

Corollary 49 (Parameterized initial algebras and strictly indexed categories respecting initial alge-
bras). Let (H, h) be a strictly indexed functor fromL′ ×L : (D× C)op →Cat toL : Cop →Cat and
H : (�DL′)× (�CL)→�CL the corresponding split fibration functor. Assume that:

(h1) L respects initial algebras;
(h2) the parameterized initial algebra μH :D→ C exists;
(h3) for any X ∈D, the parameterized initial algebra μhX exists.

In this setting, the parameterized initial algebra:

μH :�DL′ →�CL
is a split fibration functor coming from the strictly indexed functor

(
μH,μ

(
h(−)

))
in which, for each

X ∈D,

μ
(
h(X)

)=μhX =μ

(
L(inHX)−1h(X,μHX)

)
:L′(X)→L(μHX). (42)

Proof. By Theorem 48, it is enough to show that Eq. (40) holds whenever L respects initial
algebras.

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 353

We have that, for any morphism g : X→ Y in D, and each y ∈L′(Y), by the naturality of h :
L′ ×L−→

(
L ◦Hop

)
and the definition of μH(g), the squares

L
(
μHY

)
L(μHX)

L′ (Y)×L
(
μHY

)
L′ (X)×L

(
μHX

)

L
(
H
(
Y ,μHY

))
L
(
H
(
X,μHX

))

L
(
μHY

)
L
(
μHX

)

L(μH(g))

(
y,idL(μHY)

) (
L′(y),idL(μHX)

)

h(
Y ,μHY)

L′(g)×L(μH(g))

h(
X,μHX)

L
(
inHY

)−1

L(H(g,μH(g)))

L
(
inHX

)−1

L(μH(g))

commute. Thus, we get that

L
(
μH(g)

) ◦ hyY
=L

(
μH(g)

) ◦ hY ◦
(
y, idL(μHY)

)
=L

(
μH(g)

) ◦L (inHY

)−1 ◦ h(Y ,μHY) ◦
(
y, idL(μHY)

)

=L
(
inHX

)−1 ◦ h(X,μHX) ◦
(
L′(y), idL(μHX)

)
◦L (μH(g)

)
= hL

′(y)
X ◦L (μH(g)

)
.

Therefore, assuming that L respects initial algebras, we conclude that
L
(
μH(g)

)
(inhyY)= in

hL
′(g)(y)

X

holds. That is to say (40) holds for any g : X→ Y inD and any y ∈L′(Y). This completes the proof
by Theorem 49.

6.11 General result on terminal coalgebras in total categories
Analogously to the case of initial algebras above, in order to give basis for our study in Section 6.12,
we investigate the general case of parameterized terminal coalgebras of split fibration functors like
in (32).

Definition 11 on initial algebra-preserving functors plays a central role in Theorem 51.
Specifically, we use this definition in the context of indexed categories, where we define:

Definition 50 (Initial-algebra-respecting). A strictly indexed category L : Cop →Cat respects
initial algebras if L(f) strictly preserves initial algebras for any morphism f of C.5

Dually, L : Cop →Cat respects terminal coalgebras if L(f) strictly preserves terminal coalgebras
for any morphism f of C.

Theorem51 (Terminal coalgebras of strictly indexed endofunctors). Let (E, e) be a strictly indexed
endofunctor on L : Cop →Cat and E :�CL→�CL the corresponding split fibration endofunctor.
Assume that:

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

354 F. Lucatelli Nunes and M. Vákár

(e1) L respects terminal coalgebras;
(e2) the terminal E-coalgebra

(
νE, outE

)
exists;

(e3) the terminal
(
L(outE)eνE

)
-coalgebra

(
ν
(
L(outE)eνE

)
, outL(outE)eνE

)
exists.

Denoting by e the endofunctor L
(
outE

)
eνE on L(νE), the terminal E-coalgebra exists and is given

by:

νE= (νE, νe
)
, outE =

(
outE, oute

)
. (43)

Moreover, for each E-coalgebra,(
(Y , y), (ξ , ξ ′) : (Y , y)→ E(Y , y)

)= ((Y , y), (ξ : Y → E(Y), ξ ′ : y→L(ξ)eY (y)
))
,

we have that

unfoldE
(
ξ , ξ ′

)= (unfoldEξ , unfoldL(ξ)eY ξ ′
)
. (44)

Proof. Under the hypothesis above, given an E-coalgebra:(
ξ : Y → E(Y), ξ ′ : y→L(ξ)eY (y)

)
on (Y , y), we have that the diagram:

L
(
νE
)

L (Y)

L
(
E
(
νE
))

L
(
E (Y)

)

L
(
νE
)

L (Y)

e

L(unfoldEξ)

eνE eY

L(outE)

L(E(unfoldEξ))

L(ξ)

L(unfoldEξ)

commutes. Thus, since L respects terminal coalgebras, we have that(
L
(
unfoldEξ

)
(νe) , L

(
unfoldEξ

)
(oute)

)
is the terminal L (ξ) eY-coalgebra. Therefore, we have that

unfoldL(ξ)eY ξ ′ : y→L
(
unfoldEξ

)
(νe)

is the unique morphism of L(Y) such that

y L
(
unfoldEξ

)
(νe)

L (ξ) eY
(
y
)

L (ξ) eYL
(
unfoldEξ

)
(νe)

ξ ′

unfoldL(ξ)eY ξ ′

L(unfoldEξ)(oute)

L(ξ)eY
(
unfoldL(ξ)eY ξ ′

)
which shows that(

unfoldEξ , unfoldL(ξ)eY ξ ′
) : (Y , y)→ E(Y , y)= (E(Y), eY (y))

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 355

is the unique morphism of �CL such that

(
Y , y

) (
νE, νe

)

E
(
Y , y

)= (E(Y), eY (y)) E
(
νE, νe

)= (E (νE) , e (νe)
)

(ξ ,ξ ′)

(
unfoldEξ , unfoldL(ξ)eY ξ ′

)

(outE, oute)

(
E(unfoldEξ),eY

(
unfoldL(ξ)eY ξ ′

))
E
(
unfoldEξ , unfoldL(ξ)eY ξ ′

)
commutes. This completes the proof that νE= (νE, νe

)
is the terminal E-coalgebra.

Theorem 52 (Parameterized terminal coalgebras are strictly indexed functors). Let (H, h) be
a strictly indexed functor from L′ ×L : (D× C)op →Cat to L : Cop →Cat, and H : (�DL′)×
(�CL)→�CL the corresponding split fibration functor. Assume that

(h1) L respects terminal coalgebras;
(h2) for each object X of C, the terminal HX-coalgebra

(
νHX , outHX

)
exists;

(h3) for each object (X, x) in �DL′, denoting by hX the functor:

L(outHX)h(X,νHX) :L′(X)×L(νHX)→L(νHX) (45)

is such that the terminal hxX-coalgebra
(
νhxX , outhxX

)
exists.

In this setting, the parameterized terminal coalgebra:

νH :�DL′ →�CL

is a split fibration functor coming from the strictly indexed functor
(
νH, ν

(
h(−)

))
in which, for

each X ∈D,

ν
(
h(X)

)
= νhX = ν

(
L(outHX)h(X,νHX)

)
:L′(X)→L(νHX). (46)

Proof. Assuming the hypothesis, we conclude that, for each (X, x) in �DL′,�CL has the terminal
H(X,x)-coalgebra by Theorem 51. Hence, by Proposition 4, we have that

νH :�DL′ →�CL
exists. More precisely, given a morphism (f , f ′) : (X, x)→ (Y , y) in �DL′, we compute νH(f , f ′)
below:

νH(f , f ′)

= unfoldH(Y ,y)

(
H
(
(f , f ′), νH(X,x)

)
◦ outH(X,x)

)
{ Proposition 4 }

= unfoldH(Y ,y)

(
H
(
(f , f ′), νH(X,x)

)
◦
(
outHX , outhxX

))
{ Eq. (43) }

= unfoldH(Y ,y)

((
H(f , νHX), h(X,νHX)(f

′, νhxX)
)
◦
(
outHX , outhxX

))
{ hypothesis }

= unfoldH(Y ,y)

(
H(f , νHX) ◦ outHX , L

(
outHX

) (
h(X,νHX)(f

′, νhxX)
)
◦ outhxX

)
{ composing }

= unfoldH(Y ,y)

(
H(f , νHX) ◦ outHX , hX

(
f ′, νhxX

)
◦ outhxX

)
{ definition of hX }

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

356 F. Lucatelli Nunes and M. Vákár

=
(
unfoldHY

(
H(f , νHX) ◦ outHX

)
, unfoldhyY

(
hX
(
f ′, νhxX

)
◦ outhxX

))
{ Eq. (44) }

=
(
νH(f), νhY (f ′)

)
{ Proposition 4 }

Since νH(f , f ′)=
(
νH(f), νhY (f ′)

)
, clearly, then, the pair

(
νH, νH

)
satisfies Eqs. (26) and (27) of

Proposition 26. Moreover, νH comes from the strictly indexed functor
(
νH, ν

(
h(−)

))
.

6.12 μν-polynomials in total categories
We examine the existence of μν-polynomials in �CL and �CLop. In order to do so, we employ
the results and terminology established in Theorem 46 and Section 6.11

Making use of Definitions 31 and 19, we introduce the following concept to provide support
for our definition of �-bimodel for inductive and coinductive types:

Definition 53 (μνPolyL). Let C be a category with μν-polynomials, and L : Cop →Cat an exten-
sive strictly indexed category with strictly indexed finite biproducts. We define the categoryμνPolyL
as the smallest subcategory of Cat satisfying the following.

(O) The objects are defined inductively by:
(O1) the terminal category 1 is an object of μνPolyL;
(O2) if D and D′ are objects of μνPolyL, then so is D×D′;
(O3) for each object W ∈ C, the category L(W) is an object of μνPolyL.

(M) The morphisms satisfy the following properties:
(M1) for any object D of μνPolyL, the unique functor D→ 1 is a morphism of μνPolyL;
(M2) for any object D of μνPolyL, all the functors 1→D are morphisms of μνPolyL;
(M3) for each (W, X) ∈ C × C, the projections π1 :D×D′ →D and π2 :D×D′ →D′ are

morphisms of μνPolyL;
(M4) for each W ∈ C, the biproduct+ :L(W)×L(W)→L(W) is a morphism of μνPolyL;
(M5) for each (W, X) ∈ C × C, the functor:

S(W,X) :L(W)×L(X)→L(W � X)
of the extensive structure (see (11)) is a morphism of μνPolyL;

(M6) given an object D of μνPolyC , a morphism H :D× C → C of μνPolyC and any object
X ∈D′,

L(inHX)−1 : L
(
HX

(
μHX

))
→L

(
μHX

)
,

L(outHX) : L
(
HX

(
νHX

))
→L

(
νHX

)
are morphisms of μνPolyL;

(M7) for each (W, X) ∈ C × C, the functors induced by the projections:
L(π1) :L (W)→L (W × X) , L(π2) :L (X)→L (W × X)

are morphisms of μνPolyL;
(M8) if E :D→D′ and J :D→D′′ are morphisms of μνPolyL, then so is (E, J) :D→D′ ×

D′′;
(M9) if D′,D are objects of μνPolyL, h :D′ ×D→D is a morphism of μνPolyL and μh :

D′ →D exists, then μh is a morphism of μνPolyL;
(M10) if D′,D are objects of μνPolyL, h :D′ ×D→D is a morphism of μνPolyL and νh :

D′ →D exists, then νh is a morphism of μνPolyL.

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 357

Having established the previous definition, we can now introduce the notion of a �-bimodel
for inductive and coinductive types:

Definition 54 (�-bimodel for inductive and coinductive types). We say that L : Cop →Cat is a
�-bimodel for inductive and coinductive types (or, for short, a ∗-indexed category) if:

(∗1) L is a strictly indexed category;
(∗2) C has μν-polynomials (Definition 6);
(∗3) L : Cop →Cat has strictly indexed finite biproducts (Definition 19);
(∗4) L is extensive (Definition 31);
(∗5) L respects terminal coalgebras and initial algebras (Definition 50);
(∗6) whenever D is an object of μνPolyL and e :D→D is a morphism of μνPolyL, μe and νe

exist.

Lemma 55. Let L : Cop →Cat be a ∗-indexed category. If D,D′ are objects of μνPolyL then,
whenever h :D′ ×D→D is a morphism of μνPolyL,

μh :D′ →D and νh :D′ →D

exist.

Proof. By Proposition 4, it is enough to show that, for each x ∈D′, μhx and νhx exist.
In fact, denoting by x : 1→D′ the functor constantly equal to x ∈D′, the functor hx is the

composition below:

D 1×D D′ ×D D(1,idD)

hx

(x◦π1,idD◦π2) h

Since all the horizontal arrows above are morphisms of μνPolyL, we conclude that hx is an
endomorphism of μνPolyL. Therefore, since L is a ∗-indexed category, μhx and νhx exist.

Definition 56 (μνL-indexed category and indexed functor). Let L : Cop →Cat, L′ :Dop →Cat
be strictly indexed categories. We say that L′ is a μνL-indexed category if:

(μνL1) D is an object of μνPolyC ;
(μνL2) L′(W) is an object of μνPolyL for any W in D.

A strictly indexed functor (H, h) between L′ :Dop →Cat and L′′ : Eop →Cat is a μνL-indexed
functor if:

(μνL3) L′,L′′ are μνL-indexed categories;
(μνL4) H :D→ E is a morphism of μνPolyC ;
(μνL5) for each X ∈D, hX :L′ (X)→L′′ ◦H(X) is a morphism of μνPolyL.

Theorem 57. Let L′ :Dop →Cat be a strictly indexed category and L : Cop →Cat a ∗-indexed
category. Assume that (H, h) is a μνL-indexed functor, and H :�E×D

(
L′ ×L

)∼= (�EL′)×
(�DL)→�DL is the corresponding split fibration functor. We have that:

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

358 F. Lucatelli Nunes and M. Vákár

(i) μH :�EL′ →�DL exists and is the split fibration functor induced by the μνL-indexed
functor: (

μH : E →D, μ
(
h(−)

))
(47)

in which

μ
(
h(X)

)=μhX =μ

(
L(inHX)−1h(X,μHX)

)
:L′(X)→L(μHX). (48)

(ii) νH :�EL′ →�DL exists and is the split fibration functor induced by the μνL-indexed
functor: (

νH : E →D, ν
(
h(−)

))
(49)

in which

ν
(
h(X)

)
= νhX = ν

(
L(outHX)h(X,νHX)

)
:L′′(X)→L′(νHX). (50)

Furthermore, both μH and νH are μνL-indexed functors.

Proof. Since C has μν-polynomials, D is an object of μνPolyC and H is a morphism of μνPolyC ,
we have that μH and νH exist by Lemma 8 (and, hence, are morphisms in μνPolyC). Moreover,
we have that L(outHX) and L(inHX)−1 are morphisms of μνPolyL by (M6) of Definition 53.

For any X ∈D, since
(
H, h

)
is a μνL-indexed functor, we have that, L′ (X) is an object of

μνPolyL and

h(X,μHX) : L′ (X)×L
(
μHX

)
→L ◦H

(
X,μHX

)
h(X,νHX) : L′ (X)×L

(
νHX

)
→L ◦H

(
X, νHX

)
are morphisms of μνPolyL.

We conclude, then, that the compositions:

hX =L(inHX)−1h(X,μHX) : L′ (X)×L
(
μHX

)
→L

(
μHX

)
hX =L(outHX)h(X,νHX) : L′ (X)×L

(
νHX

)
→L

(
νHX

)

are also morphisms of μνPolyL. Thus, we have that μhX and νhX exist (and are morphisms of
μνPolyL) by Lemma 55.

Finally, since L respects initial algebras and terminal coalgebras, we have that (H, h) satisfies
the hypotheses of Corollary 49 and Theorem 52. Therefore, μH and νH exist and are induced by
(47) and (49), respectively.

The fact that (47) and (49) are also μνL-indexed functors follows from the fact that L′ is a
μνL-indexed category by hypothesis, μH is a morphism of μνPolyC (as observed above), and
μhX , νhX are morphisms of μνPolyL (also observed above).

In particular, we see that initial algebras and terminal coalgebras of μν-polynomials in �CL
(and, codually, �CLop) are fibred over C.

Before proving Theorem 63, our main theorem about μν-polynomials in �CL, we prove
Lemma 60 which establishes a bijection between objects of μνPoly�CL and indexed categories.

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 359

Definition 58. Let L : Cop →Cat be a strictly indexed category. We inductively define the set ×L
of indexed categories as follows:

×L1. the terminal indexed category 1 : 1→Cat belongs to ×L;
×L2. L belongs to ×L;
×L3. if L′ and L′′ belong to ×L, then

(
L′ ×L′′) ∈ ×L.

Lemma 59. Let L : Cop →Cat be a strictly indexed category. Then all the elements of ×L are
μνL-indexed categories.

Proof. The terminal indexed category 1 : 1→Cat is a μνL-indexed category since 1 ∈μνPolyC
and 1 ∈μνPolyL. Furthermore, L : Cop →Cat is a μνL-indexed category by the definition of
μνPolyL.

Finally, if L′ :Dop →Cat and L′′ : Eop →Cat are μνL-indexed categories, then:

– we have that (D, E) ∈μνPolyC ×μνPolyC . Thus,

(D× E) ∈μνPolyC ; (51)

– for any
(
W,W′) ∈D× E , the categories L′(W) and L′′(W′) are objects of μνPolyL. Thus,

L′ ×L′′ (W,W′)=L′(W)×L′′(W′) ∈μνPolyL. (52)

By (51) and (52), we conclude that L′ ×L′′ : (D× E)op →Cat is a μνL-indexed category.

Lemma 60. Let L : Cop →Cat be a strictly indexed category. The function

∂ : obj(μνPoly�CL
)→ ×L (53)

inductively defined by ∂1., ∂2. and ∂3. is a bijection.

∂1. terminal respecting: ∂ (1) := (1 : 1→Cat);
∂2. basic element: ∂ (�CL) := (L : Cop →Cat

)
;

∂3. product respecting: given
(
D,D′) ∈μνPoly�CL ×μνPoly�CL,

∂
(
D×D′) := ∂ (D) × ∂

(
D′) .

Proof. The inverse of ∂ is clearly given by the Grothendieck construction. More precisely, the
inverse is denoted herein by � and can be inductively defined as follows:

(�1) terminal respecting: � (1 : 1→Cat) := 1;
(�2) basic element: �

(
L : Cop →Cat

) :=�CL;
(�3) product respecting: given

(
L′ :Dop →Cat,L′′ : Eop →Cat

) ∈ ×L× ×L,

�
(
L′ ×L′′) :=�

(
L′)×�

(
L′′) .

By the inductive definitions of the sets obj
(
μνPoly�CL

)
and ×L, we conclude that

� ◦ ∂ = idobj
(
μνPoly�CL

) and ∂ ◦� = id×L.

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

360 F. Lucatelli Nunes and M. Vákár

Lemma 61. Let L : Cop →Cat be a strictly indexed category. The objects of μνPoly�CL with the
functors that are induced by μνL-indexed functors between objects of ×L form a subcategory of
Cat.

Proof. Let A be an object of μνPoly�CL. By Lemma 60, we have the associated strictly indexed
category:

∂ (A)=L′ :Dop →Cat.

The identity idA onA clearly comes from the identity:

(idD :D→D, id) :L′ →L′

which is a μνL-indexed category, since L′ is a μνL-indexed category by Lemma 59.
Finally, if E :A→A′ andH :A′ →A′′ are functors induced, respectively, by theμνL-indexed

functors: (
E, e
) :L′ →L′′ and

(
H, h

) :L′′ →L′′′,

then H ◦ E is induced by the composition:(
H ◦ E, hEop ◦ e

)
which is aμνL-indexed functor as well, sinceH, E aremorphisms ofμνPolyC and, for anyW ∈D,
hE(W) and eW are morphisms of μνPolyL.

Definition 62. We denote by μνPoly�CL the category defined in Lemma 61.

Theorem 63. Let L : Cop →Cat be a ∗-indexed category. The category �CL has μν-polynomials.

Proof. By Theorem 57, since L is a ∗-indexed category, any endomorphism E :�CL→�CL of
the subcategory μνPoly�CL has an initial algebra and a terminal coalgebra. Therefore, in order to
complete the proof, it is enough to show that the morphisms of μνPoly�CL satisfy the inductive
properties of Definition 6.

Let A, A′, and A′′ be objects of μνPoly�CL. By Lemma 60, we have the associated strictly
indexed categories:

∂ (A)=L′ : Dop →Cat,
∂
(
A′)=L′′ : Eop →Cat,

∂
(
A′′)=L′′′ : Fop →Cat.

Recall that L′,L′′ and L′′′ are μνL-indexed categories by Lemma 59.

(A) The unique functorA→ 1 is induced by the unique indexed functor:(
D→ 1,

(
L′ (W)→ 1

)
W∈D

)
between L and the terminal indexed category 1 : 1→Cat. Since D→ 1 is a morphism of
μνPolyC and, for any W ∈D, L′ (W)→ 1 is a morphism of μνPolyL, we have that the
unique indexed functor is a μνL-indexed functor.

(B) Given a functor F : 1→A∼=�CL′, it corresponds to an object
(
W ∈D, x ∈L′(W)

) ∈
�CL′. In other words, F is induced by the strictly indexed functor:(

W : 1→D,w : 1→L′(W)
)

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 361

in whichW and w denote the obvious functors. Since any functor 1→D is a morphism of
μνPolyC and, for anyW ∈D, any functor 1→L′(W) is a morphism of μνPolyL, we have
that

(
W : 1→D,w : 1→L′(W)

)
is a μνL-indexed functor.

(C) By Proposition 17, the binary product × :�CL×�CL→�CL is induced by the strictly
indexed functor: (× : C × C → C, p

) :L×L→L
in which p(W,W′) is given by the composition:

L (W)×L
(
W′) L

(
W ×W′)×L

(
W ×W′)

L
(
W ×W′)

L (π1)×L (π2)

+p(W,W′)

It remains to show that
(× : C × C → C, p

)
is a μνL-indexed functor. Since × : C × C → C

is a morphism of μνPolyC , it is enough to prove that p(W,W′) is a morphism of μνPolyL for
any

(
W,W′) ∈ C × C.

Since, for any
(
W,W′) ∈ C × C, we have that

πL(W) :L (W)×L
(
W′)→L (W), πL(W′) :L (W)×L

(
W′)→L

(
W′)

L (π1) :L (W)→L
(
W ×W′), L (π2) :L

(
W′)→L

(
W ×W′)

are morphisms of μνPolyL, we conclude that(
L (π1) ◦ πL(W),L (π2) ◦ πL(W′)

)=L (π1)×L (π2)

is a morphism of μνPolyL. Thus, since × :L (W ×W′)×L
(
W ×W′)→L

(
W ×W′) is

a morphism of μνPolyL as well, we conclude that the composition p(W,W′) is a morphism
of μνPolyL.

(D) By Corollary 35, the coproduct � :�CL×�CL→�CL is induced by the strictly indexed
functor:

(� : C × C → C, s) :L×L→L
in which s(W,W′) is given by the functor:

S(W,W′) :L(W)×L(X)→L(W � X)
of the extensive structure (see (11)) is a morphism of μνPolyL.
We have that (� : C × C → C, s) :L×L→L is a μνL-indexed functor, since � : C × C →
C is a morphism of μνPolyC and S(W,W′) is a morphism of μνPolyL, for any

(
W,W′) ∈

C × C.
(E) The projections

π1 :A×A′ →A, π2 :A×A′ →D′

are, respectively, induced by the strictly indexed functors:(
π1 :D× E →D,

(
π1 :L(W)×L(W′)→L(W)

)
(W,W′)∈D×E

)
: L′ ×L′′ →L′(

π2 :D× E → E ,
(
π2 :L(W)×L(W′)→L(W′)

)
(W,W′)∈D×E

)
: L′ ×L′′ →L′′

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

362 F. Lucatelli Nunes and M. Vákár

which are μνL-indexed functors, since
π1 :D× E →D, π2 :D× E → E

are morphisms of μνPolyC and, for any
(
W,W′) ∈D× E ,

π1 :L(W)×L(W′)→L(W), π2 :L(W)×L(W′)→L(W′)
are morphisms of μνPolyL.

(F) Assuming that E :A→A′ and J :A→A′′ are functors induced by the μνL-indexed
functors:(

E, e :L′ →L′′ ◦ Eop
)
:L′ →L′′ and

(
J, j :L′ →L′′′ ◦ Jop

)
:L′ →L′′′,

the functor (E, J) :A→A′ ×A′′ is induced by the strictly indexed functor:((
E, J
)
, (e, j)

) :L′ →L′′ ×L′′′.
which is a μνL-indexed functor as well since:

– E, J are morphisms of μνPolyC and, hence, so is
(
E, J
)
;

– eW , jW are morphisms of μνPolyL for anyW ∈D and, hence, so is
(
eW , jW

)
.

Finally, assuming that H :A×�CL→�CL is a functor induced by a μνL-functor:(
H, h

) :L′ ×L→L,
we have, by Theorem 57, that

(G) μH is induced by the μνL-indexed functor:(
μH : E →D, μ

(
h(−)

)) :L′ →L.
(H) νH is induced by the μνL-indexed functor:(

νH : E →D, ν
(
h(−)

))
:L′ →L.

Codually, we have:

Theorem 64. LetL : Cop →Cat be a ∗-indexed category. The category�CLop hasμν-polynomials.

6.13 �-bimodel for function types, inductive and coinductive types
By Theorem 39, the Grothendieck construction of any �-bimodel for inductive and coinductive
types is distributive. Moreover, we get the closed structure if L satisfies the conditions of Section
6.4. More precisely:

Corollary 65. LetL : Cop →Cat be a�-bimodel for inductive and coinductive types. The categories
�CL and �CLop are distributive categories with μν-polynomials.

Corollary 66. Let L : Cop →Cat be a �-bimodel for inductive, coinductive, and function types.
The categories �CL and �CLop are closed categories with μν-polynomials.

7. Linear λ-Calculus as an Idealized AD Target Language
We describe a target language for our AD code transformations, a variant of the dependently
typed enriched effect calculus (Vákár 2017, Chapter 5). Its cartesian types, linear types, and terms

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 363

Figure 6. A grammar for the kinds, types, and terms of the target language, extending that of Fig. 1.

are generated by the grammar of Figs. 1 and 6, making the target language a proper extension of
the source language. We note that we use a special symbol v for the unique linear identifier. We
introduce kinding judgments � | � 	 τ : type and � | � 	 α : ltype for cartesian and linear types,
where�= α1 : type, . . . , αn : type is a list of (cartesian) type identifiers and� = x1 : τ1, . . . , xn : τn
is a list of identifiers xi with cartesian type τi. These kinding judgments are defined according to
the rules displayed in Figs. 2 and 7.

We use typing judgments � | � 	 t : τ and � | �;v : α 	 s : σ for terms of well-kinded cartesian
types � | � 	 τ : type and linear type � | � 	 α : ltype, where �= α1 : type, . . . , αn : type is a list
of cartesian type identifiers, � = x1 : τ1, . . . , xn : τn is a list of identifiers xi of well-kinded cartesian
type � | x1 : τ1, . . . , xi−1 : τi−1 	 τi : type and v is the unique linear identifier of well-kinded linear
type � | � 	 α : ltype. Note that terms of linear type always contain the unique linear identifier
v in the typing context. These typing judgments are defined according to the rules displayed in
Figs. 3, 8 and 9.

We work with linear operations lop ∈ LOpm1,...,mr
n1,...,nk;n′1,...,n′l

, which are intended to represent func-
tions that are linear (in the sense of respecting 0 and +) in the last l arguments but not in the

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

364 F. Lucatelli Nunes and M. Vákár

Figure 7. Kinding rules for the AD target language that we consider on top of those of Fig. 2, where our first rule specifies
how kinding judgments of the source language imply kinding of types in the target language. Observe that, according to
the second rule, type variables α from the kinding context� can be used as a linear type α. Note that we only consider the
formation of�- and�-types and linear function types of nonparameterized types (shaded in gray).

first k. To serve as a practical target language for the automatic derivatives of all programs from
the source language, we work with the following linear operations: for all op ∈Opmn1,...,nk :

Dop ∈ LOpmn1,...,nk;n1,....,nk Dopt = (Dop)t ∈ LOpn1,....,nkn1,...,nk;m.

We will use these linear operations Dop and Dopt as the forward and reverse derivatives of the
corresponding primitive operations op6. We write

LDom(lop) def= realn
′
1∗ . . . ∗realn′l and CDom(lop) def= realm1∗ . . . ∗realmr

for lop ∈ LOpm1,...,mr
n1,...,nk;n′1,...,n′l

.
Figs. 4 and 10 display the equational theory we consider for the terms and types, which we

call (α)βη+-equivalence. To present this equational theory, we define in Fig. 11, by induction,
some syntactic sugar for the functorial action �,�′ | �;v : α[σ/α]	 α[v	t/α] : α[γ/α] in argument α
of parameterized types �, α : type | � 	 α : ltype on terms �′ | �;v : σ 	 t : γ .

This target language can be viewed as defining a strictly indexed category LSyn :CSynop →
Cat:

• CSyn extends its full subcategory Syn with the newly added cartesian types; its objects are
cartesian types, and CSyn(τ , σ) consists of (α)βη-equivalence classes of target language
programs · | x : τ 	 t : σ .

• Objects of LSyn(τ) are linear types · | p : τ 	 σ : ltype up to (α)βη+-equivalence.
• Morphisms in LSyn(τ)(σ , γ) are terms · | x : τ ;v : σ 	 t : γ modulo (α)βη+-equivalence.
• Identities in LSyn(τ) are represented by the terms · | x : τ ;v : σ 	 v : σ .

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 365

Figure 8. Typing rules for the AD target language that we consider on top of the rules of Figs. 3 and 9.

• Composition of · | x : τ ;v : σ 1 	 t : σ 2 and · | x : τ ;v : σ 2 	 s : σ 3 in LSyn(τ) is defined as · |
x : τ ;v : σ 1 	 let v= t in s : σ 3.

• Change of base LSyn(t) : LSyn(τ)→ LSyn(τ ′) along (· | x′ : τ ′ 	 t : τ) ∈CSyn(τ ′, τ) is
defined LSyn(t)(· | x : τ ;v : σ 	 s : γ) def= · | x′ : τ ′;v : σ 	 let x= t in s : γ .

• All type formers are interpreted as one expects based on their notation, using introduction
and elimination rules for the required structural isomorphisms.

Corollary 67. �CSynLSyn and �CSynLSynop are both bicartesian closed categories with μν-
polynomials.

In fact, LSyn :CSynop →Cat is the initial �-bimodel of tuples, self-dual primitive types and
primitive operations, function types, sum types, and inductive and coinductive types, in the sense

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

366 F. Lucatelli Nunes and M. Vákár

Figure 9. Typing rules for the AD target language that we consider on top of the rules of Figs. 3 and 8.

Figure 10. Equational rules for the idealized, linear AD language, which we use on top of the rules of Fig. 4. In addition to
standard βη-rules for !(−)⊗(−)- and�-types, we add rules making (0,+) into a commutative monoid on the terms of each
linear type as well as rules which say that terms of linear types are homomorphisms in their linear variable. Equations hold
on pairs of terms of the same type/types of the same kind. As usual, we only distinguish terms up to α-renaming of bound
variables.

that for any other such a �-bimodel L : Cop →Cat, we have a unique homomorphic indexed
functor (F, f) : (CSyn, LSyn)→ (C,L).

Corollary 68 (Concrete semantics of the target language). Let L : Cop →Cat be a �-bimodel for
inductive, coinductive and function types. Let

(a) for each n-dimensional array realn ∈ Syn, F
(
realn

) ∈ obj (C);
(b) for each n-dimensional array realn ∈ Syn,

F
(
realn

) ∈L
(
F
(
realn

))
;

(c) for each primitive op ∈Opmn1,...,nk :

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 367

Figure 11. Functorial action �,�′ | �;v : α[σ/α]	 α[v	t/α] : α[γ/α] in argument α of parameterized types
�, α : type | � 	 α : ltype on terms�′ | �;v : σ 	 t : γ of the target language.

(i) F
(
op
) :Rn1 × · · · ×R

nk →R
m is the map in Set corresponding to the operation that

op intends to implement;
(ii) fop ∈ FVect

(
F
(
realn1

)× · · · × F
(
realnk

)) (
F
(
realn1

)× · · · × F
(
realnk

)
, F
(
realm

))
is the family of linear transformations that Dop intends to implement;

(iii) f top ∈ FVect
(
F
(
realn1

)× · · · × F
(
realnk

)) (
F
(
realm

)
, F
(
realn1

)× · · · × F
(
realnk

))
is the family of linear transformations that

(
Dop

)t intends to implement.

be an assignment. We obtain canonical bicartesian closed functors that preserve μν-polynomials:

F :�CSynLSyn→�CL (54) tF :�CLSynop →�CSynLop (55)

that extend the assignment given by (a), (b), and (c).

8. Novel AD Algorithms as Source Code Transformations
By Corollary 67, �CSynLSyn and �CSynLSynop are both bicartesian closed categories with μν-
polynomials. By the universal property of Syn established in Corollary 15, we get unique
μν-polynomial-preserving bicartesian closed functors −→D (−) : Syn→�CSynLSyn and ←−D (−) :
Syn→�CSynLSynop implementing source code transformations for forward and reverse AD,
respectively, once we fix a compatible definition for the code transformations on primitive types
realn and operations op.

Corollary 69 (CHAD). Once we fix the derivatives of the ground types and primitive operations of
Syn by defining

• for each n-dimensional array realn ∈ Syn, −→D (realn) def= (
realn, realn

)
and ←−D (realn) def=(

realn, realn
)
in which we think of realn as the associated tangent and cotangent space;

• for each primitive op ∈Opmn1,...,nk ,
−→D (op) def= (

op, Dop
)
and ←−D (op) def= (

op, Dopt
)
, in which

Dop and Dopt are the linear operations that implement the derivative and the transposed
derivative of op, respectively,

we obtain unique functors:
−→D (−) : Syn→�CSynLSyn,

←−D (−) : Syn→�CSynLSynop (56)

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

368 F. Lucatelli Nunes and M. Vákár

that extend these definitions such that −→D (−) and ←−D (−) strictly preserve the bicartesian closed
structure and the μν-polynomials.

By definition of equality in Syn, �CSynLSyn and �CSynLSynop, these code transformations auto-
matically respect equational reasoning principles, in the sense that t βη= s implies that −→D (t)βη+=−→D (s) and←−D (t)βη+= ←−D (s). In this section, we detail the implied definitions of −→D and←−D as well as
their properties.

8.1 Some notation
In the rest of this section, we use the following syntactic sugar:

• a notation for (linear) n-ary tuple types: (α1∗ . . . ∗αn)
def= (((α1∗α2) · · · ∗αn−1)∗αn);

• a notation for n-ary tuples: 〈t1, · · · , tn〉 def= 〈〈〈t1, t2〉 · · · , tn−1〉, tn〉;
• given �;v : α 	 t : (σ 1∗ · · · ∗αn), we write �;v : α 	 proji (t) : αi for the obvious i-th projec-
tion of t, which is constructed by repeatedly applying fst and snd to t;

• given �;v : α 	 t : σ i, we write the i-th coprojection �;v : α 	 coproji (t)
def=

〈0, . . . , 0, t, 0, . . . , 0〉 : (σ 1∗ · · · ∗σ n);
• for a list x1, . . . , xn of distinct identifiers, we write idx(xi;x1, . . . , xn)

def= i for the index of
the identifier xi in this list;

• a let-binding for tuples: let 〈x, y〉 = t in s def= let z= t in let x= fst z in let y= snd z in s,
where z is a fresh variable.

Furthermore, all variables used in the source code transforms below are assumed to be freshly
chosen.

8.2 Kinding and typing of the code transformations
We define for each type τ of the source language:

• a cartesian type D(τ)1 of forward-mode primals;
• a linear type−→D (τ)2 (with free term variable p) of forward-mode tangents;
• a cartesian type←−D (τ)1 of reverse-mode primals;
• a linear type←−D (τ)2 (with free term variable p) of reverse-mode cotangents.

We extend−→D (−) and←−D (−) to act on typing contexts � = x1 : τ1, . . . , xn : τn as:
−→D (�)1

def= x1 : −→D τ1)1, . . . , xn : −→D τn)n (a cartesian typing context)
−→D (�)2

def= (−→D τ1)2[x1/p]∗ · · · ∗−→D τn)2[xn/p]) (a linear type)
←−D (�)1

def= x1 :←−D (τ1)1, . . . , xn :←−D (τn)n (a cartesian typing context)
←−D (�)2

def= (←−D (τ1)2[x1/p]∗ · · · ∗←−D (τn)2[xn/p]) (a linear type).

Our code transformations are well kinded in the sense that they translate a type�	 τ : type of the
source language into pairs of types of the target language:

� | · 	 −→D (τ)1 : type
� | p : −→D (τ)1 	−→D (τ)2 : ltype

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 369

� | · 	←−D (τ)1 : type
� | p :←−D (τ)1 	←−D (τ)2 : ltype.

Similarly, the functors −→D (−) : Syn→�CSynLSyn and ←−D (−) : Syn→�CSynLSynop define for
each term t of the source language and a list� of identifiers that contains at least the free identifiers
of t:

• a term−→D �(t)1 that represents the forward-mode primal computation associated with t;
• a term−→D �(t)2 that represents the forward-mode tangent computation associated with t;
• a term←−D �(t)1 that represents the reverse-mode primal computation associated with t;
• a term←−D �(t)2 that represents the reverse-mode cotangent computation associated with t.

These code transformations are well typed in the sense that a source language term t that is typed
according to � | � 	 t : τ is translated into pairs of terms of the target language that are typed as
follows:

� | −→D (�)1 	−→D �(t)1 :
−→D (τ)1

� | −→D (�)1;v : −→D (�)2 	−→D �(t)2 :
−→D (τ)2[

−→D�(t)1/p]
� |←−D (�)1 	←−D �(t)1 :

←−D (τ)1
� |←−D (�)1;v :←−D (τ)2[

←−D�(t)1/p]	←−D �(t)2 :
←−D (�)2,

where � is the list of identifiers that occurs in � (that is, x1 : τ1, . . . , xn : τn def= x1, . . . , xn).
However, as we noted already in Insight 1 of Section 2, we often want to share computation

between the primal and (co)tangent values, for reasons of efficiency. Therefore, we focus instead
on transforming a source language term � | � 	 t : τ into target language terms:

� | −→D (�)1 	−→D �(t) :�p : −→D (τ)1.
−→D (�)2 �

−→D (τ)2
� |←−D (�)1 	←−D �(t) :�p :←−D (τ)1.

←−D (τ)2 �
←−D (�)2,

where −→D �(t)
βη+= 〈−→D �(t)1, λv.

−→D �(t)2〉, and
←−D �(t)

βη+= 〈←−D �(t)1, λv.
←−D �(t)2〉. While both repre-

sentations of AD on programs are equivalent in terms of the βη+-equational theory of the target
language and therefore for any semantic and correctness purposes, they are meaningfully different
in terms of efficiency. Indeed, we ensure that common subcomputations between the primals and
(co)tangents are shared via let-bindings in−→D �(t) and

←−D �(t).

8.3 Code transformations of primitive types and operations
We have suitable terms (linear operations):

x1 : realn1 , · · · , xk : realnk ; v : realn1∗ · · · ∗realnk 	Dop(x1, . . . , xk;v) : realm
x1 : realn1 , · · · , xk : realnk ; v : realm 	Dopt(x1, . . . , xk;v) : realn1∗ · · · ∗realnk

to represent the forward- and reverse-mode derivatives of the primitive operations op ∈Opmn1,...,nk .
Using these, we define
−→D realn)1

def= realn −→D realn)2
def= realn

−→D �(op(t1, . . . , tk))
def= · · · · · · · · · · ·· let 〈x1, x′1〉 =

−→D �(t1) in · · · let 〈xk, x′k〉 =
−→D �(tk) in

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

370 F. Lucatelli Nunes and M. Vákár

〈op(x1, . . . , xk), λv.Dop(x1, . . . , xn;〈x′1 • v, . . . , x′k • v〉)〉
←−D (realn)1

def= realn ←−D (realn)2
def= realn

←−D �(op(t1, . . . , tk))
def= · · · · · · · · · · · · · · · let 〈x1, x′1〉 =

←−D �(t1) in · · ·
let 〈xk, x′k〉 =

←−D �(tk) in
〈op(x1, . . . , xk), λv.let v= Dopt(x1, . . . , xk;v) in

x′1 • proj1 v+ · · · + x′k • projk v〉
For the AD transformations to be correct, it is important that these derivatives of language

primitives are implemented correctly in the sense that

�x1, . . . , xk;y 	Dop(x1, . . . , xk;v)�=D�op� �x1, . . . , xk;v	Dopt(x1, . . . , xk;v)�=D�op�t .
For example, for elementwise multiplication (∗) ∈Opnn,n, we need that

�D(∗)(x1, x2;v)�((a1, a2), (b1, b2)) = a1 ∗ b2 + a2 ∗ b1;
�D(∗)t(x1, x2;v)�((a1, a2), b) = (a2 ∗ b, a1 ∗ b).

By Corollary 15, the extension of the AD transformations−→D and←−D to the full source language are
now canonically determined, as the uniqueμν-polynimials-preserving bicartesian closed functors
that extend the previous definitions.

8.4 Forward-mode CHAD definitions
We define the types of (forward-mode) primalsD(τ)1 and tangents−→D (τ)2 associated with a type
τ as follows:

−→D (1)1
def= 1

−→D (τ∗σ)1
def= −→D (τ)1∗−→D (σ)1

−→D (τ → σ)1
def= �p : −→D (τ)1.�p′ : −→D (σ)1.

−→D (τ)2 �
−→D (σ)2[p

′
/p]

−→D ({�1τ1 | · · · | �nτn})1 def=
{
�1
−→D (τ1)1 | · · · | �n−→D (τn)1

}
−→D (α)1

def= α

−→D (μα.τ)1
def= μα.−→D (τ)1

−→D (να.τ)1
def= να.−→D (τ)1

−→D (1)2
def= 1

−→D (τ∗σ)2
def= −→D (τ)2[fst p/p]∗−→D (σ)2[snd p/p]

−→D (τ → σ)2
def= �p′ : −→D (τ)1.

−→D (σ)2[fst (p p
′)/p]

−→D ({�1τ1 | · · · | �nτn})2 def= case p of{�1p→−→D (τ1)2 | · · · | �np→−→D (τn)2 }
−→D (α)2

def= α

−→D (μα.τ)2
def= μα.−→D (τ)2[fold pwith y→

−→D (τ)1[y	roll y/α]/p]
−→D (να.τ)2

def= να.−→D (τ)2[unroll p/p]

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 371

For programs t, we define their efficient CHAD transformation −→D �(t) as follows (and we list the
less efficient transformations −→D �(t)1 and −→D �(t)2 that do not share computations between the
primals and tangents in Appendix B):
−→D �(x)

def= ·· 〈x, λv.projidx(x;�) (v)〉
−→D �(let x= t in s) def= · let 〈x, x′〉 = −→D �(t) in

let 〈y, y′〉 = −→D �,x(s) in
〈y, λv.y′ • 〈v, x′ • v〉〉

−→D �(〈〉) def= ·· 〈〈〉, λv.〈〉〉
−→D �(〈t, s〉) def= ·· let 〈x, x′〉 = −→D �(t) in

let 〈y, y′〉 = −→D �(s) in
〈〈x, y〉, λv.〈x′ • v, y′ • v〉〉

−→D �(fst t)
def= ·· let 〈x, x′〉 = −→D �(t) in 〈fst x, λv.fst (x′ • v)〉

−→D �(snd t)
def= · let 〈x, x′〉 = −→D �(t) in 〈snd x, λv.snd (x′ • v)〉

−→D �(λx.t)
def= · · · · · · · · · · · · ·· let y= λx.−→D � , x)(t) in

〈λx.let 〈z, z′〉 = y x in 〈z, λv.z′ • 〈0, v〉〉, λv.λx.(snd (y x)) • 〈v, 0〉〉
−→D �(t s)

def= · · · · · · · · · · · · ·· let 〈x, x′ctx〉 =
−→D �(t) in let 〈y, y′〉 = −→D �(s) in let 〈z, x′arg〉 = x y in

〈z, λv.(x′ctx • v) y+ x′arg • (y′ • v)〉
−→D �(�t)

def= · let 〈x, x′〉 = −→D �(t) in 〈�x, x′〉
−→D �(case t of {�1x1 → s1 | · · · | �nxn → sn}) def= · · · · ·· let 〈y, y′〉 = −→D �(t) in

case y of {�1x1 →
let 〈z1, z′1〉 =

−→D �,x1 (s1) in
〈z1, λv.z′1 • 〈v, (let y= �1x1 in y′) • v〉〉

| · · · |
�nxn →

let 〈zn, z′n〉 =
−→D �,xn(sn) in

〈zn, λv.z′n • 〈v, (let y= �nxn in y′) • v〉〉}
−→D �(roll t)

def= ·· let 〈x, x′〉 = −→D �(t) in 〈roll x, λv.roll (x′ • v)〉
−→D �(fold t with x→ s) def= · · · · · let 〈y, y′〉 = −→D �(t) in

let z= λx.−→D x(s) in

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

372 F. Lucatelli Nunes and M. Vákár

〈fold ywith x→ fst (z x),
λv.fold y′ • vwith v→

let x= fold ywith x→−→D (τ)1[x	fst (z x)/α] in (snd (z x)) • v〉
−→D �(unroll t)

def= · · · · · · · · · · · · · · · · · · ·· let 〈x, x′〉 = −→D �(t) in 〈unroll x, λv.unroll (x′ • v)〉
−→D �(gen from t with x→ s) def= · · · · · · · · · · · · · · · let 〈y, y′〉 = −→D �(t) in

let z= λx.−→D x(s) in
〈gen from ywith x→ fst (z x),
λv.gen from y′ • vwith v→•(snd (z y)) • v〉

8.5 Reverse-mode CHAD definitions
We define the types of (reverse-mode) primals ←−D (τ)1 and cotangents ←−D (τ)2 associated with a
type τ as follows:

←−D (1)1
def= 1

←−D (τ∗σ)1
def= ←−D (τ)1∗←−D (σ)1

←−D (τ → σ)1
def= �p :←−D (τ)1.�p′ :←−D (σ)1.

←−D (σ)2[p
′
/p]�

←−D (τ)2
←−D ({�1τ1 | · · · | �nτn})1 def=

{
�1
←−D (τ1)1 | · · · | �n←−D (τn)1

}
←−D (α)1

def= α

←−D (μα.(τ)1
def= μα.←−D (τ)1

←−D (να.(τ)1
def= να.←−D (τ)1

←−D (1)2
def= 1

←−D (τ∗σ)2
def= ←−D (τ)2[fst p/p]∗←−D (σ)2[snd p/p]

←−D (τ → σ)2
def= �p′ :←−D (τ)1.

←−D (σ)2[fst (p p
′)/p]

←−D ({�1τ1 | · · · | �nτn})2 def= case p of {�1p→←−D (τ1)2 | · · · | �np→←−D (τn)2}
←−D (α)2

def= α

←−D (μα.(τ)2
def= να.←−D (τ)2[fold pwith y→

←−D (τ)1[y	roll y/α]/p]
←−D (να.τ)2

def= μα.←−D (τ)2[unroll p/p]

For programs t, we define their efficient CHAD transformation←−D �(t) as follows (and we list the
less efficient transformations ←−D �(t)1 and ←−D �(t)2 that do not share computation between the
primals and cotangents in Appendix B):
←−D �(x)

def= · 〈x, λv.coprojidx(x;�) (v)〉

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 373

←−D �(let x= t in s) def= · let 〈x, x′〉 = ←−D �(t) in

let 〈y, y′〉 = ←−D �,x(s) in
〈y, λv.let v= y′ • v in fst v+ x′ • (snd v)〉

←−D �(〈〉) def= ·· 〈〈〉, λv.0〉
←−D �(〈t, s〉) def= · let 〈x, x′〉 = ←−D �(t) in

let 〈y, y′〉 = ←−D �s in
〈〈x, y〉, λv.x′ • (fst v)〉 + y′ • (snd v)

←−D �(fst t)
def= · let 〈x, x′〉 = ←−D �(t) in 〈fst x, λv.x′ • 〈v, 0〉〉

←−D �(snd t)
def= · let 〈x, x′〉 = ←−D �(t) in 〈snd x, λv.x′ • 〈0, v〉〉

←−D �(λx.t)
def= · let y= λx.←−D �,x(t) in

〈λx.let 〈z, z′〉 = y x in 〈z, λv.snd (z′ • v)〉,
λv.case v of !x⊗ v→ fst ((snd (y x)) • v)〉

←−D �(t s)
def= · · · · · · · · · · · · · · ·· let 〈x, x′ctx〉 =

←−D �(t) in let 〈y, y′〉 = ←−D �s in let 〈z, x′arg〉 = x y in
〈z, λv.x′ctx • (!y⊗ v)+ y′ • (x′arg • v)〉

←−D �(�t)
def= · let 〈x, x′〉 = ←−D �(t) in 〈�x, x′〉

←−D �(case t of {�1x1 → s1 | · · · | �nxn → sn}) def= · · ·· let 〈y, y′〉 = ←−D �(t) in
case yof {�1x1 →
let 〈z1, z′1〉 =

←−D �,x1 (s1) in
〈z1, λv.let v= z′1 • v in fst v+

(let y= �1x1 in y′) • (snd v)〉
| · · · |
�nxn → let 〈zn, z′n〉 =

←−D �,xn(sn) in
〈zn, λv.let v= z′n • v in fst v+

(let y= �nxn in y′) • (snd v)〉}
←−D �(roll t)

def= · let 〈x, x′〉 = ←−D �(t) in 〈roll x, λv.x′ • (unroll v)〉
←−D �(fold t with x→ s) def= · · · · · let 〈y, y′〉 = ←−D �(t) in

let z= λx.←−D x(s) in
〈fold ywith x→ fst (z x)
, λv.y′ • gen from vwith v→

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

374 F. Lucatelli Nunes and M. Vákár

let x= fold ywith x→−→D (τ)1[x	fst (z x)/α] in (snd (z x)) • v〉
←−D �(unroll t)

def= · let 〈x, x′〉 = ←−D �(t) in 〈unroll x, λv.x′ • (roll v)〉
←−D �(gen from t with x→ s) def= · · · · · · · · · · · · · · · · · · ·· let 〈y, y′〉 = ←−D �(t) in

let z= λx.←−D x(s) in
〈gen from ywith x→ fst (z x)
, λv.y′ • fold vwith v→ (snd (z y)) • v〉

9. Concrete Models
In order to proceed with our correctness proof of AD, we need to establish the semantics of the
program transformation in our setting. In this section, we construct denotational semantics for
the target language.

9.1 Locally presentable categories andμν-polynomials
We show that any cartesian closed locally presentable category yields a concrete model for the
source language. The only step needed to establish this fact is to prove that locally presentable
categories have μν-polynomials, cf. Santocanale (2002, Theorem 3.7). We establish this result
below. We refer the reader to Adámek and Rosický (1994) and Bird (1984) for basics on locally
presentable categories.

The first fact to recall is that locally presentable categories are complete (and cocomplete by
definition): see, for instance, Adámek and Rosický (1994, p. 45). Moreover:

Lemma 70. LetA, B be locally presentable categories.

(A) A functor G :A→ B has a left adjoint if and only if G is accessible and preserves limits.
(B) A functor F : B→A has a right adjoint if and only if F preserves colimits.

Proof. (A) is Adámek and Rosický (1994, Theorem 1.66).
Recall that every locally presentable is co-well-powered; see Adámek and Rosický (1994,

Theorem 1.58). By the special adjoint functor theorem (Mac Lane 1971, p. 129), we get that (B)
holds.

Lemma 71. Every accessible endofunctor on a locally presentable category has an initial algebra and
a terminal coalgebra.

Proof. Every accessible endofunctor on a locally presentable category has an initial algebra since
we construct the initial algebra via the colimit of the chain 0→ E (0)→· · · ; see Adámek and
Koubek (1979).

If A is a locally presentable category, given an endofunctor E :A→A, we have that E-CoAlg
is locally presentable. Since the forgetful functor E-CoAlg→A is a functor between locally pre-
sentable categories that creates colimits, we have that it has a right adjoint R. Therefore, R(1) is
the terminal object of E-CoAlg (terminal coalgebra of E); see Barr (1993).

Proposition 72. If D is locally presentable then D has μν-polynomials.

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 375

Proof. The terminal category 1 is a locally presentable category and, if D′ and D′′ are locally
presentable categories, then D′ ×D′′ is locally presentable as well. Therefore, all the objects of
μνPolyD are locally presentable.

Given locally presentable categories D′,D′′, the projections π1 :D′ ×D′′ →D′ and π2 :D′ ×
D′′ →D′′ have right (and left) adjoints and, therefore, are accessible.

Moreover, given locally presentable categoriesD′,D′′,D′′′, if E :D′ →D′′ and J :D′ →D′′′ are
accessible functors, then so is the induced functor (E, J) :D′ →D′′ ×D′′′.

Furthermore,× :D×D→D and � :D×D→D have, respectively, a left adjoint and a right
adjoint. Therefore, they are accessible.

Finally, by Santocanale (2002, Proposition 3.8), assuming their existence, μH and νH are
accessible whenever H :D′ ×D→D is accessible and D′ is locally presentable.

This completes the proof that all morphisms of μνPolyD are accessible. Hence, by Lemma 71,
we have that all endofunctors inμνPolyD have initial algebras and terminal coalgebras. Therefore,
D has μν-polynomials.

Remark 73 (Duality). Let D be a category. By a well-known result by Gabriel–Ulmer (Gabriel
and Ulmer 1971, 7.13), D and Dop are locally presentable if, and only if, D is a complete lattice.
Therefore, in general, the property of being locally presentable is not self-dual.

As remarked in Remark 7, the property of having μν-polynomials is self-dual. Hence, by
Proposition 72, we have that, whenever Dop is locally presentable, D has μν-polynomials.

9.2 Li, FLi, and Fam(Li)
Henceforth, we assume that Li is a locally presentable category with biproducts (+, 0) that is
monadic over Set. The main examples that we have in mind are the category of real vector spaces
Li=Vect and the category of commutative monoids Li=CMon.

We consider the indexed category:
FLi : Setop →Cat (57)

X �→Cat [X, Li]= LiX

f : X→ Y �→ Lif =Cat
[
f , Li

] : LiY → LiX

defined by the composition:

Setop →Catop Cat[−,Li]−−−−−→Cat (58)
in which Cat [−, Li]= Li(−) is the exponential (internal hom) in Cat. We have that

�SetFLi∼= Fam(Li), �SetFLiop ∼= Fam(Liop) (59)
where Fam(Li) and Fam(Liop) are, respectively, the free cocompletion under coproducts of Li and
of Liop. We refer the reader, for instance, to Adámek and Rosický (2020, Section 2) and Borceux
and Janelidze (2001, Chapter 6) for basic facts about free cocompletion under coproducts.

We have the following basic straightforward properties about Fam(Li):

Proposition 74. Let D be a category with biproducts (+, 0). If D has (infinite) products, Fam(D)
is cartesian closed. Codually, if D has (infinite) coproducts, Fam(Dop) is cartesian closed.

Proof. Namely, given families of objects Y : Y →D,Z : Z→D, we define
YZ : Fam(D) ((Y ,Y) , (Z,Z)) →D (60)(

g : Y → Z,
(
αy :Y(y)→Z

(
g(y)

))
y∈Y

)
�→
∏
y∈Y

Z
(
g(y)

)
(61)

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

376 F. Lucatelli Nunes and M. Vákár

YZ t : Fam(Dop) ((Y ,Y) , (Z,Z)) →D (62)(
g : Y → Z,

(
αy :Z

(
g(y)

)→Y(y)
)
y∈Y

)
�→
∐
y∈Y

Z
(
g(y)

)
The pair (Fam(D) ((Y ,Y) , (Z,Z)) ,YZ) is the exponential (Y ,Y)⇒ (Z,Z) in Fam(D), provided
that D has products.

Codually,
(
Fam(D) ((Y ,Y) , (Z,Z)) ,YZ t) is the exponential (Y ,Y)⇒ (Z,Z) in Fam(Dop),

provided that D has coproducts.

Proposition 75. Fam(D) is locally presentable, whenever D is locally presentable.

Proof. Since D is cocomplete, Fam(D) is cocomplete (see Lemma 80). Moreover, it is clear that
the indexed category defined by X �→Cat[X,D] satisfies the conditions of Makkai and Paré (1989,
Definition 5.3.1), since:

(1) for each X ∈ Set, Cat[X,D]=DX is locally presentable and, hence, accessible;
(2) for any function f , Cat[X,D] is accessible by Lemma 70, since it has a left adjoint given by

the left Kan extension lanf ; see (64);
(3) Set is locally presentable;
(4) X �→Cat[X,D] preserves any limit of Setop.

Therefore, Fam(D) is accessible by Makkai and Paré (1989, Theorem 5.3.4). This completes the
proof that Fam(D) is locally presentable.

As a consequence, we have that:

Corollary 76. Fam(Li) is cartesian closed and locally presentable and, hence, has μν-polynomials.

The results proven above do not guarantee that Fam(Liop) has μν-polynomials, since
Fam(Liop) is not, generally, locally presentable. However, in 9.3, we show that FLi yields a
model for the target language and, hence, Fam(Li) and Fam(Liop) have μν-polynomials (and are
cartesian closed).

9.3 FLi is a�-bimodel for inductive and coinductive types
We establish that FLi : Setop →Cat yields a model for the target language in Corollary 78. By
the results of Section 6, this provides proof that �SetFLi∼= Fam(Li) and �SetFLiop ∼= Fam(Liop)
are bicartesian categories with μν-polynomials by Corollary 66. We start by proving that FLi is a
�-bimodel for inductive and coinductive types.

Since Set is locally presentable, Set has μν-polynomials by Proposition 72. Moreover, since
Li is complete and cocomplete, FLi (X)= LiX is complete and cocomplete as well; namely, the
limits and colimits are constructed pointwise. In particular, FLi (X)= LiX has biproducts (also
constructed pointwise) (+, 0).

It should be noted that, for any function f : X→ Y in Set, we have that

Lif = FLi
(
f
) :Cat [Y , Li]→Cat [X, Li] (63)

has a (fully faithful) left adjoint and a (fully faithful) right adjoint, given by the left and right Kan
extensions respectively;7 namely, for each X : X→ Li,

ranfX (x)=
∏

i∈f−1(x)

X (i), lanfX (x)=
∐

i∈f−1(x)

X (i). (64)

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 377

Therefore, we can conclude that: (1) FLi
(
f
)
preserves limits, colimits and, consequently, biprod-

ucts; (2) FLi
(
f
)
preserves initial algebras and terminal coalgebras by Theorem 108. Furthermore,

FLi
(
f
)
strictly preserves biproducts (and the zero object), initial algebras and terminal coalgebras,

provided that Li has chosen ones.
Finally, it is clear that we have the isomorphism:

FLi (X � Y) = Cat [X � Y , Li]
∼= Cat [X, Li]×Cat [Y , Li]
= FLi (X)× FLi (Y)

and, hence, FLi is extensive. Indeed, we have

S(X,Y) : FLi (X)× FLi (Y)→ FLi (X � Y) (65)

in which S(X,Y) (X ,Y) (i)=X (i) if i ∈ X and S(X,Y) (X ,Y) (j)=Y(j) if j ∈ Y .

Theorem 77. The strictly indexed category FLi is a �-bimodel for inductive and coinductive types.
Therefore, �SetFLi and �SetFLiop have μν-polynomials.

Proof. It only remains to prove that all the endomorphisms in μνPolyFLi have initial algebras
and terminal coalgebras. In order to do so, by Lemma 71, it is enough to prove that μνPolyFLi
is a subcategory of the category of locally presentable categories and accessible functors between
them.

The subcategory of locally presentable functors and accessible functors is closed under prod-
ucts. That is to say, if D,D′ are locally presentable categories and E, J are accessible functors
between locally presentable categories, we get that 1,D×D′ are locally presentable categories,
(E, J) is accessible, and the projections are accessible (since they have right adjoints).

Moreover, LiX is locally presentable for any set X since Li is locally presentable. Also, since the
biproduct+ : LiX × LiX → LiX has a right adjoint, it is accessible. Furthermore, since it has a right
adjoint, we get that Li(f) is accessible for any function f : X→ Y .

Finally, by Santocanale (2002, Proposition 3.8), assuming their existence, μh and νh are
accessible whenever h :D′ ×D→D is accessible and D′,D are locally presentable categories.

Since isomorphisms between locally presentable categories are accessible, this completes the
proof that all functors in μνPolyFLi are accessible functors between locally presentable categories.

Therefore, any endomorphism in μνPolyFLi has initial algebra and terminal coalgebra by
Lemma 71. This completes the proof.

9.4 FLi is a�-bimodel for function types
We consider the cartesian dependent type theory FSet : Setop →Cat, X �→Cat [X, Set]. It is well
known that FSet satisfies full, faithful, democratic comprehension with �-types and strong �-
types (Jacobs 1999). In this context, we have that FLi has�- types by Vákár (2017, Theorem 5.2.9).
Finally, FLi indeed has �-types and�-types by Vákár (2017, Theorem 5.6.3).

This proves that FLi is a �-bimodel for function types. By Theorem 77, we conclude:

Theorem 78. FLi : Setop →Cat yields a �-bimodel for inductive, coinductive, and function types.

Corollary 79. The categories Fam(Li) and Fam(Liop) are bicartesian closed categories with μν-
polynomials.

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

378 F. Lucatelli Nunes and M. Vákár

9.5 Fam(Li) and Fam(Liop) are complete and cocomplete
Concrete models provide a significant advantage in terms of the extra properties they can satisfy,
which we leverage in our open semantic logical relations. In particular, we have:

Lemma 80. Fam(Li) and Fam(Liop) are complete and cocomplete.

Proof. This is a well-known result and, from a fibered perspective, follows from the fact that FLi
has indexed limits and colimits (and Set is cocomplete and complete).

We only need, however, the coproducts and pullbacks that we sketch below.
Coproducts: it is clear that Fam(Li) and Fam(Liop) have coproducts, Fam(−) is the cocom-

pletion under coproducts. The coproduct of a (possibly infinite) family (Wi,wi)i∈L of objects in

Fam(Li) (respectively Fam(Liop)) is given by the object
(⊔
i∈L

Wi, 〈wi〉i∈L
)
in Fam(Li) (respectively

in Fam(Liop)), where 〈wi〉 denotes the family
⊔
i∈L

Wi → Li defined by wi in each componentWi.

Pullbacks: let (f , f ′) : (W,w)→ (Y , y) and (g, g′) : (X, x)→ (Y , y) be morphisms of Fam(Liop).
We consider the pullbackW ×(f ,g) X of f along g, with projections pW :W ×(f ,g) X→W and pX :
W ×(f ,g) X→ X. Denoting by s the pushout of (66) in the category FLi

(
W ×(f ,g) X

)= LiW×(f ,g)X ,
the pullback of (f , f ′) : (W,w)→ (Y , y) and (g, g′) : (X, x)→ (Y , y) in Fam(Liop) is given by(
W ×(f ,g) X, s

)
:

y ◦ g ◦ pX = y ◦ f ◦ pW w ◦ pWx ◦ pX FLi(pW)(f ′)FLi(pX)(g′)
(66)

10. Concrete Denotational Semantics for CHAD
In this section, we will establish a concrete denotational semantics for both the source and target
languages, and establish CHAD’s specification.

10.1 The concrete model Fam(Set) for the source language
We define a denotational semantics for our source language by interpreting coproducts of
Euclidean spaces as families of sets, that is, we interpret our language in Fam(Set). This approach
offers technical advantages as it is the natural way to interpret functions between sum types in our
setting.

Below, we establish some notation to talk about morphisms, objects, and coproducts in
Fam(Set). We start by recalling that the category Fam(Set)�Cat[2, Set] is locally presentable
(see Proposition 75). Hence, by Proposition 72, Fam(Set) has μν-polynomials. This proves that
Fam(Set) is a suitable concrete model for our source language, since Fam(Set)�Cat[2, Set] is
cartesian closed.

Proposition 81. The category Fam(Set)�Cat[2, Set] is complete, cocomplete, cartesian closed and
has μν-polynomials.

Henceforth, we use the notation (Al)l∈L = (L,A∗) ∈ Fam(Set) to refer to the object of Fam(Set)
that corresponds to the pair (L,A∗), where A∗ assigns to each l ∈ L the set Al. This is a standard
way to represent families of sets, where the index set L and the set Al associated with each index l
are explicitly given.

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 379

10.1.1 Morphisms between families of sets

Recall that a morphism between families (Al)l∈L and (Bi)i∈I in Fam(Set) is a pair
(
f , f
)
where

f : L→ I is a function and f =
(
fl :Al → Bf (l)

)
l∈L is family of functions. By abuse of language, we

often denote such a morphism
(
f , f
)
by f , keeping f implicit.

10.1.2 Singleton families
For a family (Al)l∈L = (L,A∗) ∈ obj (Fam(Set))where L= {0} is a singleton, we abuse the notation
and writeA0 instead of (Al)l∈L. For example, we use the notationRn to denote the singleton family
in Fam(Set) whose only object is the set Rn.

In this case, a morphism f :Rn →R
m in Fam(Set) corresponds to a morphism in Set. More

precisely, the functor Set→ Fam(Set) given by A �→A is fully faithful.

10.1.3 Coproducts of families of sets

Let
((
A(l,i)

)
l∈Li
)
i∈I =

(
Li,A∗

i
)
i∈I be a (possibly infinite) family of objects of Fam(Set). Recall that

the coproduct
∐
i∈I
(
Li,A∗

i
)
in Fam(Set) is given by

(∐
i∈I

Li, 〈A∗
i 〉i∈I

)
.

Using the notation established in Section 10.1.2, we see that, for a family of singleton families
(Ai)i∈I in Fam(Set), the coproduct

∐
i∈I Ai is the same as the family (Ai)i∈I considered as an object

in Fam(Set). Hence, in this context, we often denote by
∐

i∈I Ai the object (Ai)i∈I in Fam(Set).
For instance, consider a family of natural numbers (ni)i∈I , and consider, for each i ∈ I, the

object Rni of Fam(Set). In this setting, we have that
∐

i∈I Rni is the family (Rni)i∈I .
On one hand, it should be noted that, in this setting, a morphism

f :
∐
i∈I

R
ni →

∐
j∈J

R
mj (67)

in Fam(Set) is not the same as a function
∐

i∈I Rni →∐
j∈J Rmj in Set. More precisely, the functor∐ : Fam(Set)→ Set defined by: (

(Ai)i∈I =
∐
i∈I

Ai

)
�→
∐
i∈I

Ai

is not full.
On the other hand, it is worth noting that there is bijection between morphisms of the form

(67) in Fam(Set) and functions g :∐
i∈I

R
ni →∐

j∈J Rmj in Set such that, for each i ∈ I, there is j ∈ J

such that g(Rni)⊂R
mj .

10.1.4 Products of families of sets
Recall that, given objects (Al)l∈L and (Bi)i∈I of Fam(Set), the product (Al)l∈L × (Bi)i∈I is given by
(Al × Bi)(l,i)∈L×I .

10.2 The concrete model FVect for the target language
We provide a denotational semantics for our target language by interpreting spaces of (co)tangent
vectors as well as derivatives of differentiable functions in terms of families of vector spaces in

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

380 F. Lucatelli Nunes and M. Vákár

Section 10.5.1. To do so, we consider the indexed category FVect : Setop →Cat which associates
each set X with VectX .

It should be noted that FVect is FLi as considered in Section 9.3 taking Li=Vect. By Theorem
78:

Corollary 82. FVect : Setop →Cat yields a �-bimodel for inductive, coinductive, and function
types. Consequently,

�SetFVect∼= Fam(Vect), �SetFVectop ∼= Fam(Vectop) (68)

are bicartesian closed and have μν-polynomials.

Moreover, by Lemma 80, we have:

Corollary 83. (68) are complete and cocomplete.

We recall some basic aspects of (68) below.

10.2.1 Constant families of vector spaces
We introduce notation for objects in Fam(Vect) (and Fam(Vectop)) that correspond to constant
families, which is the case for the semantics of our primitive types in the target language. Given
a set N ∈ Set and a vector space V ∈Vect, we denote the corresponding object as

(
N,V

)
. Here,

V :N →Vect is the family that is constantly equal to V , meaning that V(s)=V for all s ∈N.

10.2.2 Product of families of vector spaces
Let (M,m), (N, v) be objects of �SetFVect∼= Fam(Vect) (or �SetFVectop ∼= Fam(Vectop)). By
Propositions 17 and 18, we have that

(M,m)× (N, v)= (M×N, (i, j) �→m(i)× v(j)
)

(69)

gives the product of (M,m) and (N, v) in �SetFVect (and in �SetFVectop). The terminal object in
�SetFVect (and in �SetFVectop) is given by (1, 0).

10.2.3 Coproduct of families of vector spaces
Let (W,wi)i∈L be a family of objects of �SetFVect (or �SetFVectop). We have that (70) gives the
coproduct of the family (W,wi)i∈L in �SetFVect and in �SetFVectop:(∐

i∈L
Wi, 〈wi〉i∈L :

∐
i∈L

Wi →Vect
)

(70)

The initial objects in �SetFVect and in �SetFVectop are given by (∅, 0).

10.2.4 Lists and Streams
Let (71) and (72) be endofunctors on both Fam(Vect) and Fam(Vectop). We can compute the
initial algebras and terminal coalgebras of (71) and (72) via colimits and limits of chains (Adámek
and Koubek 1979). We get (73) and (74) in both Fam(Vect) and Fam(Vectop):

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 381

E(X, x)= (1, 0) � (X, x)× (V ,V) (71) H(X, x)= (X, x)× (V ,V) (72)

μE=
∞∐
n=0

(
V ,V

)n , (73) νH =
∞∏
i=0

(
V ,V

)
(74)

Considering the case where H is an endofunctor on Fam(Vect), we have that ˆνH in (76) is the

functor constantly equal to the product
∞∏
n=0

V . When we consider H on Fam(Vectop), ˆνH is the

functor constantly equal to
∞∐
i=0

V .

In the case of the endofunctor E, μ̂E in (75) is defined by the constant families Vn :Vn →Vect
in each component Vn of the set

∐∞
i=0 Vn. This holds true for both Fam(Vect) and Fam(Vectop):

List
(
V ,V

)=μE=
(∞∐
n=0

Vn, μ̂E :
∞∐
n=0

Vn→Vect
)

(75) Stream
(
V ,V

)=νH=
(∞∏
i=0

V , ˆνH :
∞∏
i=0

V→Vect
)

(76)

10.3 Euclidean spaces and coproducts
We introduce the notion of derivatives as it pertains to our work. Our definition aligns with
the conventional understanding of derivatives of functions between manifolds, but with added
flexibility to accommodate manifolds of varying dimensions. Readers interested in the basics of
differentiable manifolds can refer to Lee (2013), Tu (2011).

LetMan be the category of differentiable manifolds and differentiable maps between them. An
Euclidean space is an object ofMan that is isomorphic to some differentiable manifold R

n.
We denote by Diff the category of Euclidean spaces and differentiable maps between them. In

other words,Diff is the full and replete subcategory ofMan containing the differentiable manifolds
R
k for all k ∈N.

Definition 84 (Basic definition of derivatives). Let f :Rn →R
m be a morphism in Diff. We define

the morphisms (77) in Fam(Vect) and (78) in Fam(Vectop), where Dfx := f ′(x) is the usual Fréchet
derivative, and Df tx := f ′(x)t is the transpose of f ′(x):

Df := (f ,Df) : (Rn,Rn)→∐
k∈K

(
R
m,Rm) (77)

Dtf := (f ,Df t) : (Rn,Rn)→∐
k∈K

(
R
m,Rm) (78)

It follows from the usual properties of derivatives and chain rule that:

Lemma 85 (Derivative of maps between Euclidean spaces). (77) and (78) uniquely extend to
strictly cartesian functors (79) and (80), respectively:

D :Diff→ Fam(Vect) (79)
Dt :Diff→ Fam(Vectop) (80)

While the definitions provided above are presented in the CHAD style, they are essentially the
same as the ones used to define derivatives between Euclidean spaces, which are commonly taught
in calculus courses.

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

382 F. Lucatelli Nunes and M. Vákár

In order to establish a consistent and rigorous framework for proving the correctness of CHAD
for inductive data types, we will extend the definition of derivatives by using cotupling. More
precisely, from a categorical perspective, this extension will rely on the universal property of the
free cocompletion under coproducts.

Definition 86 (Derivative of families). The universal property of the free cocompletion under
coproducts Fam(Diff) of Diff induces unique coproduct-preserving functors:

D : Fam(Diff)→ Fam(Vect) (81)

Dt : Fam(Diff)→ Fam(Vectop) (82)
that (genuinely) extend the functors (79) and (80), respectively.

Let Fam(−) be the 2-functor that takes each category to its free cocompletion under coprod-
ucts. Denoting by

∐
the respective functors that give the coproduct of families, recall that, by the

definition above, (81) and (82) are, respectively, given by the composition (83) and (84):

Fam(Diff) Fam(Fam(Vect)) Fam(Vect)
Fam(D)

∐
(83)

Fam(Diff) Fam(Fam(Vectop)) Fam(Vectop)
Fam(Dt)

∐
(84)

10.4 Euclidean families, differentiable morphisms, derivatives, and diffeomorphisms
We introduce the notion of differentiable morphisms in Fam(Set), fundamental to establish the
specification and correctness of CHAD. To this end, we first define Euclidean families.

Definition 87 (E: Euclidean families). We inductively define the set E of Euclidean families by
(E1), (E2), and (E3).

(E1) For any k ∈N, the singleton family with Rk is a member is an element of E.
(E2) Assuming that A and B are elements of E, the product A× B in Fam(Set) belongs to E.
(E3) Assuming that

(
Li,A∗

i
)
i∈L is a (possibly infinite) family of objects in E, the coproduct(∐

i∈L
Li, 〈A∗

i 〉i∈L
)
=
∐
i∈L

(
Li,A∗

i
)

in Fam(Vect) also belongs to E.

We denote by:
Ue : Fam(Diff)→ Fam(Set). (85)

the forgetful functor obtained by Ue := Fam(Ue) where Ue : Diff→ Set denotes the obvious
forgetful functor.

Definition 88 (Differentiable morphisms and their derivatives). A morphism f :A→ B in
Fam(Set) is differentiable if A, B ∈E and there is a morphism f in Fam(Diff) such that Ue (f)= f .
In this case, we define

Df :=Df and Dtf :=Dtf. (86)
We call f a differentiable map,Df the derivative, andDtf the transpose derivative of f .

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 383

Definition 89 (Diffeomorphism and diffeomorphic Euclidean families). We say that a morphism
f of Fam(Set) is a diffeomorphism if it is an isomorphism in Fam(Vect) such that both f and f−1

are differentiable.
We say that two objects (Al)l∈L and

(
Bj
)
j∈J of Fam(Vect) are diffeomorphic if there is a

diffeomorphism (Al)l∈L →
(
Bj
)
j∈J .

It should be noted that the chain rule applies. More precisely:

Lemma 90 (Chain rule). If g and f are composable differentiable morphisms in Fam(Set), g ◦ f is
differentiable. Moreover, Eqs. (87) and (88), respectively, hold in Fam(Vect) and Fam(Vectop):

Dg ◦Df =D
(
g ◦ f) (87) Dtg ◦Dtf =Dt (g ◦ f) (88)

We spell out the definition of the derivative of a function between some particular Euclidean
families below.

Remark 91 (Explicit derivatives). By Definition 88, (89) in Fam(Vect) is differentiable if, for
each j ∈ J, (90) is differentiable in the usual sense; namely, if (89) is the underlying function of a
map R

nj →R
mf (j) in Diff

f = (f , f) :
∐
j∈J

R
nj →

∐
k∈K

R
mk (89) fj :Rnj →R

mf (j) (90)

Lemma 93 shows that all differentiable maps can be expressed in the form specified in (91)
through the use of canonical diffeomorphisms. More precisely, we show that every Euclidean
family is canonically diffeomorphic to something of the form

∐
j∈L Rlj .

Definition 92 (Normal form). For each Euclidean family A ∈E, we inductively define a (possibly
infinite) family e

N (A)= (nj)j∈J of natural numbers, and a morphism

enA :A→
∐
j∈J

R
nj (91)

in Fam(Set) by (Na), (Nb), and (N c).

(Na) For each k ∈N, e
N (Rk) :=R

k and en
Rk := id

Rk .
(Nb) Assuming that (A, B) ∈E×E, e

N (A)= (nj)j∈J and e
N (B)= (ml)l∈L, we set

e
N (A× B) := (nj +ml

)
(j,l)∈J×L .

We define enA×B by the morphism given by the composition (92), where the unlabeled arrow
is the canonical isomorphism induced by the universal property of the product and the
distributive property of Set

A× B
∐
j∈J

R
nj ×∐

l∈L
R
ml

∐
(j,l)∈J×L

R
nj+ml

enA × enB

(92)

(N c) Assuming that
(
Lj,A∗

j

)
j∈J is a family of objects in E such that e

N (
(
Lj,A∗

j

)
)= (m(j,l)

)
l∈Lj , we

set
e

N

⎛
⎝∐

j∈J
Aj

⎞
⎠ := (mt)t∈I,

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

384 F. Lucatelli Nunes and M. Vákár

where I :=⋃
j∈J
{
j
}× Lj. Finally, we define en∐

j∈J
Aj by the composition (93) where the unlabeled

arrow is the canonical isomorphism induced by the universal property of coproducts:

∐
j∈J

Aj ∐
j∈J

(∐
l∈Lj

R
m(j,l)

) ∐
t∈I

R
mt

∐
j∈J

enAj

(93)

It is simple to verify by induction that:

Lemma 93 (Canonical form of Euclidean families). For every object A ∈E, enA is a diffeomor-
phism.

By utilizing these normal forms, we are able to establish a valuable characterization of differen-
tiable maps (Lemma 94). This characterization is then leveraged in our logical relations argument,
which is detailed in Sections 12 and 13.

Lemma 94. Let f :W → X be a morphism in Fam(Set) and
(
g, h

)
a morphism in Fam(Vect)×

Fam(Vectop). Assuming that W ∈E, we have that

f is differentiable and
(
g, h

)= (Df ,Dtf
)

if, and only if,
f ◦ γ is differentiable, g ◦Dγ =D

(
f ◦ γ

)
, and h ◦Dtγ =Dt(f ◦ γ

)
for any differentiable map γ :Rn →W in Fam(Set) (where n is any natural number).

Proof. It should be noted that one direction follows from chain rule; namely, if f is differentiable
and

(
g, h

)= (Df ,Dtf
)
, then f ◦ α is differentiable, g ◦Dα =D

(
f ◦ α

)
, and h ◦Dtα =Dt (f ◦ α

)
.

Reciprocally, we assume that f and
(
g, h

)
are such that f ◦ γ is differentiable, g ◦Dγ =

D
(
f ◦ γ

)
, and h ◦Dtγ =Dt (f ◦ γ

)
for any differentiable map γ :Rn →W in Fam(Set).

Since W ∈E, we conclude that so is X since, by hypothesis, we can conclude that there is at
least a morphismW → X that is differentiable.

By Lemma 93, we have canonical diffeomorphism:
enW :W →

∐
j∈J

R
nj , enX : X→

∐
l∈L

R
ml

where
(
nj
)
j∈J = e

N (W) and (ml)l∈L = e
N (X) as defined in Definition 92.

For each j ∈ J, we define γj := enW ◦ ι
R
nj where

ι
R
nj :Rnj →

∐
j∈J

R
nj

is the coproduct coprojection in Fam(Set). By hypothesis, for all j ∈ J,
f ◦ enW ◦ ι

R
nj = f ◦ γj

is differentiable and, hence, enX ◦ f ◦ enW ◦ ι
R
nj = enX ◦ f ◦ γj is differentiable by the chain rule.

This shows that
enX ◦ f ◦ enW :

∐
j∈J

R
nj → X (94)

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 385

is componentwise differentiable, that is to say, (94) is such that(
enX ◦ f ◦ enW

)
j∈J :Rnj →R

menX◦f ◦enW (j)

is differentiable for all j ∈ J. By Remark 91, we conclude that enX ◦ f ◦ enW is differentiable. Since
enX and enW are diffeomorphisms, this proves that f is differentiable by the chain rule.

Analogously, by using the morphisms γj defined above, we conclude that(
D
(
enX

) ◦ g ◦D (
enW

)
,Dt (enX) ◦ h ◦Dt (enW))= (D (

enX ◦ f ◦ enW
)
,Dt (enX ◦ f ◦ enW

))
.

Therefore, since enW and enX are diffeomorphisms,
(
g, h

)= (Df ,Dtf
)
by the chain rule.

10.5 Semantic functors
We establish the concrete denotational semantics of our languages as suitable structure-preserving
functors induced by the respective universal properties.

10.5.1 The concrete denotational model for the source language
Recall that Fam(Set) is cartesian closed and has μν-polynomials (Proposition 81). By the univer-
sal property of the source language Syn established in Corollary 15, we can define the semantic
functor from Syn to Fam(Set):

Corollary 95 (Concrete semantics of the source language). We fix the concrete semantics of the
ground types and primitive operations of Syn by defining

(s-a) for each n-dimensional array realn ∈ Syn, �realn� def= R
n ∈ obj (Fam(Set)) in which Rn is the

singleton family with Rn as unique member,
(s-b) for each primitive op ∈Opmn1,...,nk , �op� :Rn1 × · · · ×R

nk →R
m is the map in Fam(Set)

corresponding to the function that op intends to implement.

By Corollary 15, we obtain a unique functor:
�−� : Syn→ Set

that extends these definitions to give a concrete denotational semantics for the entire source language
such that �−� is a strictly bicartesian closed functor that (strictly) preserves μν-polynomials.

10.5.2 The concrete denotational model for the target language
We establish the concrete denotational semantics of our target language. Recall that FVect is a �-
bimodel for tuples, function types, sum types, and inductive and coinductive types by Corollary 82.

We define the functors (95) and (96) induced by the universal property of (CSyn, LSyn)
established in Corollary 68.

Henceforth, we make use of the terminology and notation established in Sections 10.4 and 91.

Corollary 96 (Concrete semantics of the target language). Let FVect : Setop →Cat be the �-
bimodel for inductive, coinductive, and function types FVect : Setop →Cat established in Section
10.2 (see Corollary 82). We establish the following assignment:

(t-a) for each n-dimensional array realn ∈ Syn, ��realn�= t
��realn� def= �realn�Rn ∈ Set;

(t-b) for each n-dimensional array realn ∈ Syn,

��realn�= t
��realn� def= Lrealn ∈ FVect

(
R
n)

in which Lrealn =R
n :Rn →Vect;

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

386 F. Lucatelli Nunes and M. Vákár

(t-c) for each primitive op ∈Opmn1,...,nk :
(t-i) ��op�= �op� :Rn1 × · · · ×R

nk →R
m is the map in Set corresponding to the function

that op intends to implement;
(t-ii) fop = �Dop� ∈ FVect(Rn1 × · · · ×R

nk)(Rn1 × · · · ×R
nk ,Rm) is the family of linear

transformations that Dop intends to implement;
(t-iii) f top = �

(
Dop

)t
� ∈ FVect(Rn1 × · · · ×R

nk)(Rm,Rn1 × · · · ×R
nk) is the family of linear

transformations that Dopt intends to implement.

By Corollary 68, we obtain canonical functors:

��−� : �CSynLSyn→�SetFVect∼= Fam(Vect) (95)
t
��−� : �CSynLSynop →�SetFVectop ∼= Fam(Vectop) (96)

that extend (t-a), (t-b), and (t-c) to give a concrete denotational semantics for the entire target lan-
guage of the forward AD and the reverse AD, respectively, such that ��−� and t

��−� are bicartesian
closed functors that preserve μν-polynomials.

10.6 Semantic assumptions and specification of CHAD
Although our work applies to more general contexts, we assume that every primitive operation in
the source language intends to implement a differentiable function. We claim that, whenever we
have an AD correct macro in this setting, this can be applied to further general cases. For the case
of dual-numbers AD, we refer to the revised version of Lucatelli Nunes and Vákár (2022a) for
comments on general contexts involving nondifferentiable functions.

More precisely, for any primitive operation op ∈Opmn1,...,nk of the source language, we assume
that

�op� :
k∏

i=1
R
ni →R

m

is differentiable. Moreover, we assume that (97) and (98) hold

��
−→D (op)�=D�op�, (97) t

��
←−D (op)�=Dt�op�. (98)

It should be noted that (98) and (97) hold as long as ��
−→D (op)�= (�op�, �Dop�)= (�op�, fop) and

t
��

−→D (op)�= (�op�, �Dopt�)= (�op�, f top). In other words, (98) and (97) hold as long as Dop and
Dopt implement the family of linear transformations corresponding to the respective derivatives
of �op�, as explained in Section 7

10.6.1 Specification
We can inductively define what we mean by data types in the source language. These are those
types constructed out of ground types, tuples, variant types, and inductive types.

We show in Section 13 that the semantics for the inductive data types are rather simple, as they
are Euclidean families, that is to say, elements ofE. This shows, by Lemma 93, that the semantics of
any data type is isomorphic (actually, canonically diffeomorphic) to a (possibly infinite) coproduct
of
∐
j∈J

R
nj .

In Section 13, we prove the full correctness theorem of CHAD for data types. More precisely,
given any well-typed program x1 : τ 	 t : σ in the source language, where τ , σ are data types, we
have that:

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 387

(C1) �τ � and �σ � are Euclidean families;
(C2) �t� is differentiable;
(C3) �

�
−→D (t)�

=D�t� and t
��

←−D (t)�=Dt�t�.

11. Sconing
Our approach to categorical semantics for logical relations emphasizes principled constructions
of concrete categories from elementary ones, guided by the properties we seek to prove in each
setting, for example, Lucatelli Nunes and Vákár (2022b, Section 4). In this section, we introduce
the basic categorical framework for our open semantic logical relations proof; namely, we study
the scone, also called Artin gluing.

Recall that, given a functor G : C →D, the scone of G is the comma categoryD ↓G of the iden-
tity alongG. Explicitly, the scone’s objects are triples (C0 ∈D, C1 ∈ C, f : C0 →G(C1)) in which f is
a morphism of D. Its morphisms (C0, C1, f)→ (C′

0, C
′
1, f ′) are pairs (h0 : C0 → C′

0, h1 : C1 → C′
1)

such that (99) commutes in D:

C0 C′
0

G(C′
1)G(C1)

h0

f ′f

G(h1) (99)

The scone D ↓G inherits much of the structure of D× C. For that reason, under suitable con-
ditions, sconing can be seen as a principled way of building a suitable categorical model from a
previously given categorical model D× C, providing an appropriate semantics for our problem.
This is, indeed, the fundamental aspect that underlies our logical relations argument in Section 12
and also in Vákár and Smeding (2022) and Lucatelli Nunes and Vákár (2022a,b).

In this section, we present our comonadic–monadic approach to study the properties ofD ↓G;
it is consisting of studyingD ↓G via its comonadicity and monadicity overD× C. This approach
allows us to establish conditions under whichD ↓G hasμν-polynomials. The key contribution of
this section is twofold: (1) our approach provides a systematic and principled way to understand
the nice properties of D ↓G under suitable conditions; and (2) the conditions we establish for
the existence of μν-polynomials are particularly useful for building categorical models for logical
relations arguments.

Specifically, our approach shows that the forgetful functor:

L :D ↓G→D× C (100)

is comonadic and, in our case, monadic, and that the properties of D ↓G can be seen as
consequences of this fact.

To lay the groundwork for our approach, we begin by recalling Beck’s Monadicity Theorem,
since Theorem 97 holds a fundamental place in our approach. The original statement of this theo-
rem involves split (co)equalizers; see, for instance, Barr andWells (2005, Theorem3.14) or Dubuc
(1970, TheoremII.2.1) for the enriched case. However, for our purposes, we will make use of a
slightly modified version, namely a left adjoint functor is comonadic if and only if it creates absolute
limits. This version can be found, for instance, in Lucatelli Nunes (2021, p. 550).

Theorem 97. If D has binary products, then (100) is comonadic.

Proof. By the universal property of comma categories, a diagram D : S →D ↓G corresponds
biunivocally with triples:

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

388 F. Lucatelli Nunes and M. Vákár

(D0 : S →D,D1 : S → C, d :D0 →GD1) (101)

in which D0,D1 are diagrams and d is a natural transformation. In this setting, it is clear that,
assuming that limD0 exists, if limD1 exists and is preserved by G, we have that(

limD0, limD1, limD0
d−→ lim (G ◦D1)

∼=−→G (limD1)

)
, (102)

is the limit of D in D ↓G, in which d is the morphism induced by the natural transformation d.
Now, given a diagram D : S →D ↓G such that L ◦D= (D0,D1) : S →D× C has an absolute

limit, we get that limD0 and limD1 exist and are preserved by any functor. Hence, by the observed
above, in this case, the limit ofD exists and is given by (102). Thus, it is preserved by L. Since (100)
is conservative, this completes the proof that (100) creates absolute limits.

Finally, since (100) has a right adjoint defined by:

(Y , X) �→ (Y ×G(X), X, π2 : Y ×G(X)→G(X)) ,

the proof that (100) is comonadic is complete by Beck’s Monadicity Theorem.

Remark 98. If C has a terminal object and D has binary products as above, (100) is comonadic
and; furthermore, the comonad induced by it is the free comonad over the endofunctor onD× C
defined by (Y , X) �→ (G(X), 1).

Corollary 99. Assume that C has binary coproducts andD has binary products. We have that (100)
is comonadic and monadic provided that G has a left adjoint F.

Proof. Firstly, of course, by Theorem 97, we have that (100) is comonadic. Secondly, by the dual
of Theorem 97, we have that the forgetful functor F ↓ C → C ×D is monadic. Hence, since

D ↓G D× C

F ↓ C

L

∼=

commutes, we get that L is monadic as well.

Indeed, in our case, all the properties of the scone we are interested in follow from the
comonadicity and monadicity of (100), that is to say, Corollary 99.8

11.1 Bicartesian structure of the scone
The bicartesian closed structure of the scone D ↓G follows from the well-known result about
monadic functors and creation of limits. Namely:

Proposition 100. Monadic functors create all limits. Dually, comonadic functors create all colimits.

Proof. See, for instance, MacDonald and Sobral (2004, Section 1.4).

As a corollary, then, we have the following explicit constructions.

Corollary 101. Assuming that C andD have finite products and finite coproducts, if G : C →D has
a left adjoint, then L :D ↓G→D× C creates limits and colimits. In particular,D ↓G is bicartesian
and, in the case D× C is a distributive category, so is D ↓G.

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 389

Proof. Given a diagram D : S →D ↓G, we have that it is uniquely determined by a triple
(D0 : S →D,D1 : S → C, d :D0 →GD1) like in (101). In this case, we have that:

(1) In the proof of Theorem 97, we implicitly addressed the problem of creation of limits that
are preserved by G. Since G has a left adjoint, it preserves all the limits and, hence, all the
limits are created like (103).
More precisely, assuming that L ◦D= (D0,D1) : S →D× C has a limit, we get that both
limD0 and limD1 exist, since the projectionsD× C →D andD× C → C have left adjoints
(because C and D have initial objects).
Since G has a left adjoint, it preserves the limit of D1. Hence, the limit of D is given by:(

limD0, limD1, limD0,
d−→ lim (G ◦D1)

∼=−→G (limD1)

)
, (103)

like in (102), in which d is themorphism induced by d and lim (G ◦D1)∼=G (limD1) comes
from the fact that G preserves limits.

(2) Assuming that L ◦D= (D0,D1) : S →D× C has a limit, we get that both colimD0 and
colimD1 exist. In this case, the colimit of D is given by:(

colimD0, colimD1, colimD0
d−→ colim (G ◦D1)→G (colimD1)

)
, (104)

in which colim (G ◦D1)→G (colimD1) is the induced comparison.

Remark 102. It will be particularly important for our correctness proof in Section 13 that D ↓G
has infinite coproducts whenever C and D have finite products and infinite coproducts. This is a
consequence of the fact stated above.

11.2 Monadic–comonadic functors and the cartesian closedness of the scone
Under the conditions of our proof, the scone D ↓G is cartesian closed. In our case, we can see as
a consequence of the well-known result below.

Proposition 103. If a category is monadic–comonadic over a finitely complete cartesian closed
category, then it is finitely complete cartesian closed as well.

More precisely, ifD is finitely complete and G : C →D is monadic and comonadic, then G reflects
exponentiable objects.

Proof. See, for instance, a slightly more general version in Lucatelli Nunes (2017, Theorem 1.8.2).
Indeed, assuming that G : C →D is monadic and comonadic and that D is finitely complete, we
get that C is finitely complete as well and, moreover, G preserves them (since monadic functors
create limits).

Denoting the right adjoint of G by H, given an objectW ∈ C, we have an isomorphism:

C C

DD
∼=

(W ×−)

(G(W)×−)

G G

(105)

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

390 F. Lucatelli Nunes and M. Vákár

IfG(W) is exponentiable, we know that (G(W)×G(−))�H (G(W)⇒−). Since C has equalizers
andG is comonadic, we get that (W ×−) has a right adjoint by Dubuc’s adjoint triangle theorem.9
That is to say,W is exponentiable.

Explicitly, we get:

Corollary 104. Let C and D be finitely complete cartesian closed categories. If G : C →D has a left
adjoint, we get that D ↓G is finitely complete cartesian closed. More precisely, the exponential in
D ↓G is given by (106) where we write f ⇒ f ′ for the Pullback (107):

(C0, C1, f)⇒ (D0,D1, f ′) = (P, C1 ⇒D1, f ⇒ f ′) (106)

P C0 ⇒D0

C0 ⇒G(D1)G(C1 ⇒D1) G(C1)⇒G(D1) f ⇒G(D1)

f ⇒ f ′ C0 ⇒ f ′

(107)

11.3 Monadic functors create terminal coalgebras of compatible endofunctors
Recall the definition of preservation, reflection, and creation of initial algebras and terminal coal-
gebras; see Definitions 11 and 13.We prove and establish the result that says thatmonadic functors
create initial algebras, while, dually, comonadic functors create terminal coalgebras.

We first establish the fact that left adjoint functors preserve initial algebras and, dually, right
adjoint functors preserve terminal coalgebras. In order to do so, we start by observing that:

Lemma 105. Let

C ⊥(ε, η) D
G

F

be an adjunction. Assume that γ : E ◦ F∼= F ◦ E′ is a natural isomorphism in which E and E′ are
endofunctors. In this case, we have an induced adjunction:

E-Alg ⊥(ε̂, η̂) E′-Alg

Ĝγ

F̌γ

(108)

in which F̌γ is defined as in Definition 11 and Ĝγ is defined as follows:

Ĝγ : E-Alg → E′-Alg

(Y , ξ) �→
(
G(Y),G (ξ) ◦GE (εY) ◦G

(
γ−1
G(Y)

)
◦ ηE′G(Y)

)
f �→G(f).

Proof. In fact, the counit and unit, ε̂, η̂, are defined pointwise by the original counit and unit. That
is to say, ε̂(Y ,ξ) = εY and η̂(W,ζ) = ηW .

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 391

Remark 106 (Doctrinal adjunction). The right adjoint Ĝγ does not come out of the blue.
The association (F, γ) �→ F̌γ in Lemma 9 is part of a 2-functor, with the domain being the
2-category of endomorphisms in Cat, lax natural transformations and modifications, and the
codomain being Cat. By the doctrinal adjunction,10 we know that whenever (F, γ) is pseudo-
natural (i.e., γ is invertible) and F has a right adjoint in Cat, the pair (F, γ) has a right adjoint(
G, (GEε) ·

(
Gγ−1

G

)
· (ηE′G)) in the 2-category of endofunctors. Therefore, since 2-functors pre-

serve adjunctions, we obtain that F̌γ has a right adjoint given by Ǧ
(GEε)·

(
Gγ−1

G

)
·(ηE′G)

, denoted by

Ĝγ , whenever γ is invertible and F has a right adjoint.

The dual of Lemma 105 is given by:

Lemma 107. Let

C ⊥(ε, η) D
G

F

be an adjunction. Assume that β :G ◦ E∼= E′ ◦G is a natural isomorphism in which E and E′ are
endofunctors. In this case, we have an induced adjunction:

E-CoAlg ⊥(ε̂, η̂) E′-CoAlg

G̃β

F̂β

(109)

in which G̃β is defined as in Definition 13 and F̂β is defined as follows:

F̂ : E′-CoAlg → E-CoAlg

(W, ζ) �→
(
W, εEF(W) ◦ F(β−1

F(W)) ◦ FE′ (ηW) ◦ F (ζ)
)

g �→ F(g).

As an immediate consequence, we have that:

Theorem 108. Right adjoint functors preserve terminal coalgebras. Dually, left adjoints preserve
initial algebras.

Proof. Let G : C →D be a functor and β :G ◦ E∼= E′ ◦G a natural isomorphism in which E, E′ are
endofunctors. If F �G, we get that G̃β : E-CoAlg→ E′-CoAlg (as defined in Definition 13) has a
left adjoint by Lemma 107. Therefore, G̃β preserves limits and, in particular, terminal objects. This
completes the proof that G preserves terminal coalgebras (see Definition 13).

Finally, we can state the result about monadic functors; namely:

Theorem 109. Monadic functors create terminal coalgebras. Dually, comonadic functors create
initial algebras.

Proof. Let G : C →D be a monadic functor. Assume that β :G ◦ E∼= E′ ◦G is a natural isomor-
phism in which E, E′ are endofunctors.

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

392 F. Lucatelli Nunes and M. Vákár

We have that G̃β : E-CoAlg→ E′-CoAlg (as defined in Definition 13) has a left adjoint by
Lemma 107. Moreover, we have the commutative diagram:

E-CoAlg E′-CoAlg

DC

G̃β

G (110)

in which the vertical arrows are the forgetful functors.
Since we know that all the functors in (110) but G̃β create absolute colimits, we conclude that

G̃β creates absolute colimits as well. Therefore, G̃β is monadic and, thus, it creates all limits. In
particular, G̃β creates terminal objects. This completes the proof thatG creates terminal coalgebras
(see Definition 13).

11.4 Monadic–comonadic functors createμν-polynomials
We establish that monadic–comonadic functors create μν-polynomials below, a crucial result for
our approach to the study of μν-polynomials in the scone.

Corollary 110. Monadic–comonadic functors create μν-polynomials. More precisely, if G :A→ B
is monadic–comonadic and B has μν-polynomials, then

(1) G creates products and coproducts;
(2) A has μν-polynomials;
(3) for each μν-polynomial endofunctor E on A, there is a μν-polynomial endofunctor E on B

such that G ◦ E∼= E ◦G (and G creates the initial algebra and the terminal coalgebra of E).

Proof. Let G :A→ B be a monadic–comonadic functor in which B has μν-polynomials. We
inductively define the set×G as follows:

(×G1) the identity functor 1→ 1 belongs to×G;
(×G2) G :A→ B belongs to×G;
(×G3) if G′ :A′ → B′ and G′′ :A′′ → B′′ belong ×G, then so does the product G′ ×G′′ :A′ ×

A′′ → B′ × B′′.

We have bijections (111) and (112) inductively defined by ((bi)), ((bii)), and ((biii)):

dom : ×G→ obj
(
μνPolyA

)
(111) codom : ×G→ obj

(
μνPolyB

)
(112)

(bi) codom (1→ 1)= dom (1→ 1)= 1;
(bii) dom (G)=A and codom (G)= B;
(biii) dom

(
G′ ×G′′)= dom

(
G′)× dom

(
G′′) and codom

(
G′ ×G′′)= codom

(
G′)×

codom
(
G′′).

In other words, the function dom : ×G→ obj
(
μνPolyA

)
and codom : ×G→ obj

(
μνPolyB

)
give, respectively, the domain and codomain of each functor in×G.

Since G creates initial algebras and terminal coalgebras, it is enough to show that, for any μν-
polynomial H : C →D in μνPolyA, there is a morphism H of μνPolyB such that there is an
isomorphism:

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 393

C D

DC

∼=←→

H

H

dom−1 (C) dom−1 (D)

(113)
where D := codom ◦ dom−1 (D) and D := codom ◦ dom−1 (C).

We start by proving that the objects of μνPolyA together with the functors that satisfy the
property above do form a subcategory of Cat. Indeed, observe that the identities do satisfy the
condition above, since it is always true that

idC ◦ dom−1 (C)= dom−1 (C) ◦ idC
for any given object C of μνPolyA. Moreover, given morphisms J :D′′ →D′′′ and E :D′ →D′′ of
μνPolyA such that we have natural isomorphisms:

γ : E ◦ dom−1 (D′) ∼= dom−1 (D′′) ◦ E
γ ′ : J ◦ dom−1 (D′′) ∼= dom−1 (D′′′) ◦ J

in which J and E are morphisms of μνPolyB , we have that

D′ D′′ D′′′

D′′D′ D′′′

γ←→ γ ′
←→

E

E

dom−1 (D′) dom−1 (D′′)
J

J

dom−1 (D′′′)

(114)
is a natural isomorphism and J ◦ E is a morphism in μνPolyB .

Finally, we complete the proof that all the morphisms of μνPolyA satisfy the property above
by proving by induction over the Definition 6 of μνPolyA.

(M1) for any object C of μνPolyA, the unique functor C → 1 is such that

C 1

1C

dom−1 (C) dom−1 (1)

(115)
commutes and, of course, C → 1 is a morphism in μνPolyB ;

(M2) for any object D of μνPolyA, given a functor W : 1→D (which belongs to μνPolyA), we
have that dom−1 (D) ◦W is a morphism of μνPolyB such that

1 D

D1

W

dom−1 (D) ◦W

dom−1 (1) dom−1 (D)

(116)
commutes:

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

394 F. Lucatelli Nunes and M. Vákár

(M3) consider the binary product × :A×A→A (which exists, since G is monadic). We
have that × : B× B→ B (which is a morphism of μνPolyB) is such that we have an
isomorphism:

A×A A

BB× B

∼=←→

×

×

dom−1 (A×A) dom−1 (A)

(117)
since G :A→ B preserves products and

dom−1 (A)=G, dom−1 (A×A)=G×G;

(M4) consider the binary coproduct � :A×A→A (which exists, since G is comonadic). We
have that � : B× B→ B (which is a morphism of μνPolyB) is such that we have an
isomorphism:

A×A A

BB× B

∼=←→

�

�

G×G= dom−1 (A×A) G= dom−1 (A)

(118)
since G :A→ B preserves coproducts.

(M5) for any pair of objects (C,D) ∈μνPolyA ×μνPolyA, we have, of course, that

C ×D C

CC ×D

π1

π1

dom−1 (C ×D) dom−1 (C)

C ×D D

DC ×D

π2

π2

dom−1 (C ×D) dom−1 (D)

(119)
commute and π1 : C ×D→ C and π2 : C ×D→D are morphisms in μνPolyB .

(M6) given objects D′,D′′,D′′′ of μνPolyA, if E :D′ →D′′ and J :D′ →D′′′ are morphisms of
μνPolyA such that we have natural isomorphisms:

γ : E ◦ dom−1 (D′) ∼= dom−1 (D′′) ◦ E
γ ′ : J ◦ dom−1 (D′) ∼= dom−1 (D′′′) ◦ J

in which J and E are morphisms of μνPolyB , then
(
E, J
)
is a morphism in μνPolyB and(

γ , γ ′) defines an isomorphism:(
E, J
) ◦ dom−1 (D′)∼= dom−1 (D′′ ×D′′′) ◦ (E, J). (120)

(M7) if C is an object of μνPolyA andH : C ×A→A is a morphism of μνPolyA such that there
is an isomorphism:

γ :H ◦ dom−1 (C ×A)∼= dom−1 (A) ◦H
in which H is a morphism of μνPolyB , then, since G creates initial algebras and terminal
coalgebras, we get that there are natural transformations:

μH ◦ dom−1 (A) ∼= dom−1 (A) ◦μH

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 395

νH ◦ dom−1 (A) ∼= dom−1 (A) ◦ νH

and, of course, μH and νH are morphisms of μνPolyB .

11.5 μν-polynomials in product categories
Before applying the results above to study the μν-polynomials in suitable scones D ↓G, we need
to study the μν-polynomials in product categories C ×D. We start by showing that:

Lemma 111. Let (Ei : Ci → Ci)i∈L be a (possibly infinite) family of endofunctors such that Ei has
initial algebra

(
μEi, inEi

)
and terminal coalgebra

(
νEi, outEi

)
. The functor defined by the product:∏

i∈L
Ei :

∏
i∈L

Ci →
∏
i∈L

Ci (121)

has initial algebra given by
(
μEi, inEi

)
i∈L and terminal coalgebra given by

(
νEi, outEi

)
i∈L.

As a consequence, if (Hi :Ai × Ci → Ci)i∈L is a a (possibly infinite) family of functors with param-
eterized initial algebras and terminal coalgebras, then

∏
i∈L

Hi has parameterized initial algebra given

by
∏
i∈L

μHi :∏
i∈L

Ai →∏
i∈L

Ci and parameterized terminal coalgebra given by
∏
i∈L

νHi :∏
i∈L

Ai →∏
i∈L

Ci.

Proof. Given an
(∏
i∈L

Ei
)
-algebra (Yi, ξi)i∈L, we have that (Yi, ξi) is an Ei-algebra for every i ∈ L.

Therefore, by the universal property of
(
μEi, inEi

)
for each i, we conclude that

fold∏
i∈L

Ei (Yi, ξi)i∈L :=
(
foldEi (Yi, ξi)

)
i∈L (122)

is the unique morphism in
∏
i∈L

Ci such that

∏
i∈L

Ei (μEi)i∈L = (Ei (μEi))i∈L

(μEi)i∈L

∏
i∈L

Ei (Yi)i∈L

(Yi)i∈L

∏
i∈L

Ei
(
foldEi (Yi, ξi)

)
i∈L

∏
i∈L

Ei
(
fold∏

i∈L
Ei (Yi, ξi)i∈L

)

(ξi)i∈L
(
inEi

)
i∈L

fold∏
i∈L

Ei (Yi, ξi)i∈L
(
foldEi (Yi, ξi)

)
i∈L

(123)

holds. This proves that
(
μEi, inEi

)
i∈L is the initial

(∏
i∈L

Ei
)
-algebra. Dually,

(
νEi, outEi

)
i∈L is the

terminal
(∏
i∈L

Ei
)
-coalgebra.

We prove below that the binary product of categories with μν-polynomials has μν-
polynomials. We start by:

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

396 F. Lucatelli Nunes and M. Vákár

Definition 112 (deckA). Let (Ci)i∈L be a (possibly infinite) family of categories. We establish a
family:

(
deckiA :A→ decki (A)

)
(A,i)∈

(
obj

(
μνPoly∏

i∈L
Ci

)
×L

) (124)

of functors, where decki (A) ∈ obj
(
μνPolyCi

)
, by induction on the objects of μνPoly∏

i∈L
Ci :

decki1 := id1; (125) decki∏
i∈L

Ci := πCi :
∏
i∈L

Ci → Ci; (126)

deckiA×A′ := deckiA × deckiA′ , if
(
A,A′) ∈ obj

(
μνPoly∏

i∈L
Ci

)2
. (127)

Finally, for eachA ∈ obj
(

μνPoly∏
i∈L

Ci

)
, we define the isomorphism of categories:

deckA := (deck0A, deck1A) . (128)

Lemma 113. Let (Ci)i∈L be a (possibly infinite) family of categories with μν-polynomials. For

each pair
(
A,A′) ∈ obj

(
μνPoly∏

i∈L
Ci

)2
and any functor H :A→A′ in μνPoly∏

i∈L
Ci , we have that

deckA′ ◦H ◦ deck−1
A =∏

i∈L
Hi for some morphism (Hi)i∈L in

∏
i∈L

μνPolyCi .

Proof. It is clear the property above is closed under composition, and the identity on
∏
i∈L

Ci sat-

isfies the property. Moreover, for the base case (see Definition 6), it is clear that the functors in
μνPoly∏

i∈L
Ci defined by the base cases (M1) and (M2) satisfy the statement above. Moreover, since

the binary products and coproducts in
∏
i∈L

Ci are defined pointwise, it is also true that (M3) and

(M4) satisfy the statement above. Finally, it is also clear that the statement above holds for (M5)
and (M6).

We assume, by induction, that H :A×∏
i∈L

Ci →∏
i∈L

Ci is a morphism of μνPoly∏
i∈L

Ci such that

H ◦ deck−1
A×∏

i∈L
Ci =

∏
i∈L

Hi for some morphism (Hi)i∈L in
∏
i∈L

μνPolyCi .

Since Ci hasμν-polynomials for all i ∈ L, we have thatHi has parameterized initial algebras and
parameterized terminal coalgebras for all i ∈ L. Therefore,

∏
i∈L

Hi has parameterized initial algebra

∏
i∈L

μHi and parameterized terminal coalgebra
∏
i∈L

νHi by Lemma 111. Hence, μH =
(∏
i∈L

μHi

)
◦

deckA and νH =
(∏
i∈L

νHi

)
◦ deckA where (μHi)i∈L and (νHi)i∈L are morphisms in

∏
i∈L

μνPolyCi .

This completes the proof.

Theorem 114. Let (Ci)i∈L be a (possibly infinite) family of categories with μν-polynomials. The
category

∏
i∈L

Ci has μν-polynomials.

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 397

Proof. For each endofunctor E :∏
i∈L

Ci →∏
i∈L

Ci in μνPolyC×D , we conclude that E=∏
i∈L

Ei for

some morphism (Ei : Ci → Ci)i∈L of μνPoly∏
i∈L

Ci by Lemma 113. Therefore, by Lemma 111, E has

initial algebra and terminal coalgebra, since the functors of the family (Ei : Ci → Ci)i∈L do.

11.6 Suitable scones haveμν-polynomials
Finally, we establish the existence of μν-polynomials in the scone, and the preservation of the
initial algebras and terminal coalgebras by the forgetful functor.

Corollary 115. Let C and D be categories with μν-polynomials. If G : C →D has a left adjoint,
then D ↓G has μν-polynomials and

L :D ↓G→D× C (129)

(strictly) preserves (in fact, creates) μν-polynomials.

Proof. By Corollary 99, we have that L is monadic and comonadic. Hence, it creates μν-
polynomials and we get the conclusion of the result provided that D× C has μν-polynomials.

Indeed, by Theorem 114, D× C has μν-polynomials provided that D and C have μν-
polynomials.

11.7 The projectionD ↓ G→ C
Let C and D be bicartesian closed categories with finite limits. Recall that πC :D× C → C has left
and right adjoints, respectively, given byW �→ (W, 0) andW �→ (W, 1). Therefore, assuming that
G : C →D has a left adjoint, we get that

D ↓G L−→D× C π2−→ C (130)

has a left adjoint and a right adjoint. Therefore, it preserves limits, colimits, initial algebras, and
terminal coalgebras. Finally, (130) preserves the closed structure by Corollary (104).

Corollary 116. Let C and D be finitely complete bicartesian closed categories that have μν-
polynomials. If G : C →D has a left adjoint, the category D ↓G is a finitely complete bicartesian
closed category withμν-polynomials, and (130) is a (strictly) bicartesian closed functor that (strictly)
preserves μν-polynomials.

Furthermore, if, additionally, C andD have infinite coproducts, so doesD ↓G and (130) (strictly)
preserves them.

12. Correctness of CHAD for Tuples and Variant Types, by Logical Relations
Henceforth, we assume the hypothesis established in Section 10.6 and rely on the concrete
semantics and notation established in Section 10.

In this section, we present the basic correctness theorem for tuples and variant types, which
serves as a crucial step toward establishing the full correctness theorem for data types. More
precisely, we prove:

Theorem 117 (Correctness of CHAD for tuples and variant tuples). For any well-typed program,

x : τ 	 t : σ ,

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

398 F. Lucatelli Nunes and M. Vákár

where τ , σ are data types that do not involve inductive types, we have that �t� is differentiable.
Moreover, (131) and (132) hold

��
−→D (t)�=D�t� (131) t

��
←−D (t)�=Dt�t� (132)

It should be noted that: (1) we prove our result only assuming that the semantics of the prim-
itive operations are differentiable instead of requiring them to be smooth;11 (2) t above might, in
particular, have subprograms that use higher-order functions and (co)inductive types.

The argument we present below is a categorical version of a semantic open logical relations
proof; see, for instance, Barthe et al. (2020), Huot et al. (2020), Vákár (2021), and Vákár and
Smeding (2022). We follow the perspective described in Lucatelli Nunes and Vákár (2022b,
Section 4) and Lucatelli Nunes and Vákár (2022a).

The precise statement Theorem 117 is presented in Theorem 124.

12.1 The scone for the correctness proof
We first establish the appropriate scone for our proof (see Section 11).

By Proposition 81, Corollaries 82 and 83, we conclude, in particular, that Fam(Set), Fam(Vect)
and Fam(Vectop) are finitely complete cartesian closed categories with μν-polynomials and infi-
nite coproducts. Therefore, we conclude that Fam(Set)× Fam(Vect)× Fam(Vectop) is a finitely
complete cartesian closed category with μν-polynomials and infinite coproducts: see Theorem
114 for the result on μν-polynomials.

We consider the scone along (133), which is representable by the coproduct∐
k∈N

(
R
k,
(
R
k,Rk

)
,
(
R
k,Rk

))
in Fam(Set)× Fam(Vect)× Fam(Vectop):

←→G : Fam(Set)× Fam(Vect)→ Set (133)
←→G :=

∏
k∈N

(
Fam(Set)× Fam(Vect)× Fam(Vectop)

((
R
k,
(
R
k,Rk

)
,
(
R
k,Rk

))
,−
))

Moreover, (134) given by the copower in Fam(Set)× Fam(Vect)× Fam(Vectop) defines the left
adjoint←→F �←→G . As a consequence, we get Theorem 118 by Corollary 116:

←→F : Set → Fam(Set)× Fam(Vect)× Fam(Vectop) (134)

W �→W ⊗
∐
k∈N

(
R
k,
(
R
k,Rk

)
,
(
R
k,Rk

))∼= ∐
x∈W

(∐
k∈N

(
R
k,
(
R
k,Rk

)
,
(
R
k,Rk

)))

Theorem 118. Set ↓←→G is a finitely complete cartesian closed categories with μν-polynomials
and infinite coproducts. Moreover, (135) is a strictly bicartesian closed functor that preserves
μν-polynomials and (infinite) coproducts:

Set ↓←→G → Set× Fam(Set)× Fam(Vect)× Fam(Vectop)→ Fam(Set)
× Fam(Vect)× Fam(Vectop) (135)

Definition 119 (
←−→Scone). For short, we henceforth denote by (136), where

←−→Scone := Set ↓←→G , the
forgetful functor (135):

←→π :←−→Scone→ Fam(Set)× Fam(Vect)× Fam(Vectop) (136)

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 399

12.2 The logical relations
Guided by the characterization of differentiable morphisms and their derivatives (Lemma 94), we
now define the objects in

←−→Scone that will provide us with the appropriate predicates for our logical
relations argument.

It should be noted that, for any object (Y , (W,w), (Z, z)) in Fam(Set)× Fam(Vect)×
Fam(Vectop), the elements of←→G (Y , (W,w), (Z, z)) are families

(
fk, gk, hk

)
k∈N where, for each k ∈

N, fk :Rk → Y is a morphism in Fam(Set), gk :
(
R
k,Rk

)
→ (W,w) is a morphism in Fam(Vect)

and hk :
(
R
k,Rk

)
→ (Z, z) is a morphism in Fam(Vectop).

Definition 120 (
←−−→
�realn�). For each n-dimensional array realn ∈ Syn, we define the subset (137) of←→

R
n :=←→G (

R
n,
(
R
n,Rn) , (Rn,Rn)):

←−−→
�realn� :=

{(
fk, gk, hk

)
k∈N ∈←→

R
n : ∀k ∈N, fk is differentiable, gk =Dfk, hk =Dtfk

}
(137)

Denoting the subset inclusion by:

inc :←−−→�realn�→←→G (
R
n,
(
R
n,Rn) , (Rn,Rn)),

we define the object (138) of
←−→Scone:

←−−→
�realn� :=

(←−−→
�realn�,

(
R
n,
(
R
n,Rn) , (Rn,Rn)) , inc) . (138)

Recall that we denote by E the set of Euclidean families defined in (87). Theorem 121 relies on
the canonical diffeomorphisms given in Definition 92.

Theorem 121. Let
(
f , g, h

)
be a morphism in Fam(Set)× Fam(Vect)× Fam(Vectop). Assuming

that f :A→ B is such that A and B are Euclidean families, we have that (i) implies (ii).

(i) There is a morphism:

α :
∐
j∈J

(nj∏
i=1

←−−−−→
�realq(j,i)�

)
→
∐
l∈L

(ml∏
t=1

←−−−→
�reals(l,t)�

)
(139)

in
←−→Scone, where

(
nj
)
j∈J , (ml)l∈L,

((
q(j,i)

)
i∈{1,...,nj}

)
j∈J and

((
s(l,t)

)
t∈{1,...,ml}

)
l∈L are (possibly

infinite) families of natural numbers, such that

←→π (α)=
(
enB ◦ f ◦ en−1

A ,D
(
enB

) ◦ g ◦D (
enA

)−1 ,Dt (enB) ◦ h ◦Dt (enA)−1
)
. (140)

(ii) The morphism f is differentiable,Df = g andDtf = h.

Proof. We start by establishing the objects S0 and S1 of
←−→Scone together with the canonical

isomorphisms (147) and (148).

Let qj :=
nj∑
i=1

q(i,l) and sl :=
ml∑
t=1

s(l,t). We define the objects A0 and A1 of Set× Fam(Vect)×
Fam(Vectop) by (141) and (142): the construction of infinite coproducts in

←−→Scone follows from
Section 11.1:

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

400 F. Lucatelli Nunes and M. Vákár

A0 :=
∐
j∈J

(
R
qj ,
(
R
qj ,Rqj) , (Rqj ,Rqj))

=
⎛
⎝∐

j∈J
R
qj ,

⎛
⎝∐

j∈J
R
qj , 〈Rqj〉j∈J

⎞
⎠ ,

⎛
⎝∐

j∈J
R
qj , 〈Rqj〉j∈J

⎞
⎠
⎞
⎠ (141)

A1 :=
∐
l∈L

(
R
sl ,
(
R
sl ,Rsl

)
,
(
R
sl ,Rsl

))

=
(∐

l∈L
R
sl ,

(∐
l∈L

R
sl , 〈Rsl〉l∈L

)
,

(∐
l∈L

R
sl , 〈Rsl〉l∈L

))
(142)

We consider the subsetsS0 ⊂←→G (A0) andS1 ⊂←→G (A1) defined by (143) and (144). Denoting
by inc the appropriate subset inclusions, we define the objects S0 :=

(
S0,A0, inc

)
and S1 :=(

S1,A1, inc
)
of

←−→Scone:

S0 :=
{(
fk, gk, hk

)
k∈N ∈←→G (A0) : ∀k ∈N, fk is differentiable, gk =Dfk, hk =Dtfk

}
(143)

S1 :=
{(
fk, gk, hk

)
k∈N ∈←→G (A1) : ∀k ∈N, fk is differentiable, gk =Dfk, hk =Dtfk

}
(144)

By the results of Section 11.1, the chain rule (Lemma 90) and Definition 120, since the
canonical isomorphisms (145) and (146) are diffeomorphisms, there are (invertible) functions
can0 and can1, respectively, induced by the compositions with

(
can0,D (can0) ,Dt (can0)

)
and(

can1,
(
can1,D (can1) ,Dt (can1)

))
, such that (147) and (148) define isomorphisms in

←−→Scone:

can0 :
∐
j∈J

(nj∏
i=1

R
q(j,i)

)
∼=−→
∐
j∈J

R
qj (145)

can1 :
∐
l∈L

(ml∏
t=1

R
s(l,t)

)
∼=−→
∐
l∈L

R
sl (146)

˜can0 :=
(
can0,

(
can0,D (can0) ,Dt (can0)

)) :∐
j∈J

(nj∏
i=1

←−−−−→
�realq(j,i)�

)
∼=−→S0 (147)

˜can1 :=
(
can1,

(
can1,D (can1) ,Dt (can1)

)) :∐
l∈L

(ml∏
t=1

←−−−→
�reals(l,t)�

)
∼=−→S1 (148)

Proof of (i)⇒ (ii).
By (i) and chain rule, denoting f= enB ◦ f ◦ en−1

A , g=D
(
enB

) ◦ g ◦D (
enA

)−1 and
h=Dt (enB) ◦ h ◦Dt (enA)−1, we conclude that there is a morphism α in

←−→Scone such that

←→π
(

˜can1 ◦ α ◦ ˜can0−1
)

=(
can1 ◦ f ◦ can−1

0 ,D (can1) ◦ g ◦D (can0)
−1 ,Dt (can1) ◦ h ◦Dt (can0)

−1
)
.

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 401

This implies, by the definitions of S0 and S1, that, for any family

(
γk :Rk →∐

j∈J
R
qj

)
k∈N

of

differentiable functions, we have that, for all k ∈N:

(I) can1 ◦ f ◦ can−1
0 ◦ γk is differentiable,

(II) D (can1) ◦ g ◦D (can0)
−1 =D

(
can1 ◦ f ◦ can−1

0 ◦ γk
)
, and

(III) Dt (can1) ◦ h ◦Dt (can0)
−1 =Dt

(
can1 ◦ f ◦ can−1

0 ◦ γk
)
.

By Lemma 94, this implies that:

(A) can1 ◦ f ◦ can−1
0 is differentiable,

(B) D (can1) ◦ g ◦D (can0)
−1 =D

(
can1 ◦ f ◦ can−1

0

)
, and

(C) Dt (can1) ◦ h ◦Dt (can0)
−1 =Dt

(
can1 ◦ f ◦ can−1

0

)
.

By the chain rule (Lemma 90) and the fact that can1, can0, enA, and enB are diffeomorphisms, this
implies that f is differentiable, g =Df and h=Dtf . This completes the proof.

12.3 Logical relations as a functor
For each primitive operation op ∈Opmn1,...,nk of the source language, recall that

�op� :Rn1 × · · · ×R
nk →R

m

is differentiable, ��
−→D (op)�=D�op�, and t

��
←−D (op)�=Dt�op� (see Section 10.6). Therefore, for

each primitive operation op ∈Opmn1,...,nl , we conclude, by the chain rule (Lemma 90), that we can
define the morphism:

←→
�op� :=

(
�op�,

(
�op�, ��

−→D (op)�, t��
←−D (op)�

))
:

l∏
i=1

←−−→
�realni�→←−−→

�realm� (149)

in
←−→Scone.
Since

←−→Scone is bicartesian closed and has μν-polynomials, by the universal property of the
category Syn established in Corollary 15, we conclude:

Lemma 122. There is a unique strictly bicartesian closed functor:
←→
�−� : Syn→←−→Scone (150)

that strictly preserves μν-polynomials such that
←→
�−� extends the consistent assignment given by

(151):

realn �→←−−→
�realn�, op �→←→

�op�. (151)

Let us recall that we defined the forward-mode and reverse-mode CHAD corresponding func-
tors in Corollary 69, which we denote by −→D (−) and ←−D (−), respectively. By the universal
property of Syn and the hypothesis established in Section 10.6, we can further conclude that:

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

402 F. Lucatelli Nunes and M. Vákár

Theorem 123 (Correctness commutative diagram). Diagram (152) commutes

Syn Syn×�CSynLSyn×�CSynLSynop

←−→Scone Fam(Set)× Fam(Vect)× Fam(Vectop)

(
id,−→D (−),←−D (−)

)

←→π

←→
�−� �−�× ��−�× t

��−�

(152)

Proof. For each primitive type realn and each primitive operation op, we have that Eqs. (153) and
(154) hold by CHAD’s soundness for primitives (by which we mean the assumptions of Section
10.6):

←→π
(←−−→
�realn�

)
= (Rn,

(
R
n,Rn) , (Rn,Rn))= (�realn�, ��

−→D (realn)�, t��Dt (realn)�) (153)

←→π
(←→
�op�

)
= (�op�,D (

�op�
)
,Dt (�op�))= (�op�, ��

−→D (op)�, t��
←−D (op)�

)
(154)

Since
(
�−�× ��−�× t

��−�
) ◦ (id,−→D (−),←−D (−)

)
and ←→π ◦←→�−� are (compositions) of

strictly μν-polynomial-preserving bicartesian closed functors satisfying (153) and (154) for any
ground type realn and any primitive operation op, we conclude that

(
�−�× ��−�× t

��−�
) ◦(

id,−→D (−),←−D (−)
)
=←→π ◦←→�−� by the universal property of Syn established in Corollary 15.

12.4 Correctness result
We are now ready to establish the fundamental correctness result for both forward-mode and
reverse-mode CHAD. Specifically, we prove that these techniques yield the correct derivatives for
any well-typed program of the form x : τ 	 t : σ , where τ and σ are types constructed from sum
and product types.

Theorem 124 (Correctness of CHAD for tuples and variant tuples). Let
(
nj
)
j∈J , (ml)l∈L,((

q(j,i)
)
i∈{1,...,nj}

)
j∈J and

((
s(l,t)

)
t∈{1,...,ml}

)
l∈L be finite families of natural numbers.

For any well-typed program x : τ 	 t : σ , where

τ =
∐
j∈J

(nj∏
i=1

realq(j,i)
)

and σ =
∐
l∈L

(ml∏
t=1

reals(l,t)
)
, (155)

we have that �t� is differentiable. Moreover, (156) and (157) hold

��
−→D (t)�=D�t� (156) t

��
←−D (t)�=Dt�t� (157)

Proof. Let t :∐
j∈J

(
nj∏
i=1

realq(j,i)
)
→∐

l∈L

(ml∏
t=1

reals(l,t)
)

be a morphism in Syn. By the commuta-

tivity of Diagram 152, the morphism
(
�t�, ��

−→D (t)�, t��
←−D (t)�

)
in Fam(Set)× Fam(Vect)×

Fam(Vectop) satisfies←→π
(←→

�t�
)
=
(
�t�, ��

−→D (t)�, t��
←−D (t)�

)
.

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 403

By Theorem 121, we conclude that �t� is differentiable and
(

��
−→D (t)�, t��

←−D (t)�
)
=(

D�t�,Dt�t�
)
.

13. Inductive Data Types: μ-Polynomials
We establish the correctness of CHAD for any well-typed program of the form:

x : τ 	 t : σ ,
where τ and σ are data types in our source language in Section 13.3.

It should be noted that our source language supports inductive types, which enable us to rep-
resent lists, trees, or other more complex inductive types. In order to emphasize this fact, we refer
to our data types as inductive data types.

We start by clarifying the categorical semantics of inductive data types, which are referred to as
μ-polynomials and defined in Section 13.1. We demonstrate in Section 13.2 how μ-polynomials
can be created from coproducts and finite products in concrete models that feature infinite
coproducts. As a result, we can deduce that whenever τ is an inductive data type, �τ � is an
Euclidean family. This allows us to establish the specification and correctness of forward- and
reverse-mode CHAD for general inductive data types in Section 13.3.

The definitions and results presented below heavily rely on the terminology, notation, and
results established in Sections 3.6 and 4.

13.1 μ-polynomials
In our source language, data types are constructed using tupling, cotupling, and the μ-fixpoint
operator. From a categorical semantic viewpoint, this implies that we want to examine objects that
arise from products, coproducts, and initial algebras. Specifically, we consider the μ-polynomials
as defined below.

Definition 125 (μ-polynomials). The set μPoly of μ-polynomial functors in Syn is the smallest set
satisfying (μPoly1), (μPoly2), (μPoly3), (μPoly4), and (μPoly5).

(μPoly1) For every k ∈N, every projection πt : Synk → Syn is an element MPoly.
(μPoly2) For any k ∈N, the constant functors:

1 : Synk → Syn,W �→ 1 and 0 : Synk → Syn,W �→ 0

belong to μPoly.
(μPoly3) For any k ∈N and any primitive type realn ∈ obj

(
Syn

)
, the functor:

Hrealn : Synk → Syn

constantly equal to realn belongs to μPoly.
(μPoly4) If H : Synk → Syn and J : Synk → Syn are functors inμPoly, then (158) and (159) belong

to μPoly:

× ◦ (H, J) : Synk → Syn,W �→H(W)× J(W) (158)

� ◦ (H, J) : Synk → Syn,W �→H(W) � J(W) (159)

(μPoly5) If k ∈N− {0} and H : Synk → Syn belongs to μPoly, then the parameterized initial
algebra (initial algebra) μH : Synk−1 → Syn (μH) belongs to μPoly.

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

404 F. Lucatelli Nunes and M. Vákár

An inductive data type is a type τ in our source language that corresponds to a initial algebra of a
μ-polynomial functor E : Syn→ Syn.

13.2 μ-polynomials in concrete models: a normal form
Similarly to Euclidean families, in concrete models of our source language, we can reduce everyμ-
polynomial functor to a canonically isomorphic normal form. More precisely, we have Theorem
126.

Let G : Syn→D be a strictly cartesian closed functor that strictly preserves μν-polynomials.
Given functors H : Synk → Syn and J :Dn →D, we say that J is (H,G)-compatible if (160)
commutes

Synk Dk

Syn μD

Gk

H J

G

(160)

In the result below, we denote In := {1, . . . , n}, for each n ∈N.

Theorem 126. Let D be a cartesian closed category with μν-polynomials and infinite coprod-
ucts. We assume that G : Syn→D is strictly cartesian closed functor that strictly preserves
μν-polynomials.

If H : Synn → Syn is a functor inμPoly, then there is a quadruple (J,NH, m, n), where F :Dn →
D is an (H,G)-compatible functor, m =

(
m(j,T)

)
(j,T)∈(In∪{0})×T

is a countable family of natural

numbers and

n(Yi)i∈In : F(Yi)i∈In ∼=
∐
T∈T

⎛
⎝N

m(0,T)

T ×
n∏
j=1

Y
m(j,T)
j

⎞
⎠ (161)

is a natural isomorphism, where, for each T ∈ T,

NT =
∏
l∈LT

G
(
realz(l,T)

)
(162)

for some finite family
(
z(l,T)

)
l∈LT

of natural numbers.

Proof. The result follows from induction over the definition of μPoly. The only nontrivial part
of the proof is related to (μPoly5), that is to say, the stability of μPoly under the parameterized
initial algebras, which we sketch below.

Let H̃ : Synn+1 → Syn be a member of μPoly. We assume, by induction, that F̃ :Dn+1 →D
satisfies the above. That is to say, it is an (H,G)-compatible functor and we have a natural
isomorphism:

F̃(Yi)i∈In+1
∼=
∐
r∈L

(
Ñ

s(0,r)
r ×

n+1∏
i=1

Ys(i,r)
i

)
.

where Ñr is equal to some finite product:∏
l∈Lr

G
(
realz(l,r)

)
.

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 405

It is clear that F̃ preserves colimits of ω-chains. Hence, given W = (Wi)i∈In , μF̃W =μF̃ (W)

exists and is given by the colimit of the ω-chain:

0→ F̃W (0)→ (
F̃W
)2

(0)→· · · (163)

provided that it exists.
We claim that the colimit (163) indeed exists. More precisely, the colimit is given by the

coproduct:
∞∐
q=0

Sv(W)

where (Sv(W))v∈N is defined inductively by (S1) and (S2).

(S1) Denoting by K0 :=
{
r ∈L such that s(n+1,r) = 0

}
,

S0(W) :=
∐
r∈K0

(
Ñr ×

n∏
i=1

Ws(i,r)
i

)
.

(S2) Denoting by Ka :=
{
r ∈L such that s(n+1,r) = a

}
,

Sv+1(W) :=
∞∐
a=1

∐
r∈Ka

(
(Sv(W))a × Ñr ×

n∏
i=1

Ws(i,r)
i

)
.

By the infinitely distributive property and the universal property of the coproduct and product,
we conclude that there is a canonical isomorphism between

μF̃ (W)=
∞∐
q=0

Sv(W)

and something of the form
∐

T∈T

(
N

m(0,T)

T ×
n∏
j=1

Y
m(j,T)
j

)
, as described in (161).

SinceG preservesμν-polynomials, we conclude thatμF̃ is a
(
μH̃,G

)
-compatible satisfying the

required conditions.

As consequence, we get:

Corollary 127. Let D be a cartesian closed category with μν-polynomials and infinite coprod-
ucts. We assume that G : Syn→D is strictly cartesian closed functor that strictly preserves
μν-polynomials. If E : Syn→ Syn is an endofunctor in μPoly, then there is a canonical isomor-
phism:

N :G (μE)∼=
∐
l∈L

(ml∏
t=1

G
(
reals(l,t)

))
, (164)

where (ml)l∈L and
((
s(l,t)

)
t∈{1,...,ml}

)
l∈L are (possibly infinite) families of natural numbers.

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

406 F. Lucatelli Nunes and M. Vákár

13.3 Correctness of CHAD for inductive data types, by logical relations
Since the canonical isomorphismsN given in Corollary 127 are indeed canonical in the sense that
they are given by the composition of isomorphisms coming from the distributively property and
universal property of (co)products, we have that:

Lemma 128. Let τ be an inductive data type as defined in Section 13.1. It follows that there is a
canonical isomorphism:

Nτ :←→�τ � ∼=
∐
l∈L

(ml∏
t=1

←−−−→
�reals(l,t)�

)
, (165)

such that:

(C1) (ml)l∈L and
((
s(l,t)

)
t∈{1,...,ml}

)
l∈L are (possibly infinite) families of natural numbers;

(C2) Nτ is a diffeomorphism;
(C3) Nτ =

(
Nτ ,D

(
Nτ

)
,Dt (Nτ

))
.

By making use of the canonical isomorphisms (165), we can prove our correctness theorem;
namely:

Theorem 129 (Correctness of CHAD for tuples and variant tuples). For any well-typed program
x : τ 	 t : σ , where τ , σ are inductive data types, we have that �t� is differentiable. Moreover, (166)
and (167) hold

��
−→D [t]()�=D�t� (166) t

��
←−D [t]()�=Dt�t� (167)

Proof. Let t : τ → σ be amorphism in Syn. By the commutativity of Diagram 152 and Lemma 128,
the morphism

(
�t�, ��

−→D [t]()�,
t

��
←−D [t]()�

)
in Fam(Set)× Fam(Vect)× Fam(Vectop) is such that

←→π
(
Nσ ◦←→�t� ◦N−1

τ

)
is equal to(

Nσ ◦ �t� ◦Nτ
−1,D

(
Nσ

) ◦ ��
−→D [t]()� ◦D

(
Nτ

)−1 ,Dt (Nσ

) ◦ t
��

←−D [t]()� ◦Dt (Nτ

)−1
)
.

By Theorem 121, we conclude that

(C1) Nσ ◦ �t� ◦Nτ
−1 is differentiable;

(C2)
(
D
(
Nσ

) ◦ ��
−→D [t]()� ◦D

(
Nτ

)−1 ,Dt (Nσ

) ◦ t
��

←−D [t]()� ◦Dt (Nτ

)−1
)
= (D�t�,Dt�t�

)
.

By the chain rule, since Nσ and Nτ are diffeomorphisms, we conclude that �t� is differentiable
and

(
��

−→D [t]()�,
t

��
←−D [t]()�

)
= (D�t�,Dt�t�

)
.

14. Examples of Reverse-Mode CHAD
We provide examples of reverse-mode CHAD computation of derivatives, with a focus on com-
puting derivatives of functions involving inductive types. In particular, we consider the simplest
example of an inductive type: the type of nonempty lists of real numbers, denoted by [real]∗.

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 407

We present three examples. The function sum : [real]∗ → real that computes the sum of
elements of a list; product : [real]∗ → real that gives the product of elements of a list; and the poly-
nomial evaluator evpoly : [real]∗ → real. The semantics of these functions are roughly described
below:

�sum� : �[real]∗�→ �real�, [a0, . . . , an] �→ a0 + a1 + · · · + an (168)
�product� : �[real]∗�→ �real�, [a0, . . . , an] �→ a0a1 · · · an (169)

�evpoly� : �[real]∗�→ �real�, [a0, . . . , an, v] �→ a0 + a1v+ · · · + anvn (170)

The examples presented below heavily rely on the terminology, notation, and results estab-
lished in Sections 3.6, 4, and 13.

14.1 The derivative of 0
In order to express the polynomial evaluator, we assume that we have a morphism 0 : real→ real
whose semantics correspond to the function 0 :R→R constantly equal to 0 ∈R.

The morphism 0 : real→ real can be either a primitive operation, or a function obtained by
composing

real→ 1
0−→ real,

where the constant 0 : 1→ real would be taken to be the primitive operation. Either way, by our
semantic assumptions of Section 10.6, we get that

t
��

←−D (0)� : (R,R)→ (
R,R

)
(171)

is the morphism in Fam(Vectop) defined by the pair
(
0, 0′

)
where, for each a ∈R, 0′a :R→R is

the linear transformation constantly equal to 0.

14.2 The derivatives of (+) and (·)
We assume that

(·) : real× real→ real and (+) : real× real→ real

are primitive operations in the source language whose semantics are given, respectively, by the
addition plus :R×R→R andmultiplicationmulti :R×R→R. Since (+) and (·) are primitive
operations in the source language,←−D (+) and←−D (·) are set by definition.

By our semantic assumptions as per Section 10.6, we have:

(+) the morphism t
��

←−D (+)� : (R,R)→ (
R×R,R×R

)
of Fam(Vectop) is defined by:

t
��

←−D (+)�= (plus, plus′) (172)

where plus(a, b)= a+ b and, for each (a, b) ∈R×R, plus′(a,b) :R→R×R is defined by
x �→ (x, x).

(·) the morphism t
��

←−D (·)� : (R,R)→ (
R×R,R×R

)
of Fam(Vectop) is defined by:

t
��

←−D (·)�= (multi,multi′) (173)

where multi(a, b)= ab and, for each (a, b) ∈R×R, multi′(a,b) :R→R×R is defined by
x �→ (

bx, ax
)
.

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

408 F. Lucatelli Nunes and M. Vákár

14.3 Type of nonempty lists of real numbers in Syn and Fam(Vectop)
As our examples mainly concern the type [real]∗ of nonempty lists of real numbers in Syn, let us
first recall its categorical semantics and discuss its image under the reverse-mode CHAD←−D (−).

The [real]∗ :=μE where the endofunctor E is defined by:

E : Syn → Syn (174)
W �→ real �W × real.

Denoting by E : Fam(Vectop)→ Fam(Vectop) the endofunctor defined by:

E(W,w)= (R,R) � (W,w)× (R,R) , (175)

we conclude that
t
��

←−D ([real]∗)� = μE (176)

=
⎛
⎝ ∐

j∈N−{0}
R
j, 〈Rj〉j∈N−{0} :

∐
j∈N−{0}

R
j →Vect

⎞
⎠

by the structure-preserving property of←−D (−).
Let 〈(ζ , ζ ′) , (β , β ′)〉 : (R,R) � (W,w)× (R,R)→ (W,w) be the morphism in Fam(Vectop)

induced by given morphisms: (
ζ , ζ ′) : (

R,R
) → (W,w)(

β , β ′) : (W,w)× (R,R)→ (W,w)

in Fam(Vectop). Denoting(
ξ , ξ ′

) := foldE
(
(W,w) , 〈(ζ , ζ ′) , (β , β ′)〉) :μE → (W,w) , (177)

we have the following:

(ξ) ξ : ∐
j∈N−{0}

R
j →W is induced by the family:

ξ = 〈ξj :Rj →W〉j∈N−{0} (178)

defined by ξ1 = ζ :R→W and ξj+1 = β ◦ (ξj × idR
)
;

(ξ ′r) for each r ∈R⊂ ∐
j∈N−{0}

R
j, the component:

ξ ′r :w ◦ ξ (r)→R

is given by ζ ′
r :w ◦ ζ (r)→R.

(ξ ′) for each p= (p∗, p0) ∈R
k ×R=R

k+1 ⊂ ∐
j∈N−{0}

R
j,

ξ ′p =
(
ξ ′p∗ × idR

)
◦ β ′

(ξ(p∗),p0). (179)

14.4 Reverse-mode CHAD derivative of sum
The function sum : [real]∗ → real computes the sum of the elements of a nonempty list of real
numbers. We can express sum in Syn by:

sum := foldE (real, 〈idreal, (+)〉 : real � real× real→ real) :μE= [real]∗ → real. (180)

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 409

By the structure-preserving property of CHAD, we conclude that
t
��

←−D (sum)�= foldE
((
R,R

)
, 〈id(R,R),

(
plus, plus′

)〉 : (R,R) � (R×R,R2)→ (
R,R

))
.
(181)

Therefore, by (14.2) and (14.3), we conclude that, denoting t
��

←−D (sum)�= (�sum�, �sum�′
)
, we

have the following:

(A) the function

�sum� :
∐

j∈N−{0}
R
j →R (182)

is induced by the family 〈�sum�j :Rj →R〉j∈N−{0} defined by:

�sum�j
(
w1, . . . ,wj

)= j∑
i=1

wi;

(B) for each p ∈R
k ⊂ ∐

j∈N−{0}
R
j, we have that

�sum�′p :R→R
k (183)

is defined by x �→ (x, . . . , x).

14.5 Reverse-mode CHAD derivative of product
The function product : [real]∗ → real computes the product of the elements of a nonempty list of
real numbers. We can express product in Syn by:

product := foldE (real, 〈idreal, (·)〉 : real � real× real→ real) :μE= [real]∗ → real. (184)
By the structure-preserving property of CHAD, we have that

t
��

←−D (sum)�= foldE
((
R,R

)
, 〈id(R,R),

(
multi,multi′

)〉 : (R,R) � (R×R,R2)→ (
R,R

))
.

(185)
Therefore, by (14.2) and (14.3), we conclude that, denoting t

��
←−D (product)�=(

�product�, �product�′
)
, we have the following:

(I) the function

�product� :
∐

j∈N−{0}
R
j →R (186)

is induced by the family 〈�product�j :Rj →R〉j∈N−{0} defined by:

�product�j
(
w1, . . . ,wj

)= j∏
i=1

wi;

(II) for each

p= (p1, . . . , pk) ∈R
k ⊂

∐
j∈N−{0}

R
j,

we have that
�product�′p :R→R

k (187)

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

410 F. Lucatelli Nunes and M. Vákár

is defined by x �→ (
p̂1x, p̂2x, . . . , p̂kx

)
, where

p̂t =
∏

i∈{1,...,k}−{t}
pi.

14.6 Reverse-mode CHAD derivative of (+) ◦ (idreal × (·))
In order to compute the derivative of the polynomial evaluator as expressed in (192), we need to
compute the derivative of the function:

(+) ◦ (idreal × (·)) : real× real× real→ real (188)
whose semantics is defined by (a, b, c) �→ a+ bc.

We use the structure-preserving property of←−D (−) to compute t
��

←−D (idreal × (·))�. This gives
us:

t
��

←−D (idreal × (·))� = t
��

←−D (idreal)�× t
��

←−D (·)�
= id(R,R) ×

(
multi,multi′

)
=
(
multi,multi′

)
in Fam(Vectop), wheremulti :R×R×R→R×R is defined by

(
a, b, c

) �→ (
a, bc

)
and, for each(

a, b, c
) ∈R×R×R,

multi
′
(a,b,c) :R×R→R×R×R, (w, x) �→ (

w, cx, bx
)
. (189)

We conclude, then, that
t
��

←−D ((+) ◦ (idreal × (·)))� = t
��

←−D (+)� ◦ t
��

←−D ((idreal × (·)))�
= t

��
←−D (+)� ◦

(
t
��

←−D (idreal)�× t
��

←−D (·)�
)

= (
plus, plus′

) ◦ (id(R,R) ×
(
multi,multi′

))
is equal to the morphism:(

plus, plus′
)
:− (plus ◦ (idR ×multi) , (plus ◦ (idR ×multi))′

) : (R×R×R,R3)→ (
R,R

)
(190)

where, for each
(
a, b, c

) ∈R×R×R,

plus
′
(a,b,c) = (plus ◦ (idR ×multi))′(a,b,c) : R →R×R×R

x �→ (
x, cx, bx

)
.

14.7 Reverse-mode CHAD derivative of polynomial evaluator
For convenience, we represent a pair

(
p(x), v

)
, where

p(x)= a0 + · · · + anxn (191)
is a polynomial and v ∈R, by a nonempty list [a0, . . . , an, v]. With this notation, the polynomial
evaluator:

evpoly : [real]∗ → real
can be expressed as the composition:

μE= [real]∗
foldE(real×real,〈(0,idreal),((+)◦(idreal×(·)),π3)〉)−−−−−−−−−−−−−−−−−−−−−−−−−−−→ real× real π1−→ real. (192)

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 411

It should be noted that �〈(0, idreal) , ((+) ◦ (idreal × (·)), π3)〉� is the morphism:
R � (R×R×R)→R×R

in Fam(Set) induced by the morphism R � r �→ (0, r) and R×R×R � (a, b, c) �→ (
c, a+ bc

)
and, hence, indeed,

�evpoly� (a0, . . . , ak, v)=
(
a0 + · · · + akvk, v

)
for each (a0, . . . , ak, v) ∈R

k ⊂∐j∈N−{0} Rj.
By the structure-preserving property of←−D (−), we conclude that t��

←−D (evpoly)� is given by the
composition:

μE
foldE

(
R×R,〈((0,0′),(idR,id′R)),

((
plus,plus′

)
,(π3,π ′

3)
)
〉
)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (
R
2,R2) (π1,π ′

1)−−−−→ (
R,R

)
, (193)

where
(
π3, π ′

3
)
and

(
π1, π ′

1
)
denote the respective projections in Fam(Vectop). By Section 14.3,

denoting (
g, g′

) := foldE
(
R×R, 〈((0, 0′) , (idR, id′R)) , ((plus, plus′) , (π3, π ′

3
))〉), (194)

we have the following.

(a) The function

g :
∐

j∈N−{0}
R
j →R×R (195)

takes each
(a0, . . . , ak, v) ∈R

k+1 ⊂
∐

j∈N−{0}
R
j

to
(
a0 + a1v+ · · · + akvk, v

)
∈R×R.

(b) For each (a0, . . . , ak, v) ∈R
k+1 ⊂∐j∈N−{0} Rj,

g′(a0,...,ak,v) :R×R→R
k+1 (196)

is defined by
(
x, y
) �→ (

x, vx, v2x, . . . , vkx,
(
a1 + 2 · a2v+ 3 · a3v2 + · · · + kakvk−1

)
x+ y

)
.

Therefore
(
�evpoly�, t��evpoly�′

) :− t
��

←−D (evpoly)�=
(
π1, π ′

1
) ◦ (g, g′) is such that, for each

(a0, . . . , ak, v) ∈R
k+1 ⊂

∐
j∈N−{0}

R
j,

t
��evpoly�′(a0,...,ak,v) :R→R

k+1 is defined by:

x �→
(
x, vx, v2x, . . . , vkx,

(
a1 + 2 · a2v+ 3 · a3v2 + · · · + kakvk−1

)
x
)
.

15. Practical Considerations
Despite the theoretical approach this paper has taken, our motivations for this line of research
are very applied: we want to achieve efficient and correct reverse AD on expressive programming
languages. We believe this paper lays some of the necessary theoretical groundwork to achieve

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

412 F. Lucatelli Nunes and M. Vákár

that goal. We are planning to address the practical considerations around achieving efficient
implementations of CHAD in detail in a dedicated applied follow-up paper. However, we still
sketch some of these considerations in this section to convey that the methods described in this
paper are not merely of theoretical interest.

15.1 Addressing expression blow-up and sharing common subcomputations
We can observe that our source code transformations of Appendix B can result in code blowup
due to the interdependence of the transformations −→D �(−)1 and −→D �(−)2 (and ←−D �−1 and←−D �(−)2, respectively) on programs. This is why, in Section 8, we have instead defined a single-
code transformation on programs −→D �(−) for forward mode and ←−D �− for reverse mode that
simultaneously computes the primals and (co)tangents and shares any subcomputations they have
in common. These more efficient CHAD transformations are still representations of the canon-
ical CHAD functors −→D (−) : Syn→�CSynLSyn and ←−D (−) : Syn→�CSynLSynop in the sense
that −→D �(t)

βη+= 〈−→D �(t)1, λv.
−→D �(t)2〉 and

←−D �(t)
βη+= 〈←−D �(t)1, λv.

←−D �(t)2〉 and hence are equiva-
lent to the infficient CHAD transformations from the point of view of denotational semantics and
correctness.

We can observe that the efficient CHAD code transformations −→D �(−) and ←−D �− have the
property that the transformation −→D �(C[t1, . . . , tn]) (resp.

←−D �C[t1, . . . , tn]) of a term former
C[t1, . . . , tn] that takes n arguments t1, . . . , tn (e.g., the pair constructor C[t1, t2]= 〈t1, t2〉, which
takes two arguments t1 and t2) is a piece of code that uses the CHAD transformation −→D �(ti)
(resp. ←−D �ti) of each subterm ti exactly once. This has as a consequence the following important
compile-time complexity result that is a necessary condition if this AD technique is to scale up to
large code bases.

Corollary 130 (No code blow-up). The size of the code of the CHAD transformed programs−→D �(t)
and←−D �(t) grows linearly with the size of the original source program t.

While we have taken care to avoid recomputation as much as possible in defining these
code transformations by sharing results of subcomputations through let-bindings, the runtime
complexity of the generated code remains to be studied.

15.2 Removing dependent types from the target language
In this paper, we have chosen to work with a dependently typed target language, as this allows
our AD transformations to correspond as closely as possible to the conventional mathematics of
differential geometry, in which spaces of tangent and cotangent vectors form (nontrivial) bundles
over the space of primals. For example, the dimension of the space of (co)tangent vectors to a
sum R

n �R
m is either n or m, depending on whether the base point (primal) is chosen in the

left or right component. An added advantage of this dependently typed approach is that it leads
to a cleaner categorical story in which all η-laws are preserved by the AD transformations and
standard categorical logical relations techniques can be used in the correctness proof.

That said, while the dependent types we presented give extra type safety that simplify math-
ematical foundations and the correctness argument underlying our AD techniques, nothing
breaks if we keep the transformation on programs the same and simply coarse grain the types
by removing any type dependency. This may be desirable in practical implementations of the

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 413

algorithms as most practical programming languages have either no or only limited support for
type dependency.

To be precise, we can perform the following coarse-graining transformation (−)† on the types
of the target language, which removes all type dependency:

α† def= α

realn† def= realn

1† def= 1
(α∗σ)† def= α†∗σ †

(�x : τ .σ)† def= �x : τ †.σ †

(�x : τ .σ)† def= �x : τ †.σ †

(case t of {�1x1 → α1 | · · · �nxn → αn})† def= α1
† ∨ · · · ∨ αn

†

(μα.α)† def= μα.α†

(να.α)† def= μα.α†

(α � σ)† def= α† � σ †

(�x : τ .σ)† def= �x : τ †.σ †

(�x : τ .σ)† def= �x : τ †.σ †.

In fact, seeing that (case �1x1 → α1 | · · · �nxn → αn oft{)}-types were the only source of type
dependency in our language while these are translated to nondependent types, all�- and�-types
are simply translated to powers, copowers, function types and product types:

(�x : τ .σ)† = τ † → σ †

(�x : τ .σ)† = !τ † ⊗ σ †
(�x : τ .σ)† = τ † → σ †

(�x : τ .σ)† = τ †∗σ †.

Our translation (−)† is the identity on programs.
The types α1 ∨ · · · ∨ αn require some elaboration. We give this in the next section where

we explain how to implement all required linear types and their terms in a standard functional
programming language.

15.3 Removing linear types from the target language
15.3.1 Basics
As discussed in detail in Vákár and Smeding (2022), Vákár (2021) and demonstrated in the
Haskell implementation available at https://github.com/VMatthijs/CHAD, the types realn,
1, α∗σ , τ → σ , !τ ⊗ σ , and α � σ (and, obviously, the ordinary Cartesian function and product
types τ → σ and τ∗σ) together with their terms can all be implemented in a standard functional
language. The core idea is to implement α as the type α‡:

realn‡ def= realn

1‡ def= 1
(α∗σ)‡ def= α‡∗σ ‡

(τ → σ)‡ def= τ ‡ → σ ‡

(!τ ⊗ σ)‡ def= [(τ ‡, σ ‡)]

(α � σ)‡ def= α‡ → σ ‡.

Crucially, we implement the copowers as abstract types that can under the hood be lists of
pairs [(τ ‡, σ ‡)] and we implement the linear function types as abstract types that can under the
hood be plain functions α‡ → σ ‡. As discussed in Vákár and Smeding (2022), Vákár (2021) and
shown in the Haskell implementation, this translation extends to programs and leads to a correct
implementation of CHAD on a simply typed λ-calculus.

We explain here how to extend this translation to implement the extra linear types α1 ∨ · · · ∨
αn, μα.α and να.α required to perform AD on source languages that additionally use sum types,
inductive types, and coinductive types.

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://github.com/VMatthijs/CHAD
https://doi.org/10.1017/S096012952300018X

414 F. Lucatelli Nunes and M. Vákár

15.3.2 Linear sum types α1 ∨ . . .∨ αn
We briefly outline three possible implementations (α1 ∨ · · · ∨ αn)

‡ of the linear sum types
α1 ∨ · · · ∨ αn:

(1) as a finite (bi)product α1
‡∗ · · · ∗αn

‡;
(2) as a finite lifted sum

{
Zero |Opt1 α1

‡ | · · · |Optn αn
‡};

(3) as a finite sum
{
Opt1 α1

‡ | · · · |Optn αn
‡}.

Approach 1 has the advantage that we can keep the implementation total. As demonstrated in
Appendix C, this allows us the easily extend the logical relations argument for the correctness of
the applied implementation of Vákár and Smeding (2022) and Vákár (2021) (in actual Haskell,
available at https://github.com/VMatthijs/CHAD). Categorically, what is going on is that,
for a locally indexed category L : Cop →Cat with indexed finite biproducts and �-types, (X1 �
· · · � Xn,A1 × · · · ×An) is a weak coproduct of (X1,A1), ..., (Xn,An) in both �CL and �CLop:
that is, a coproduct for which the η-law may fail. The logical relations proof of Appendix C lifts
these weak coproducts to the subscone, demonstrating that this implementation of CHAD for
coproducts indeed computes semantically correct derivatives.

This approach was first implemented in the Haskell implementation of CHAD. However, a
major downside of approach 1 is its inefficiency: it represents (co)tangents to a coproducts as
tuples of (co)tangents to the component spaces, all but one of which are known to be zero. This
motivates approaches 2 and 3.

Approach 2 exploits this knowledge that all but one component of the (co)tangent space are
zero by only storing the single nonzero component, corresponding to the connected component
the current primal is in. To see the correctness of this approach, we can add an extra error element
⊥ to all our linear types−→D (τ)2 and

←−D (τ)2, for which⊥+ x=⊥, and do a manual (total) logical
relations proof. We can then note that we can also leave out the error element of the data type and
throw actual errors at runtime.

We pay for this more efficient representation in two ways:

• addition on the (co)tangent space is defined by:

Zero+ x= x x+ Zero= x Opti(t)+Opti(s)=Opti(t+ s)
and hence is a partial operation that throws an error if we try to add Opti(t)+Optj(s) for
i = j;

• we need to add a new zero element Zero rather than simply reusing the zeros Opti(0) that
are present in each of the components, which should be equivalent for all practical purposes.

The first issue is not a problem at all in practice, as the more precise dependent types we have
erased guarantee that CHAD only ever adds (co)tangents in the same component, meaning that
the error can never be trigerred in practice. However, it requires us to do a manual logical rela-
tions proof of correctness. This is the approach that is currently implemented in the reference
Haskell implementation of CHAD. The second issue is a minor inefficiency that can becomemore
serious if (co)inductive types are built using this representation of coproducts. This motivates
approach 3.

Approach 3 addresses the second issue with approach 2 by removing the unnecessary extra
element Zero of the (co)tangent spaces. To achieve this, however, the zeros 0 at each type−→D (τ)2 of tangent and

←−D (τ)2 of cotangents need to be made functions 0 : −→D (τ)1 →−→D (τ)2 and
0 :←−D (τ)1 →←−D (τ)2, rather than mere constant zeros. Whenever the a zero is used by CHAD, it is
called on the corresponding primal value that specifies in which component we want the zero to

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://github.com/VMatthijs/CHAD
https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 415

land. While a mathematical formalization of this approach remains future work, we have shown
this approach to workwell in practice in an experimental Haskell implementation of CHAD.As we
plan to detail in an applied follow-up paper, this approach also gives an efficient way of applying
CHAD to dynamically sized arrays.

15.3.3 Linear inductive and coinductive typesμα.α and να.α
As we have seen, linear coinductive types arise in reverse CHAD of inductive types as well as
in forward CHAD of coinductive types. Similarly, linear inductive types arise in reverse CHAD
of coinductive types as well as in forward CHAD of inductive types. It remains to be investigated
how these can be best implemented. However, as was the case for the implementation of copowers
and linear sum types, we are hopeful that the concrete denotational semantics can guide us

Observe that all polynomials F :Vect→Vect are of the formW �→ L(A)+Wn, where L�U :
Set→Vect is the usual free-forgetful adjunction. Therefore, U ◦ F=H ◦U for the polynomial
H : Set→ Set defined by S �→U(L(A))× Sn. As the forgetful functor F :Vect→ Set is monadic, it
creates terminal coalgebras, henceU(νF)= νH. This suggests that we might be able to implement
(να.α)‡ as the plain coinductive type να.α‡, where α‡ def= α.

Similarly, we have that F ◦ L= L ◦ E for the polynomial E : Set→ Set defined by E(X)=A �⊔
n X. Therefore, we have that μF= L(μE)= (μE)→R. This suggests that the implementation

of linear inductive types might be achieved by “delinearizing” a polynomial F to E, taking the
initial algebra of E and taking the function type to R.

We are hopeful that this theory will lead to a practical implementation, but the details remain
to be verified.

16. Related Work
Automatic differentiation has long been studied by the scientific computing community. In fact,
its study goes back many decades with forward-mode AD being introduced by Wengert (1964)
and variants of reverse-mode AD seemingly being reinvented several times, for example, by
Linnainmaa (1970) and Speelpenning (1980). For brief reviews of this complex history and the
basic ideas behind AD, we refer the reader to Baydin et al. (2017). For a more comprehensive
account of the traditional work on AD, see the standard reference text (Griewank and Walther
2008).

In this section, we focus, instead, on the more recent work that has proliferated since the pro-
gramming languages community started seriously studying AD. Their objectives are more closely
aligned with those of the present paper.

Pearlmutter and Siskind (2008) is one of the early programming languages papers trying to
extend the scope of AD from the traditional setting of first-order imperative languages to more
expressive programming languages. Specifically, this applied paper proposes a method to use
reverse-mode AD on an untyped higher-order functional language, through the use of an intricate
source code transformation that employs ideas similar to defunctionalization. It focuses on imple-
mentation rather than correctness or intended semantics. Alvarez-Picallo et al. (2023) recently
simplified this code transformation and formalized its correctness.

Prompted by Plotkin (2018), there has, more recently, been a push in the programming lan-
guage community to learn from Pearlmutter and Siskind (2008) and arrive at a definition of
(reverse) AD as a source code transformation on expressive languages that should ideally be
simple, semantically motivated and correct, compositional and efficient.

Among this work,Wang et al. (2019) specifies and implements much simpler reverse AD trans-
formation on a higher-order functional language with sum types. The price they have to pay is that
the transformation relies on the use of delimited continuations in the target language.

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

416 F. Lucatelli Nunes and M. Vákár

Various more theoretical works give formalizations and correctness proofs of reverse AD on
expressive languages through the use of custom operational semantics. Abadi and Plotkin (2020)
gives such an analysis for a first-order functional language with recursion, using an operational
semantics that mirrors the runtime tracing techniques used in practice. Mak and Ong (2020)
instead works with a total higher-order language that is a variant of the differential λ-calculus.
Using slightly different operational techniques, coming from linear logic, Brunel et al. (2020) and
Mazza and Pagani (2021) give an analysis of reverse AD on a simply typed λ-calculus and pro-
grammable computable functions. Notably, Brunel et al. (2020) shows that their algorithm has the
right complexity if one assumes a specific operational semantics for their linear λ-calculus with
what they call a “linear factoring rule.” Very recently, Krawiec et al. (2022) applied the idea of
reverse AD through tracing to a higher-order functional language with variant types. They imple-
ment the custom operational semantics as an evaluator and give a denotational correctness proof
(using logical relations techniques similar to those of Barthe et al. 2020; Huot et al. 2020) as well
as an asymptotic complexity proof about the full code transformation plus evaluator.

Elliott (2018) takes a different approach that is much closer to the present paper by work-
ing with a target language that is a plain functional language and does not depend on a custom
operational semantics or an evaluator for traces. Although this approach also naturally has linear
types, it is a fundamentally different algorithm from that of Brunel et al. (2020) and Mazza and
Pagani (2021): for example, the linear types can be coarse-grained to plain simply typed code (e.g.,
Haskell) with the right computational complexity, even under the standard operational semantics
of functional languages. This is the approach that we have been referring to as CHAD. Elliott’s
CHAD transformation, however, is restricted to a first-order functional language with tuples.
Vytiniotis et al. (2019) and Vákár (2021) both present (the same) extensions of CHAD to apply to
a higher-order functional source language, while still working with a functional target language.
While Vytiniotis et al. (2019) relates CHAD to the approach of Alvarez-Picallo et al. (2023) and
Pearlmutter and Siskind (2008), Vákár (2021) and its extended version (Vákár and Smeding 2022)
give a (denotational) s2emantic foundation and correctness proof for CHAD, using a combination
of logical relations techniques that Barthe et al. (2020) and Huot et al. (2022, 2020) had previously
used to prove correct (higher-order) forward-mode AD together with the observation that AD
can be understood through the framework of lenses or Grothendieck fibrations, which had pre-
viously been made by Fong et al. (2019) and Cockett et al. (2020). The present paper extends
CHAD to further apply to source languages with variant types and (co)inductive types. To our
knowledge, it is the first paper to consider reverse AD on languages with such expressive type
systems.

Acknowledgements. This project has received funding from the European Union’s Horizon 2020 research and inno-
vation program under the Marie Skłodowska-Curie grant agreement No. 895827 and from the Nederlandse Organisatie
voor Wetenschappelijk Onderzoek under NWO Veni grant number VI.Veni.202.124. This research was also supported
through the program “Oberwolfach Leibniz Fellows” by the Mathematisches Forschungsinstitut Oberwolfach in 2022 and
partially supported by the CMUC, Centre for Mathematics of the University of Coimbra – UIDB/00324/2020, funded by the
Portuguese Government through FCT/MCTES.

We thank Tom Smeding, Gordon Plotkin, Wouter Swierstra, Gabriele Keller, Ohad Kammar, Dimitrios Vytiniotis,
Patricia Johann, Michelle Pagani, Michael Betancourt, Bob Carpenter, Sam Staton, Mathieu Huot, Curtis Chin Jen Sem and
Amir Shaikhha for helpful discussions about topics related to the present work.

Notes
1 In fact, the (co)tangent vectors form a vector space and (transposed) derivatives are vector space homomorphisms.
Surprisingly, it is only the monoid structure that is relevant to phrasing and proving correct CHAD. Therefore, we choose
to emphasize this monoid structure over the full vector space structure. For example, CHAD-like algorithms also works for
more general data types than the real numbers, as long as they form a commutative monoid. An interesting example is a
datatype that implements saturation arithmetic, as is commonly used as a cheap alternative to floating point arithmetic in
machine learning.

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 417

2 In the case of tangent vectors, this often presented in terms of the (equivalent) induced lift (�x∈XTxX)→ (�y∈YTyY) of
f : X→ Y to the tangent bundles.
3 In fact, on such infinite-dimensional spaces, we have many inequivalent definitions of derivative (that all coicide for finite-
dimensional spaces) (Christensen and Wu 2014; Iglesias-Zemmour 2013).
4 This is a generalization of the proof given in Vákár (2021), where the result is established for locally indexed categories.
5 We could have allowed nonstrict preservation but, in our context, it is more practical to keep things as strict as possible.
6 Nothing would stop us from defining the derivative of a primitive operations as a more general term, rather than a linear
operation. In fact, that is what we considered in Vákár and Smeding (2022), Vákár (2021). However, we believe that treating
derivatives of operations as linear operations slightly simplifies the development and is no limitation, seeing that we are free
to implement linear operations as we please in a practical AD system.
7 The basic definition of Kan extension can be found, for instance, in Mac Lane (1971, Chapter X). Although one can verify it
directly, (64) follows from the general result about pointwise Kan extensions; see, for instance, Dubuc (1970) or Kelly (2005,
Chapter 4).
8 Some of the results presented here hold under slightly more general conditions. But we chose to make the most of our
setting, which is general enough for our proof and many others cases of interest.
9 The original result on adjoint triangles was proven in Dubuc (1968). Further comments and generalizations are given in
Lucatelli Nunes (2018), while a precise statement for our case is given in Lucatelli Nunes (2016, Corollary 1.2).
10 For the original statement, please refer to Kelly (1974). For the general case of lax algebras, see, for instance, Lucatelli
Nunes (2017, Corollary 1.4.15).
11 We even claim that the result is useful when the semantics of the primitive operations is not differentiable everywhere in
the domain; see the revised version of Lucatelli Nunes and Vákár (2022a).

References
Abadi, M. and Plotkin, G. D. (2020). A simple differentiable programming language. In: Proceedings of POPL 2020, ACM.
Adámek, J. and Koubek, V. (1979). Least fixed point of a functor. Journal of Computer and System Sciences 19 (2) 163–178.
Adamek, J., Milius, S. and Moss, L. (2010). Initial Algebras and Terminal Coalgebras: A Survey. https://web.archive.org/

web/20150919161434/https://www.tu-braunschweig.de/Medien-DB/iti/survey_full.pdf.
Adámek, J. and Rosický, J. (1994). Locally Presentable and Accessible Categories, London Mathematical Society Lecture Note

Ceries, vol. 189, Cambridge, Cambridge University Press.
Adámek, J. and Rosický, J. (2020). How nice are free completions of categories? Topology and Its Applications 273 24. Id/No

106972.
Ahman, D., Ghani, N. and Plotkin, G. D. (2016). Dependent types and fibred computational effects. In: International

Conference on Foundations of Software Science and Computation Structures, Springer, 36–54.
Altenkirch, T., Levy, P. and Staton, S. (2010). Higher-order containers. In: Conference on Computability in Europe, Springer,

11–20.
Alvarez-Picallo, M., Ghica, D. R., Sprunger, D. and Zanasi, F. (2023). Functorial string diagrams for reverse-mode automatic

differentiation. In: Klin, B. and Pimentel, E. (eds.) 31st EACSL Annual Conference on Computer Science Logic, CSL 2023,
February 13–16, 2023, Warsaw, Poland, LIPIcs, vol. 252, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 6:1–6:20.

Barr, M. (1993). Terminal coalgebras in well-founded set theory. Theoretical Computer Science 114 (2) 299–315.
Barr, M. and Wells, C. (2005). Toposes, triples and theories. Representation Theory Application Categories 2005 (12) 1–288.
Barthe, G., Crubillé, R., Lago, U. D. and Gavazzo, F. (2020). On the versatility of open logical relations - continuity,

automatic differentiation, and a containment theorem. In : Müller, P. (ed.) Programming Languages and Systems - 29th
European Symposium on Programming, ESOP 2020, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2020, Dublin, Ireland, April 25–30, 2020, Proceedings, Lecture Notes in Computer Science, vol. 12075,
Springer, 56–83.

Baydin, A. G., Pearlmutter, B. A., Radul, A. A. and Siskind, J. M. (2017). Automatic differentiation in machine learning: a
survey. Journal of Machine Learning Research 18 153:1–153:43.

Bird, G. (1984). Limits in 2-categories of locally-presentable categories. Sydney Category Seminar Report. Phd thesis,
University of Sydney.

Borceux, F. and Janelidze, G. (2001). Galois Theories, Cambridge Studies in Advanced Mathematics, vol. 72, Cambridge,
Cambridge University Press.

Brunel, A., Mazza, D. and Pagani, M. (2020). Backpropagation in the simply typed lambda-calculus with linear negation. In:
Proceedings of POPL 2020.

Carboni, A., Lack, S. and Walters, R. F. C. (1993). Introduction to extensive and distributive categories. Journal of Pure and
Applied Algebra 84 (2) 145–158.

Christensen, J. D. and Wu, E. (2014). Tangent spaces and tangent bundles for diffeological spaces. arXiv preprint
arXiv:1411.5425.

Cockett, J. R. B., Cruttwell, G. S. H., Gallagher, J., Lemay, J.-S. P., MacAdam, B., Plotkin, G. D. and Pronk, D. (2020). Reverse
derivative categories. In: Proceedings of CSL 2020.

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://web.archive.org/web/20150919161434/https://www.tu-braunschweig.de/Medien-DB/iti/survey_full.pdf
https://web.archive.org/web/20150919161434/https://www.tu-braunschweig.de/Medien-DB/iti/survey_full.pdf
https://arxiv.org/abs/1411.5425
https://doi.org/10.1017/S096012952300018X

418 F. Lucatelli Nunes and M. Vákár

Crole, R. L. 1993. Categories for Types, Cambridge, Cambridge University Press.
Diller, J. (1974). Eine variante zur dialectica-interpretation der heyting-arithmetik endlicher typen. Archiv für mathematische

Logik und Grundlagenforschung 16 (1–2) 49–66.
Dubuc, E. (1968). Adjoint triangles. In: Reports of the Midwest Category Seminar, II, Berlin, Springer, 69–91.
Dubuc, E. (1970). Kan Extensions in Enriched Category Theory, Lecture Notes in Mathematics, vol. 145, Cham, Springer.
Elliott, C. (2018). The simple essence of automatic differentiation. Proceedings of the ACM on Programming Languages 2

(ICFP) 70.
Fong, B., Spivak, D. and Tuyéras, R. (2019). Backprop as functor: a compositional perspective on supervised learning. In:

2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), IEEE, 1–13.
Gabriel, P. and Ulmer, F. (1971). Lokal präsentierbare Kategorien. (Locally Presentable Categories), Lecture Notes in

Mathematics, vol. 221, Cham, Springer.
Gödel, V. K. (1958). Über eine bisher noch nicht benützte erweiterung des finiten standpunktes. Dialectica 12 (3–4)

280–287.
Gray, J. W. (1966). Fibred and cofibred categories. In: Proceedings of the Conference on Categorical Algebra (La Jolla,

California, 1965), New York, Springer, 21–83.
Griewank, A. and Walther, A. (2008). Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, vol.

105, SIAM.
Huot, M., Staton, S. and Vákár, M. (2022). Higher order automatic differentiation of higher order functions. Logical Methods

in Computer Science 18 (1) 1–41.
Huot, M., Staton, S. and Vákár, M. (2020). Correctness of automatic differentiation via diffeologies and categorical gluing.

In: Proceedings of FoSSaCS.
Hyland, J. M. E. (2002). Proof theory in the abstract. Annals of Pure and Applied Logic 114 (1–3) 43–78.
Iglesias-Zemmour, P. (2013). Diffeology, American Mathematical Society.
Jacobs, B. (1999). Categorical Logic and Type Theory, Studies in Logic and the Foundations of Mathematics, vol. 141

Amsterdam, Elsevier.
Johnstone, P. T. (2002). Sketches of an Elephant: A Topos Theory Compendium, vol. 2, Oxford, Oxford University Press.
Kelly, G. M. (1974). Doctrinal adjunction. In: Category Seminar (Proceedings Sydney Category Theory Seminar, 1972/1973),

Lecture Notes in Mathematics, vol. 420, 257–280.
Kelly, G. M. (2005). Basic concepts of enriched category theory. Representation Theory Application Categories 2005 (10)

1–136.
Kerjean, M. and Pédrot, P.-M. (2021). ∂ is for Dialectica: Typing Differentiable Programming. Working Paper or Preprint.
Krawiec, F., Peyton Jones, S., Krishnaswami, N., Ellis, T., Eisenberg, R. A. and Fitzgibbon, A. (2022). Provably correct,

asymptotically efficient, higher-order reverse-mode automatic differentiation. Proceedings of the ACM on Programming
Languages 6 (POPL) 1–30.

Lack, S. (2012). Non-canonical isomorphisms. Journal of Pure and Applied Algebra 216 (3) 593–597.
Lambek, J. and Scott, P. J. (1988). Introduction to Higher-Order Categorical Logic, vol. 7, Cambridge, Cambridge University

Press.
Lee, J. M. (2013). Smooth manifolds. In: Introduction to Smooth Manifolds, Springer, 1–31.
Leinster, T. (2014). Basic Category Theory, vol. 143, Cambridge Studies in Advanced Mathematics, Cambridge, Cambridge

University Press.
Linnainmaa, S. (1970). The Representation of the Cumulative Rounding Error of an Algorithm as a Taylor Expansion of the

Local Rounding Errors. Master’s thesis (in Finnish), Univ. Helsinki, 6–7.
Lucatelli Nunes, F. (2016). On biadjoint triangles. Theory and Applications of Categories 31 Paper No. 9 217–256.
Lucatelli Nunes, F. (2017). Pseudomonads and Descent. Phd thesis (Chapter 1). University of Coimbra. arXiv: 1802.01767.
Lucatelli Nunes, F. (2018). On lifting of biadjoints and lax algebras. Categories and General Algebraic Structures with

Applications 9 (1) 29–58.
Lucatelli Nunes, F. (2019). Pseudoalgebras and non-canonical isomorphisms. Applied Categorical Structures 27 (1) 55–63.
Lucatelli Nunes, F. (2021). Descent data and absolute Kan extensions. Theory and Applications of Categories 37 Paper No. 18

530–561.
Lucatelli Nunes, F. (2022). Semantic factorization and descent. Applied Categorical Structures 30 (6) 1393–1433.
Lucatelli Nunes, F. and Vákár, M. (2022a). Automatic Differentiation for ML-family languages: correctness via logical

relations. arXiv e-prints, arXiv:2210.07724.
Lucatelli Nunes, F. and Vákár, M. (2022b). Logical Relations for Partial Features and Automatic Differentiation Correctness.

arXiv e-prints, arXiv:2210.08530.
Mac Lane, S. (1971). Categories for the Working Mathematician, Graduate Texts in Mathematics, vol. 5, Cham, Springer.
MacDonald, J. and Sobral, M. (2004). Aspects of monads. In: Categorical Foundations, Encyclopedia of Mathematics and its

Applications, vol. 97, Cambridge, Cambridge University Press, 213–268.
Mak, C. and Ong, L. (2020). A differential-form pullback programming language for higher-order reverse-mode automatic

differentiation. arxiv:2002.08241.
Makkai, M. and Paré, R. (1989). Accessible Categories: The Foundations of Categorical Model Theory, Contemporary

Mathematics, vol. 104 Providence, RI, American Mathematical Society.

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://arxiv.org/abs/1802.01767
https://arxiv.org/abs/2210.07724
https://arxiv.org/abs/2210.08530
https://arxiv.org/abs/2002.08241
https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 419

Mazza, D. and Pagani, M. (2021). Automatic differentiation in pcf. Proceedings of the ACM on Programming Languages 5
(POPL) 1–27.

Moss, S. K. and von Glehn, T. (2018). Dialectica models of type theory. In: Dawar, A. and Grädel, E. (eds.) Proceedings
of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09–12, 2018, ACM,
739–748.

Pearlmutter, B. A. and Siskind, J. M. (2008). Reverse-mode AD in a functional framework: Lambda the ultimate
backpropagator. ACM Transactions on Programming Languages and Systems (TOPLAS) 30 (2) 7.

Pitts, A. M. (1995). Categorical logic. Technical report, University of Cambridge, Computer Laboratory.
Plotkin, G. (2018). Some principles of differential programming languages. Invited talk, POPL.
Santocanale, L. (2002). μ-bicomplete categories and parity games. RAIRO - Theoretical Informatics and Applications -

Informatique Théorique et Applications 36 (2) 195–227.
Speelpenning, B. (1980). Compiling fast partial derivatives of functions given by algorithms. Technical report, Illinois

University, Urbana (USA). Department of Computer Science.
Tu, L. W. (2011). Manifolds. In: An Introduction to Manifolds, Springer, 47–83.
Vákár, M. (2017). In Search of Effectful Dependent Types. Phd thesis, University of Oxford. arXiv preprint arXiv:1706.07997.
Vákár, M. (2021). Reverse AD at higher types: pure, principled and denotationally correct. In: ESOP, 607–634.
Vákár, M. and Smeding, T. (2022). CHAD: combinatory homomorphic automatic differentiation. ACM Transactions on

Programming Languages and Systems 44 (3) 20:1–20:49.
Vytiniotis, D., Belov, D., Wei, R., Plotkin, G. and Abadi, M. (2019). The differentiable curry. Program Transformations for

MLWorkshop at NeurIPS 2019. https://openreview.net/forum?id=ryxuz9SzDB.
Wang, F., Wu, X., Essertel, G., Decker, J. and Rompf, T. (2019). Demystifying differentiable programming: shift/reset the

penultimate backpropagator. Proceedings of the ACM on Programming Languages 3 (ICFP) 1–31.
Wengert, R. E. (1964). A simple automatic derivative evaluation program. Communications of the ACM 7 (8) 463–464.

Appendix A. Pseudo-Preterminal Objects in Cat
The appropriate two-dimensional analogous to preterminal objects are the pseudo-preterminal
ones. Namely, in the case of Cat:

Definition 131. An object W in Cat is pseudo-preterminal if the category of functors Cat [X,W] is
a groupoid for any object X in Cat.

Lemma 132 establishes that the initial and terminal categories are, up to equivalence, the only
pseudo-preterminal objects of Cat.

Lemma 132 (Pseudo-preterminal objects in Cat). Let W be an object of Cat. Assuming that W is
not the initial object of Cat, the following statements are equivalent:

i The unique functor W → 1 is an equivalence.
ii The projection πW :W ×W →W is an equivalence.
iii The identity idW :W →W is naturally isomorphic to a constant functor c :W →W.
iv If f , g : X→W are functors, then there is a natural isomorphism f ∼= g (that is to say, W is

pseudo-preterminal).

Proof. Assuming (i), denoting by t :W → 1 the unique functor, we have that πW is the composi-
tion W ×W idW×t−−−→W × 1∼=W. Hence, since idW and t are equivalences, we conclude that πW
is an equivalence. This proves that (i)⇒ (ii).

Given any constant functor c :W →W, we have that (idW , c) :W →W ×W and the diago-
nal functor (idW , idW) :W →W ×W are such that πW ◦ (idW , c)= idW and πW ◦ (idW , idW)=
idW . Hence, assuming (ii), we have that (idW , c) and (idW , idW) are inverse equivalences of πW .
Thus we have a natural isomorphism (idW , c)∼= (idW , idW) which implies that

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://arxiv.org/abs/1706.07997
https://openreview.net/forum?id=ryxuz9SzDB
https://doi.org/10.1017/S096012952300018X

420 F. Lucatelli Nunes and M. Vákár

c∼= π2 ◦ (idW , c)∼= π2 ◦ (idW , idW)∼= idW .

This proves that (ii)⇒ (iii).
Assuming (iii), if f , g : X→W are functors, we have the natural isomorphisms:

f = idW ◦ f ∼= c ◦ f = c ◦ g ∼= idW ◦ g = g.

This shows that (iii)⇒ (iv).
Finally, assuming (iv), we have that, given any functor c : 1→W, the compositionW → 1

c−→
W is naturally isomorphic to the identity. Hence, W → 1 is an equivalence. This shows that (iv)
⇒ (i).

Remark 133. The equivalence (ii) ⇔ (iv) holds for the general context of any 2-category. The
other equivalences mean that 1 and 0 are, up to equivalence, the unique pseudo-preterminal
objects of Cat. The reader might compare the result, for instance, with the characterization of
contractible spaces in basic homotopy theory.

Appendix B. CHAD Transformation without Sharing Between Primal and (Co)tangents
In this section, we list the CHAD program transformations −→D (�)1 	−→D �(t)1 :

−→D (τ),−→D (�)1;v :−→D (�)2 	−→D �(t)2 :
−→D (τ)2[

−→D�(t)1/p],
←−D (�)1 	←−D �(t)1 :

←−D (τ) and ←−D (�)1;v :←−D (τ)2[
−→D�(t)1/p]	←−D �(t)2 :

←−D (�)2 of a program � 	 t : τ that keep the primals and (co)tangents separate without
sharing computation. We advise against implementing these, due to

(1) the code explosion they can result in, leading to a potentially large code size and compilation
times;

(2) the lack of sharing of computation they can result in, leading to poor runtime performance.

B.1 Forward-mode AD
−→D �(op(t1, . . . , tk))1

def= let x1 = −→D �(t1)1 in · · · let xk = −→D �(tk)1 in op(x1, . . . , xk)
−→D �(x)1

def= x
−→D �(let x= t in s)1

def= let x= −→D �(t)1 in
−→D �,x(s)1

−→D �(〈〉)1 def= 〈〉
−→D �(〈t, s〉)1 def= 〈−→D �(t)1,

−→D �(s)1〉
−→D �(fst (t))1

def= fst (−→D �(t)1)
−→D �(snd (t))1

def= snd (−→D �(t)1)
−→D �(λx.t)1

def= λx.〈−→D �,x(t)1, λv.let v= 〈0, v〉 in−→D �,x(t)2〉
−→D �(t s)1

def= fst (−→D �(t)1
−→D �(s)1)

−→D �(�t)1
def= �(−→D �(t)1)

−→D �(case t of {�1x1 → s1 | · · · | �nxn → sn})1 def=
case−→D �1

of {�1x1 →−→D �,x1 (s1)1 | · · · | �nxn →
−→D �,xn(sn)1 (t)}

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 421

−→D �(roll t)1
def= roll−→D �(t)1

−→D �(fold t with x→ s)1
def= fold−→D �(t)1 with x→

−→D x]s1
−→D �(gen from t with x→ s)1

def= gen from−→D �(t)1 with x→
−→D x]s1

−→D �(unroll t)1
def= unroll−→D �(t)1

−→D �(op(t1, . . . , tk))2
def= let x1 = −→D �(t11) in · · · let xk = −→D �(tk)1 in

Dop(x1, . . . , xk;〈−→D �(t1)2 • v, . . . ,
−→D �(tk) •2 v〉)

−→D �(x)2
def= projidx(x;�) (v)

−→D �(let x= t in s)2
def= let x= −→D �(t)1 in let v= 〈v,−→D �(t)2〉 in

−→D �,x(s)2
−→D �(〈〉)2 def= 〈〉
−→D �(〈t, s〉)2 def= 〈−→D �(t)2,

−→D �(s)2〉
−→D �(fst (t))2

def= fst (−→D �(t)2)
−→D �(snd (t))2

def= snd (−→D �(t)2)
−→D �(λx.t)2

def= λx.let v= 〈v, 0〉 in−→D �,x(t)2
−→D �(t s)2

def= let y= −→D �(s)1 in
−→D �(t)2 y+ (snd (−→D �(t)1 y)) •

−→D �(s)2
−→D �(�t)2

def= −→D �(t)2
−→D �(case t of {�1x1 → s1 | · · · | �nxn → sn})2 def=

let v= 〈v,−→D �(t)2〉 in case−→D �(t)1 of {�1x1 →
−→D �,x1 (s1)2 | · · · | �nxn →

−→D �,xn(sn)2}
−→D �(roll t)2

def= roll−→D �(t)2
−→D �(fold t with → xs)2

def= fold−→D �(t)2 with v→
let x= fold−→D �(t)1 with x→

−→D (τ)1[x	
−→D x(s)1/α] in

−→D x(s)2
−→D �(gen from t with x→ s)2

def= gen from−→D �(t)2 with v→ let x= −→D �(t)1 in
−→D x(s)2

−→D �(unroll t)2
def= unroll−→D �(t)2

B.2 Reverse-mode AD

←−D �(op(t1, . . . , tk))1
def= let x1 = ←−D �(t1) in · · · let xk = ←−D �(tk) in op(x1)

←−D �(x)1
def= x

←−D �(let x= t in s)1
def= let x= ←−D �(t)1 in

←−D �,x(s)1
←−D �(〈〉)1 def= 〈〉
←−D �(〈t, s〉)1 def= 〈←−D �(t)1,

←−D �(s)1〉

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

422 F. Lucatelli Nunes and M. Vákár

←−D �(fst (t))1
def= fst (←−D �(t)1)

←−D �(snd (t))1
def= snd (←−D �(t)1)

←−D �(λx.t)1
def= λx.〈←−D �,x(t)1, λv.snd (

←−D �,x(t)2)〉
←−D �(t s)1

def= fst (←−D �(t)1
←−D �(s)1

←−D �(�t)1
def= �(←−D �(t)1)

←−D �(case t of {�1x1 → s1 | · · · | �nxn → sn})1 def=
case �1x1 →←−D �,x1 (s1)1 | · · · | �nxn →

←−D �,xn(sn)1 of
←−D �(t)1{}

←−D �(roll t)1
def= roll←−D �(t)1

←−D �(fold t with x→ s)1
def= fold←−D �(t)1 with x→

←−D x(s)1
←−D �(gen from t with x→ s)1

def= gen from←−D �(t)1 with x→
←−D x(s)1

←−D �(unroll t)1
def= unroll←−D �(t)1

←−D �(op(t1, . . . , tk))2
def= let x1 = ←−D �(t1) in · · · let xk = ←−D �(tk) in let v= Dopt(x1, . . . , xk;v) in

(let v= proj1 v in
←−D �(t1)2)+ · · · + (let v= proj1 v in

←−D �(tk)2)
←−D �(x)2

def= coprojidx(x;�) (v)
←−D �(let x= t in s)2

def= let x= ←−D �(t)1 in let v= ←−D �,x(s)2 in fst (v)+ let v= snd (v) in←−D �(t)2
←−D �(〈〉)2 def= 0
←−D �(〈t, s〉)2 def= (let v= fst (v) in←−D �(t)2)+ (let v= snd (v) in←−D �(s)2)
←−D �(fst (t))2

def= let v= 〈v, 0〉 in←−D �(t)2
←−D �(snd (t))2

def= let v= 〈0, v〉 in←−D �(t)2
←−D �(λx.t)2

def= case v of !x⊗ v→ fst (←−D �,x(t)2)
←−D �(t s)2

def= let x= ←−D �(s)1 in (let v= !x⊗ v in←−D �(t)2)+
(let v= (snd (←−D �(t)1 x)) • v in

←−D �s2)
←−D �(�t)2

def= ←−D �(t)2
←−D �(case t of {�1x1 → s1 | · · · | �nxn → sn})2 def=

let v= case←−D �(t)1 of {�1x1 →
←−D �,x1 (s1)2 | · · · | �nxn →

←−D �,xn(sn)2}in
fst v+ let v= snd v in←−D �(t)2

←−D �(roll t)2
def= let v= unroll v in←−D �(t)2

←−D �(fold t with x→ s)2
def= let v= (

gen from vwith v→
let x= fold←−D �(t)1 with x→

←−D (τ)1[x	
←−D x(s)1/α] in

←−D x(s)2
)
in←−D �(t)2

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 423

←−D �(gen from t with x→ s)2
def= let v= (fold vwith v→ let x= ←−D �(t)1 in

←−D x(s)2) in
←−D �(t)2

←−D �(unroll t)2
def= let v= roll v in←−D �(t)2

Appendix C. A Manual Proof of AD Correctness for Simply Typed Coproducts
In many implementations of CHAD, we will not have access to dependent types. Therefore,
we need to give up a bit of type safety for AD on coproducts. Here, we extend the applied,
manual correctness proof of the applied CHAD implementation of Vákár and Smeding (2022,
Appendix A).

For coproducts, we have the following constructs in the source language:

inl ∈ Syn(τ , τ � σ)
inr ∈ Syn(σ , τ � σ)

[,] : Syn(τ , ρ)× Syn(σ , ρ)→ Syn(τ � σ , ρ).

C.1 Forward AD
We can define

−→D τ � (σ)1
def= −→D (τ)1 �−→D (σ)1

−→D (τ � σ)2
def= −→D (τ)1∗−→D (σ)1

−→D (inl)1
def= inl

−→D (inl)2
def= λv.〈v, 0〉

−→D (inr)1
def= inr

−→D (inr)2
def= λv.〈0, v〉

−→D ([t, s])1
def= x 	 case x of {inl x→−→D (t)1|x→−→D (s)1}

−→D ([t, s])2
def= x 	 case x of {inr x→ λv.−→D (t)2 • (fst v)|x→ λv.−→D (s)2 • (snd v)}.

Then, we have that
−→D (inl)1 ∈CSyn(−→D (τ)1,

−→D (τ)1 �−→D (τ)2)
−→D (inl)2 ∈CSyn(−→D (τ)1,

−→D (τ)2 �
−→D (τ)2∗−→D (σ)2)

−→D (inr)1 ∈CSyn(−→D (σ)1,
−→D (τ)1 �−→D (τ)2)

−→D (inr)2 ∈CSyn(−→D (σ)1,
−→D (σ)2 �

−→D (τ)2∗−→D (σ)2)
−→D ([t, s])1 ∈CSyn(−→D (τ)1 �−→D (σ)1,

−→D (ρ)1)
−→D ([t, s])2 ∈CSyn(−→D (τ)1 �−→D (σ)1,

−→D (τ)2∗−→D (σ)2 �
−→D (ρ)2).

Then, we define the following semantics:

�
−→D (τ � σ)1�

def= �
−→D (τ)1� � �

−→D (τ)1�

�
−→D (τ � σ)2�

def= �
−→D (τ)2�× �

−→D (τ)2�

�
−→D (inl)1�

def= ι1

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

424 F. Lucatelli Nunes and M. Vákár

�
−→D (inl)2�

def= _ �→ x �→ (x, 0)

�
−→D (inr)1�

def= ι2

�
−→D (inr)2�

def= _ �→ y �→ (0, y)

�
−→D ([t, s])1�

def= [�−→D (t)1�, �
−→D (s)1�]

�
−→D ([t, s])2�

def= [x �→ (x′, _) �→ �
−→D (t)2�(x)(x′), y �→ (y′, _) �→ �

−→D (t)2�(y)(y′)].
We define the forward AD logical relation Pτ�σ for coproducts on

(R→ (�τ � � �σ �))× ((R→ (�−→D (τ)1� � �
−→D (σ)1�))× (R→R� (�−→D (τ)2�× �

−→D σ)2�)))

as {
(ι1 ◦ f ′, (ι1 ◦ g′, x �→ x′ �→ (h(x)(x′), 0))) | (f ′, (g′, h′)) ∈ Pτ

}∪{
(ι2 ◦ f ′, (ι2 ◦ g′, x �→ x′ �→ (0, h(x)(x′)))) | (f ′, (g′, h′)) ∈ Pσ

}
.

Then, clearly, inl and inr respect this relation (almost by definition). We verify that [t, s]
also respects the relation provided that t and s do. Suppose that (f , (g, h)) ∈ Pτ�σ and
(�t�, (�−→D t)1�, �

−→D t)2�)) ∈ Pτ and (�s�, (�−→D s)1�, �
−→D s)2�)) ∈ Pσ . We have to show that

([�t�, �s�] ◦ f ,
([�−→D t)1�, �

−→D s)1�] ◦ g,
z �→ z′ �→ [x �→ (x′, _) �→ �

−→D t)2�(x)(x′),

y �→ (y′, _) �→ �
−→D t)2�(y)(y′)](g(z))(h(z)(z′)))) ∈ P�ρ�.

Now, we have two cases:

• (f , (g, h))= (ι1 ◦ f ′, (ι1 ◦ g′, x �→ x′ �→ (h′(x)(x′), 0))), for (f ′, (g′, h′)) ∈ Pτ . Then,

([�t�, �s�] ◦ f ,
([�−→D (t)1�, �

−→D (s)1�] ◦ g,
z �→ z′ �→ [x �→ (x′, _) �→ �

−→D (t)2�(x)(x′),

y �→ (y′, _) �→ �
−→D (t)2�(y)(y′)](g(z))(h(z)(z′))))=

(�t� ◦ f ′, (�−→D (t)1� ◦ g′, z �→ z′ �→ �
−→D (t)2�(g(z))(h(z)(z′)))),

which is a member of Pρ because t respects the logical relation by assumption.
• (f , (g, h))= (ι2 ◦ f ′, (ι2 ◦ g′, x �→ x′ �→ (0, h′(x)(x′)))) for (f ′, (g′, h′)) ∈ Pσ . Then,

([�t�, �s�] ◦ f ,
([�−→D (t)1�, �

−→D (s)1�] ◦ g,
z �→ z′ �→ [x �→ (x′, _) �→ �

−→D (t)2�(x)(x′),

y �→ (y′, _) �→ �
−→D (t)2�(y)(y′)](g′(z))(h′(z)(z′))))=

(�s� ◦ f ′, (�−→D s)1� ◦ g′, z �→ z′ �→ �
−→D (t)2�(g′(z))(h′(z)(z′)))),

which is a member of Pρ because s respects the logical relation by assumption.

It follows that our implementation of forward AD for coproducts is correct.

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

Mathematical Structures in Computer Science 425

C.2 Reverse AD
We can define

←−D (τ � σ)1
def= ←−D (τ)1 �←−D (σ)1

←−D (τ � σ)2
def= ←−D (τ)1∗←−D (σ)1

←−D (inl)1
def= inl

←−D (inl)2
def= λv.fst v

←−D (inr)1
def= inr

←−D (inr)2
def= λv.snd v

←−D ([t, s])1
def= x 	 case x of {inl x→←−D (t)1|x→←−D (s)1}

←−D ([t, s])2
def= x 	 case x of {inr x → λv.〈←−D (t)2 • v, 0〉|x→ λv.〈0,←−D (s)2 • v〉}
.

Then, we have that
←−D (inl)1 ∈CSyn(←−D (τ)1,

←−D (τ)1 �←−D (τ)2)
←−D (inl)2 ∈CSyn(←−D (τ)1,

←−D (τ)2∗←−D (σ)2 �
←−D (τ)2)

←−D (inr)1 ∈CSyn(←−D (σ)1,
←−D (τ)1 �←−D (τ)2)

←−D (inr)2 ∈CSyn(←−D (σ)1,
←−D (τ)2∗←−D (σ)2 �

←−D (σ)2)
←−D ([t, s])1 ∈CSyn(←−D (τ)1 �←−D (σ)1,

←−D (ρ)1)
←−D ([t, s])2 ∈CSyn(←−D (τ)1 �←−D (σ)1,

←−D (ρ)2 �
←−D (τ)2∗←−D (σ)2).

Then,

�
←−D (τ � (σ))1�

def= �
←−D (τ)1� � �

←−D (τ)1�

�
←−D (τ � σ)2�

def= �
←−D (τ)2�× �

←−D (τ)2�

�
←−D (inl)1�

def= ι1

�
←−D (inl)2�

def= _ �→ (x, _) �→ x

�
←−D (inr)1�

def= ι2

�
←−D (inr)2�

def= _ �→ (_, y) �→ y

�
←−D ([t, s])1�

def= [�←−D (t)1�, �
←−D (s)1�]

�
←−D ([t, s])2�

def= [x �→ z′ �→ (�←−D (t)2�(x)(z′), 0), y �→ z′ �→ (0, �←−D (t)2�(y)(z′))].
We define the reverse AD logical relation Pτ sigma for coproducts on

(R→ (�τ � � �σ �))× ((R→ (�←−D (τ)1� � �
←−D (σ)1�))× (R→ (�←−D (τ)2�× �

←−D (σ)2�)�R))

as {
(ι1 ◦ f ′, (ι1 ◦ g′, z �→ (x′, _) �→ h′(z)(x′))) | (f ′, (g′, h′)) ∈ Pτ

}∪{
(ι2 ◦ f ′, (ι2 ◦ g′, z �→ (_, y′) �→ h′(z)(y′))) | (f ′, (g′, h′)) ∈ Pσ

}
.

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X

426 F. Lucatelli Nunes and M. Vákár

Then, clearly, inl and inr respect this relation (almost by definition). We verify that [t, s]
also respects the relation provided that t and s do. Suppose that (f , (g, h)) ∈ Pτ�σ and
(�t�, (�←−D (t)1�, �

←−D (t)2�)) ∈ Pτ and (�s�, (�←−D (s)1�, �
←−D (s)2�)) ∈ Pσ . We have to show that

([�t�, �s�] ◦ f ,
([�←−D (t)1�, �

←−D (s)1�] ◦ g,
z �→ x′ �→ h(z)([x �→ z′ �→ (�←−D (t)2�(x)(z′), 0),

y �→ z′ �→ (0, �←−D (s)2�(y)(z′))](g(x))(x′)))) ∈ P�ρ�.
Now, we have two cases:

• (f , (g, h))= (ι1 ◦ f ′, (ι1 ◦ g′, z �→ (x′, _) �→ h′(z)(x′))), for (f ′, (g′, h′)) ∈ Pτ . Then,
([�t�, �s�] ◦ f ,

([�←−D (t)1�, �
←−D (s)1�] ◦ g,

z �→ x′ �→ h(z)([x �→ z′ �→ (�←−D (t)2�(x)(z′), 0),

y �→ z′ �→ (0, �←−D (s)2�(y)(z′))](g(x))(x′))))=
(�t� ◦ f ′, (�←−D (t)1� ◦ g′, z �→ x′ �→ h′(z)(�←−D (t)2�(g′(x))(x′)))),

which is a member of Pρ because t respects the logical relation by assumption:
• (f , (g, h))= (ι2 ◦ f ′, (ι2 ◦ g′, z �→ (_, y′) �→ h′(z)(y′))) for (f ′, (g′, h′)) ∈ Pσ . Then,

([�t�, �s�] ◦ f ,
([�←−D (t)1�, �

←−D (s)1�] ◦ g,
z �→ x′ �→ h(z)([x �→ z′ �→ (�←−D (t)2�(x)(z′), 0),

y �→ z′ �→ (0, �←−D (s)2�(y)(z′))](g(x))(x′))))=
(�s� ◦ f ′, (�←−D (s)1� ◦ g′, z �→ x′ �→ h′(z)(�←−D (s)2�(g′(x))(x′)))),

which is a member of Pρ because s respects the logical relation by assumption.

It follows that our implementation of reverse AD for coproducts is correct.
A categorical way to understand this proof is that (A1,A2) � (B1, B2)

def= (A1 � B1,A2 × B2) lifts
the coproduct in C to a weak (fibered) coproduct in �CL and �CLop. This weak coproduct lifts to
the subscone, in the manner outlined above. One consequence is that the AD transformations no
longer respect the η-rule for coproducts (unlike in the dependently typed setting).

Cite this article: Lucatelli Nunes F and Vákár M (2023). CHAD for expressive total languages. Mathematical Structures in
Computer Science 33, 311–426. https://doi.org/10.1017/S096012952300018X

https://doi.org/10.1017/S096012952300018X Published online by Cambridge University Press

https://doi.org/10.1017/S096012952300018X
https://doi.org/10.1017/S096012952300018X

	CHAD for expressive total languages
	Introduction
	Key Ideas
	Origins in semantic derivatives and chain rules
	CHAD on a first-order functional language
	CHAD on a higher-order language: a categorical perspective saves the day
	CHAD for sum types: a challenge – (co)tangent spaces of varying dimension
	CHAD for (co)inductive types: where do we begin?
	Inductive types and derivatives
	How does CHAD for expressive types work in practice?

	Background: Categorical Semantics of Expressive Total Languages
	Basics
	Tuple types
	Primitive types and operations
	Function types
	Sum types (aka variant types)
	Inductive and coinductive types

	Structure-Preserving Functors
	Preservation, reflection, and creation of initial algebras
	-polynomial-preserving functors

	An Expressive Functional Language as a Source Language for AD
	Modeling Expressive Functional Languages in Grothendieck Constructions
	Basics: the categories C L and C Lop
	Products in total categories
	Generators
	Cartesian closedness of total categories
	Coproducts in total categories
	Extensive indexed categories and coproducts in total categories
	Distributive property of the total category
	Extensive property of the total category
	Strictly indexed categories and split fibrations
	General result on initial algebras in total categories
	General result on terminal coalgebras in total categories
	-polynomials in total categories
	-bimodel for function types, inductive and coinductive types

	Linear bold0mu mumu dotted-Calculus as an Idealized AD Target Language
	Novel AD Algorithms as Source Code Transformations
	Some notation
	Kinding and typing of the code transformations
	Code transformations of primitive types and operations
	Forward-mode CHAD definitions
	Reverse-mode CHAD definitions

	Concrete Models
	Locally presentable categories and -polynomials
	Li, FLi, and Fam(Li)
	FLi is a -bimodel for inductive and coinductive types
	FLi is a -bimodel for function types
	Fam(Li) and Fam(Li op) are complete and cocomplete

	Concrete Denotational Semantics for CHAD
	The concrete model Fam(Set) for the source language
	Morphisms between families of sets
	Singleton families
	Coproducts of families of sets
	Products of families of sets

	The concrete model FVect for the target language
	Constant families of vector spaces
	Product of families of vector spaces
	Coproduct of families of vector spaces
	Lists and Streams

	Euclidean spaces and coproducts
	Euclidean families, differentiable morphisms, derivatives, and diffeomorphisms
	Semantic functors
	The concrete denotational model for the source language
	The concrete denotational model for the target language

	Semantic assumptions and specification of CHAD
	Specification

	Sconing
	Bicartesian structure of the scone
	Monadic–comonadic functors and the cartesian closedness of the scone
	Monadic functors create terminal coalgebras of compatible endofunctors
	Monadic–comonadic functors create -polynomials
	-polynomials in product categories
	Suitable scones have -polynomials
	The projection D"3223379 GC

	Correctness of CHAD for Tuples and Variant Types, by Logical Relations
	The scone for the correctness proof
	The logical relations
	Logical relations as a functor
	Correctness result

	Inductive Data Types: -Polynomials
	-polynomials
	-polynomials in concrete models: a normal form
	Correctness of CHAD for inductive data types, by logical relations

	Examples of Reverse-Mode CHAD
	The derivative of 0
	The derivatives of (+) and ()
	Type of nonempty lists of real numbers in Syn and Fam(Vect op)
	Reverse-mode CHAD derivative of sum
	Reverse-mode CHAD derivative of product
	Reverse-mode CHAD derivative of (+)(idreal())
	Reverse-mode CHAD derivative of polynomial evaluator

	Practical Considerations
	Addressing expression blow-up and sharing common subcomputations
	Removing dependent types from the target language
	Removing linear types from the target language
	Basics
	Linear sum types 1 …n
	Linear inductive and coinductive types . and .

	Related Work
	Pseudo-Preterminal Objects in Cat
	CHAD Transformation without Sharing Between Primal and (Co)tangents
	Forward-mode AD
	Reverse-mode AD

	A Manual Proof of AD Correctness for Simply Typed Coproducts
	Forward AD
	Reverse AD

