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The Heron parameters of a triangle

ALAN F. BEARDON and PAUL STEPHENSON

1.  The problem
If a triangle has sides of integer lengths, and an inscribed circle of unit

radius, then it is a right-angled triangle with sides of lengths 3, 4 and 5.  To
see that this is the only right-angled triangle with these properties draw a
right-angled triangle with sides of integer lengths ,  and  (the
hypotenuse), and inscribed circle of unit radius.  Obviously  and

, so we can write  and  for positive integers
 and .  As the two tangents from a point outside a circle to the circle are

of equal length, we see that .  Thus

a b c
a > 1

b > 1 a = 1 + a1 b = 1 + b1
a1 b1

c = a1 + b1

(a1 + b1)2 = c2 = a2 + b2 = (1 + a1)2 + (1 + b1)2 ,
or ; hence  as required.  However,
how do we show that this is the only (not necessarily right-angled) triangle
with these properties?

(a1 − 1) (b1 − 1) = 2 {a1, b1} = {2,3}

This paper is concerned with the following more general problem.  Let
 be a triangle with vertices ,  and , sides of lengths ,  and  (opposite

the vertices ,  and , respectively), and an inscribed circle (the incircle of
) of radius  (the inradius of ) and centre .  We say that  is an integral

triangle if  and  are positive integers, and we wish to find all integral
triangles with a given inradius .  There are many examples and discussions
in the literature on this topic; for example the number of integral triangles
with inradius , , is discussed in The on-line encyclopedia
of integer sequences [1].  There is some overlap here with the paper [2] (and
no doubt with others too), and the second author has written a diary [3]
which charts the progress of this paper (during which time we were unaware
of [2]).

T A B C a b c
A B C

T r T I T
a, b, c r

r

n n = 1,  2,  3, …

Here we shall present an account of this problem that is based on a
parametrisation of the space of all triangles by parameters which we shall
call the Heron parameters of a triangle.  The space of triangles can be
parametrised, up to congruence, by the set of lengths of the three sides of the
triangle.  However, the disadvantage of these parameters is that not every
triple of positive numbers yields a triangle.  By contrast, every triple of
positive Heron parameters does produce a triangle, and this leads to simpler
discussion of our problem.  For example, while there is no triangle whose
triple of side lengths is (1, 2, 100), there is a triangle whose triple of side
lengths is .  While many (perhaps most)
authors have used these ideas when discussing the problem, we are
suggesting here that the Heron parameters are worthy of a more prominent
role in the discussion than they have hitherto been given.  In particular, we
shall use Heron parameters to show, perhaps surprisingly, that there is only
one acute-angled integral triangle whose inradius is a given prime number.

(1 + 2,  1 + 100,  2 + 100)
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2.  The Heron parameters of a triangle
The Heron parameters  of  are defined geometrically in

Figure 1, and analytically by the equations
(u, v, w) T

2u = b + c − a,  2v = c + a − b,  2w = a + b − c, (1)
or, equivalently, by

a = v + w,  b = w + u,  c = u + v. (2)
We call  the Heron parameters because, as we shall see, they appear
in Heron's formula for the area of .

(u, v, w)
T

r
r

I

r

v

v

u

w

w

u

C

B

A

FIGURE 1: The Heron parameters of the triangle T

Suppose that  is any triple of positive numbers, and we define
 and  by (2).  Then  and  automatically satisfy the usual triangle

inequalities (for example, ), so that there does exist a triangle
whose sides have lengths  and  (and which is unique up to congruence).
Moreover, the Heron parameters of  are .  These observations are
included in the next result which shows how the Heron parameters are
related to the inradius of a triangle.

(u, v, w)
a, b c a, b c

c ≤ a + b T
a, b c

T (u, v, w)

Theorem 1:  Let  be any triple of positive numbers.  Then there
exists a triangle , unique up to congruence, whose sides have lengths

,  and , whose Heron parameters are  and whose
inradius  satisfies

(u, v, w)
T

v + w w + u u + v (u, v, w)
r

r2 (u + v + w) = uvw (3)
or, equivalently,

(uv − r2) (uw − r2) = r2 (r2 + u2) . (4)
Further, if  is an integral triangle then  and  are integers.  Finally,  is
obtuse-angled if , right-angled if , and
acute-angled if . 

T u, v w T
min {u, v, w} < r min {u, v, w} = r

min {u, v, w} > r
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Proof:  By Heron's formula, the area of  is  or,
equivalently, , where .  If we
divide  into three triangles by the segments ,  and  we see that  has
area ; thus , which is (3).  It is an elementary exercise to show
that (4) is equivalent (3).

T s (s − a) (s − b) (s − c)
suvw s = 1

2 (a + b + c) = u + v + w
T AI BI CI T

RS r2s = uvw

Now suppose that  is an integral triangle, and let ,
and .  As  and  are integers, we see from (1) that  and
are integers.  Then, from (3),  so that at least
one of  and  is an even integer.  However, as ,

 and , we see that  and  have the same
parity.  Thus they are all even integers; hence  and  are integers.  To
prove the last assertion, suppose that the angles of  at  and  are ,

 and , respectively; then , and the
stated result follows from this.

T U = 2u V = 2v
W = 2w a, b c U , V W

4r2 (U + V + W) = UVW
U , V W U + V = 2c

V + W = 2a W + U = 2b U , V W
u, v w

T A, B C 2α
2β 2γ u tan α = v tan β = w tan γ = r

We may assume that the Heron parameters of a given integral triangle
satisfy .  Then , so that

 (in fact, as  is irrational we have ).  Thus, given
, , where  is the integer part of .  Next, for each of

these values of  we can write (in different ways) ,
where  are positive integers with , and then put
and .  These values of  and  satisfy (4), and this
provides us with an algorithm (and a computer program) for listing all
integral triangles with a given integral inradius .  We leave the reader to
check (or consult [2]) that the only integral triangle with  has Heron
parameters (1, 2, 3), and therefore has sides of lengths 3, 4 and 5.

T
1 ≤ u ≤ v ≤ w u2w ≤ uvw = r2(u + v + w) ≤ 3r2w

1 ≤ u ≤ 3r 3 u < 3r
r u ∈ {1,2, … , M} M 3r

u r2 (r2 + u2) = k1k2
kj k1 ≤ k2 v = (r2 + k1) / u

w = (r2 + k2) / u v w

r
r = 1

In a similar way we can find all integral triangles with .  First, we
have .  Then, by factorising  (which is either 20, 32
or 52), we see that  is one of

r = 2
1 ≤ u ≤ 3 r2 (r2 + u2)

{u, v, w}
,{1,5,24} ,{1,6,14} ,{1,8,9} ,{2,3,10} ,{2,4,6}

and the triple  of side lengths is one of (a, b, c)

,(6,25,29) ,(7,15,20) ,(9,10,17) ,(5,12,13) .(6,8,10)
The first three of these are obtuse-angled triangles; the last two are right-
angled triangles.  Finally, for  we can take  to be, for
example, any of  and ; then  is one of 

r = 3,  4,  5, .… k1
1, r r2 (u, v, w)

(1, r2 + 1, r4 + 2r2),  (1, r2 + r, r3 + r2 + 2),  (1,2r2,2r2 + 1), (5)
and these provide three obtuse-angled integral triangles with inradius  for
which  is one of the triples

r
(a, b, c)

(r2 + 2, r4 + 2r2 + 1, r4 + 3r2 + 1) ,
(r2 + r + 1, r3 + r2 + r + 1, r3 + 2r2 + 2r) ,

(2r2 + 1,  2r2 + 2,  4r2 + 1) .
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In each case, , so that  is 1 or 2.  As each of
these triangles has a side whose length is odd we see that, in each case,

.  

2 + c = a + b gcd (a, b, c)

gcd (a, b, c) = 1

3.  Acute-angled integral triangles
Throughout this section  will be an acute-angled integral triangle

whose sides have lengths  and , whose Heron parameters are  and
, and whose inradius is .  We may assume that ; thus from

Theorem 1,

T
a, b c u, v

w r u ≤ v ≤ w

r < u ≤ v ≤ w. (6)
Next, from (3) we obtain

1
r2

=
1
uv

+
1

vw
+

1
uw

. (7)

This shows that  so that .  In addition, as

and , we have 

1
r2

≤
3
uv

<
3
rv

v < 3r u ≥ r + 1

v ≥ r + 1

1
r2

≤
1

(r + 1)2
+

2
(r + 1) w

,

and, as ,  this simplifies to give .  In conclusion, we have
seen above that , so that if  is an acute-angled integral triangle
then, in addition to (6), we have

r ≥ 1 w ≤ 4r2 / 3
u < 3r T

u < 3r,  v < 3r,  w ≤
4r2

3
. (8)

This provides a reasonably efficient way to find all acute-angled integral
triangles with a given inradius .  We simply check whether, for

 (recall that  is the integer part of ) and

, the value of , where , is an integer.

If it is then  provides such a triangle, and all such triangles will be
obtained in this way.

r
u = r + 1, … , M M 3r

v = u, … ,  3r − 1 w w =
r2 (u + v)
uv − r2

(u, v, w)

In his recent paper [2] Bob Burn asked for all acute-angled integral
triangles whose inradius is prime.  He found one such triangle, say , with
side lengths (10, 10, 12) and inradius 3, and stated that he had found no
others with a prime inradius at most 97.  We shall now show that is the
only acute-angled integral triangle whose inradius is a prime.  Let  be an
integral triangle whose inradius  is prime.  From (3),  divides  and, as

, we see that  does not divide .  Thus  divides
and, as  is prime, one of the following cases must arise: (i)  divides ; (ii)

 divides ; (iii)  divides both  and .  Note that in Cases (i) and (iii),
divides  so that, from (8), .

T0

T0
T

r r2 uvw
r < u < 3r < 2r r u r2 vw,

r r2 v
r2 w r v w r

v v = 2r
In Case (i),  and, as  divides , we see that .  We knowv = 2r r2 v r = 2
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all integral triangles with , and none is acute-angled; thus (i) does not
arise.

r = 2

In Case (ii),  divides  and so, from (3), .  Thus
, which simplifies to .

However,  and, as we cannot have , we
must have ; thus Case (ii) does not arise.

r2 w w = r2

r2 (u + v + r2) = uvr2 (u − 1) (v − 1) = 1 + r2

r + 1 ≤ u ≤ v u = v = r + 1
(u − 1)(v − 1) ≥ r (r + 1) > 1 + r2

We have now proved that Case (iii) occurs; that is,  divides both  and
.  In this case,  and , where  is some integer and .

Thus, from (3),  and, since , we obtain .  This

gives  and .  As  is an integer and  is prime, we
have ,  and .  This shows that  is the only
integral triangle with a prime inradius.

r v
w v = 2r w = kr k k ≥ 2

u =
r (2 + k)
2k − 1

u > r k = 2

u = 4r / 3 v = w = 2r u r
r = 3 u = 4 v = w = 6 T0

4.  The parametrisation of Pythagorean triangles
We say that  is a Pythagorean triangle if it is a right-angled triangle

whose sides have integral lengths ,  and , and that it is a primitive
Pythagorean triangle if, in addition, .  It was known, at
least as early as 1894 (see [4]), that the inradius of a Pythagorean triangle is
an integer; for a more recent proof (which uses Lemma 4.1) see [5, p. 288].
In any event, this shows that a Pythagorean triangle is an integral triangle.  

T
a b c

gcd (a, b, c) = 1

We now recall the following well known parametrisation of primitive
Pythagorean triangles; see, for example, [5, p. 285].  

Theorem 2:  Let ,  and  be positive integers such that , and
.  Then  and  are of different parity.  If we relabel (if

necessary) so that  is even and  is odd, then there are positive, coprime
integers  and , of opposite parity and with , such that

,  and .

a b c a2 + b2 = c2

gcd (a, b, c) = 1 a b
a b

p q 1 ≤ p < q
a = 2pq b = q2 − p2 c = q2 + p2

If we use (1) to rewrite Theorem 2 in terms of the Heron parameters, we
obtain the following result; see Figure 2.

Theorem 3:  Let  be the primitive Pythagorean triangle with parameters
and  as given in Theorem 2.  Then the Heron parameters of  are (in some
order) . 

T p
q T

(q (q − p) , p (q + p) , p (q − p))

r
r

r
q(q − p)

q (q − p)

p(q − p)

p(q − p)

p(q + p)

p(q + p)

FIGURE 2: The Heron parameters of a primitive Pythagorean triangle
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We also mention that there is another, less well known, parametrisation
of primitive Pythagorean triangles which appears in [4] (published in 1894,
but see [6]).

Theorem 4:  Let ,  and  be positive integers such that , and
.  Then there are coprime integers  and  such that

is an even integer, say , and .

a b c a2 + b2 = c2

gcd (a, b, c) = 1 m n 2mn
2k (a, b, c) = (m + 2k, n + 2k, m + n + 2k)

We shall call the parameters ,  and  in Theorem 4 the Dickson
parameters and, in contrast to the parameters  and  in Theorem 2, the side
lengths  and  and  are linear functions of these parameters.  As the same
is true of the Heron parameters, there must be a linear relation between the
Dickson parameters and the Heron parameters.  There is, and the Heron
parameters of the triangle are .  As the Dickson
parameters are only available for Pythagorean triangles, and as they are
linearly related to the Heron parameters, we may reasonably regard the
Heron parameters as a generalisation of the Dickson parameters.

m n k
p q

a b c

(n + k, m + k, k)

5.  Pythagorean triangles with a given inradius
We shall now give a formula for the number of Pythagorean triangles,

and for the number of primitive Pythagorean triangles, that have a given
inradius .r

Theorem 5:  Let  be a positive integer.  Then the number  of
Pythagorean triangles with inradius  is , where  is the number
of positive divisors of .  Further, the number  of primitive
Pythagorean triangles with inradius  is the number of odd unitary divisors
of  (that is, the number of positive, odd divisors  of  such that

).  

r P (r)
r 1

2d (2r2) d (n)
n P0 (r)

r
r m r

gcd (m, r / m) = 1

The function  (which is often denoted by  in the literature) is
discussed at some length in [7, pp. 260-263].  As each positive divisor of
lies in , we see that .  In fact, by a much deeper

argument it is shown in [7] that, for any positive ,  as .

This implies that, for any positive ,  as .  Thus,

ultimately,  is less than any positive power of .

d (n) τ (n)
n

{1, … , n} d (n) ≤ n

ε
d (n)

nε → 0 n → ∞

ε
P (r)

rε → 0 r → ∞
P (r) r

Proof of Theorem 5:  There is a 1-1 correspondence between integral
triangles and their triples of Heron parameters  with ;
thus the problem is to count those triples of Heron parameters that
correspond to integral Pythagorean triangles with inradius .  For such
triangles,  and, from (4), .  As  is not the
square of an integer,  so that .  It follows that the

(u, v, w) u ≤ v ≤ w

r
u = r (v − r) (w − r) = 2r2 2r2

v ≠ w v − r < w − r
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number of possible choices of  is the same as the number of divisors  of
 such that .  This number is  and, as each  determines

the value of , .

v k
2r2 k < 2r2 / k 1

2d (2r2) v
w P (r) = 1

2d (2r2)
Each primitive Pythagorean triangle with sides of lengths ,  and ,

where  and  is even, produces a pair of positive coprime
integers  and  of different parity, and with , as given in Theorem 2.
As  and  are uniquely determined by ,  and , and each such pair of
and  produces a triangle, we see from Theorem 3 that the number of
integral primitive Pythagorean triangles with inradius  is the number of
ways we can write , where  and  are coprime (as  and
 are), and  is odd (as  and  have different parities).  The given

formula for  follows from this.

a b c
a2 + b2 = c2 a

p q p < q
p q a b c p
q

r
r = p (q − p) p q − p p

q q − p p q
P0 (r)

There are many examples in [1], and we have provided all of the
information needed to obtain these.  Here we give one more example.  We
have seen that there is only one primitive Pythagorean triangle with ,
and also when .  Now suppose that  is a prime, and .  Then,
starting with either of the Heron parameters

r = 1
r = 2 r r ≥ 3

(r, r + 1,  2r2 + r) , (r, r + 2, r2 + r) ,
we obtain the two Pythagorean triangles whose triple of side lengths is one
of the triples

(2r + 1,  2r2 + 2r,  2r2 + 2r + 1)  (2r + 2, r2 + 2r, r2 + 2r + 2) .
We leave the reader to check that each of these is a primitive Pythagorean
triangle; thus for any prime  with  there are at least two primitive
Pythagorean triangles with inradius .

r r ≥ 3
r
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Nemo (continued from page 204)

This month we turn the focus onto poems about spirals.  The quotations
are to be identified by reference to author and work. Solutions are invited to
the Editor by 30th September 2015.

1. And how will your night dances
Lose themselves.
In mathematics?

Such pure leaps and spirals —

2. Year after year beheld the silent toil
That spread his lustrous coil;
Still, as the spiral grew,
He left the past year's dwelling for the new,
Stole with soft step its shining archway through,
Built up its idle door,
Stretched in his last-found home, and knew the old no more.

3. Stairs fly as straight as hawks;
Or else in spirals, curve out of curve, pausing
At a ledge to poise their wings before relaunching.

4. As up he wings the spiral stair,
A song of light, and pierces air
With fountain ardour, fountain play,
To reach the shining tops of day,
And drink in everything discern'd
An ecstasy to music turn'd

(Continued on page 242)

https://doi.org/10.1017/mag.2015.27 Published online by Cambridge University Press

https://doi.org/10.1017/mag.2015.27

