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Lie Superalgebras Graded
by the Root Systems
C(n), D(m, n), D(2, 1;α), F(4), G(3)

To Professor Robert Moody with our best wishes on his sixtieth birthday

Georgia Benkart and Alberto Elduque

Abstract. We determine the Lie superalgebras that are graded by the root systems of the basic classical

simple Lie superalgebras of type C(n), D(m, n), D(2, 1;α) (α ∈ F \ {0,−1}), F(4), and G(3).

1 Introduction

The concept of a Lie algebra graded by a finite root system was defined and inves-

tigated by Berman and Moody [BM] as an approach for studying various impor-

tant classes of Lie algebras such as the intersection matrix Lie algebras of Slodowy

[S], which arise in the study of singularities, or the extended affine Lie algebras of

[AABGP]. The unifying theme is that these Lie algebras exhibit a grading by a finite

(possibly nonreduced) root system ∆. The formal definition depends on a finite-

dimensional split simple Lie algebra g over a field F of characteristic zero having a

root space decomposition g = h ⊕
⊕

µ∈∆ gµ relative to a split Cartan subalgebra h.

Such a Lie algebra g is an analogue over F of a finite-dimensional complex simple Lie

algebra.

Definition 1.1 A Lie algebra L over F is graded by the (reduced) root system ∆ or is

∆-graded if

(∆G1) L contains as a subalgebra a finite-dimensional split simple Lie algebra g =

h ⊕
⊕

µ∈∆ gµ whose root system is ∆ relative to a split Cartan subalgebra

h = g0;

(∆G2) L =
⊕

µ∈∆∪{0} Lµ, where Lµ = {x ∈ L | [h, x] = µ(h)x for all h ∈ h} for

µ ∈ ∆ ∪ {0}; and

(∆G3) L0 =
∑

µ∈∆[Lµ, L−µ].

There is also a notion of a Lie algebra graded by the nonreduced root system BC r

introduced and studied in [ABG2] (see also [BS] for the BC1-case). The Lie algebras
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graded by finite root systems (both reduced and nonreduced) decompose relative to

the adjoint action of g into a direct sum of finite-dimensional irreducible g-modules.

There is one possible isotypic component corresponding to each root length and one

corresponding to 0 (the sum of the trivial g-modules). Thus, for the simply-laced

root systems only adjoint modules and trivial modules occur. For the doubly-laced

root systems, copies of the module having the highest short root as its highest weight

also can occur. For type BCr, there are up to four isotypic components, except when

the grading subalgebra g has type D2
∼= A1×A1, where there are five possible isotypic

components. The complexity increases with the number of isotypic components.

These g-module decompositions and the representation theory of g play an essential

role in the classification of the Lie algebras graded by finite root systems, which has

been accomplished in the papers [BM], [BZ], [N], [ABG1], [ABG2], [BS].

Our focus here and in [BE1], [BE2] is on Lie superalgebras graded by the root

systems of the finite-dimensional basic classical simple Lie superalgebras A(m, n),

B(m, n), C(n), D(m, n), D(2, 1;α) (α ∈ F \ {0,−1}), F(4), and G(3). (A stan-

dard reference for results on simple Lie superalgebras is Kac’s ground-breaking paper

[K1].)

Let g be a finite-dimensional split simple basic classical Lie superalgebra over a

field F of characteristic zero with root space decomposition g = h⊕
⊕

µ∈∆ gµ relative

to a split Cartan subalgebra h. Thus, g is an analogue over F of a complex simple Lie

superalgebra whose root system ∆ is of type A(m, n) (m ≥ n ≥ 0,m + n ≥ 1),

B(m, n) (m ≥ 0, n ≥ 1), C(n) (n ≥ 3), D(m, n) (m ≥ 2, n ≥ 1), D(2, 1;α) (α ∈
F \ {0,−1}), F(4), and G(3). These Lie superalgebras can be characterized by the

properties of being simple, having reductive even part, and having a nondegenerate

even supersymmetric invariant bilinear form. Mimicking Definition 1.1, we say

Definition 1.2 (Compare [BE1, Definition 1.4] and [GN, Section 4.7]) A Lie super-

algebra L over F is graded by the root system∆ or is∆-graded if

(i) L contains as a subsuperalgebra a finite-dimensional split simple basic classical

Lie superalgebra g = h⊕
⊕

µ∈∆ gµ whose root system is∆ relative to a split Cartan

subalgebra h = g0;

(ii) (∆G2) and (∆G3) of Definition 1.1 hold for L relative to the root system∆.

The B(m, n)-graded Lie superalgebras were determined in [BE1]. These Lie su-

peralgebras differ from rest because of their complicated structure and most closely

resemble the Lie algebras graded by the nonreduced root systems BC r. In this work

we tackle ∆-graded Lie superalgebras for ∆ = C(n), D(m, n), D(2, 1;α) (α ∈
F\{0,−1}), F(4), and G(3). Our main theorem (Theorem 5.2) completely describes

the structure of the Lie superalgebras graded by these root systems. The A(n, n)-

graded Lie superalgebras are truly exceptional for several reasons, and their study

(along with A(m, n)-graded Lie superalgebras for m 6= n) forms the subject of [BE2].

We would like to view a ∆-graded Lie superalgebra L as a g-module in order to

determine its structure. However, a major obstacle encountered in the superalgebra

case is that g-modules need not be completely reducible. We circumvent this road-

block below (and previously in [BE1]) by showing that a∆-graded Lie superalgebra

L must be completely reducible as a module for its grading subsuperalgebra g in all
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cases except when∆ is of type A(n, n).

2 The g-Module Structure of ∆-Graded Lie Superalgebras For ∆ =
C(n), D(m, n), D(2, 1;α) (α ∈ F \ {0,−1}), F(4), and G(3)

The following result is instrumental in examining∆-graded Lie superalgebras.

Lemma 2.1 ([BE1, Lemma 2.2]) Let L be a∆-graded Lie superalgebra, and let g be its

grading subsuperalgebra. Then L is locally finite as a module for g.

This result says that each element of a ∆-graded Lie superalgebra L, in particular

each weight vector of L relative to the Cartan subalgebra h of g, generates a finite-

dimensional g-module. Such a finite-dimensional module has a g-composition series

whose irreducible factors have weights which are roots of g or 0. Next we determine

which finite-dimensional irreducible g-modules have weights which are roots of g or

are 0. For this purpose, we will need to do a case-by-case analysis.

G(3) Case

When g is of type G(3), its even part g0̄ is a sum of two ideals, g0̄ = s1 ⊕ s2, where

s1 is a simple Lie algebra type G2 and s2 is sl2. We assume that h = h1 ⊕ h2, where

h2 = Fh, a Cartan subalgebra of sl2, and h1 is a Cartan subalgebra of an sl3 subalgebra

of s1.

As in [K1, Section 2.5.4],∆ = ∆0̄ ∪∆1̄ (even and odd roots relative h), where

∆0̄ = {εi − ε j ,±εi | i 6= j, i, j = 1, 2, 3, ε1 + ε2 + ε3 = 0} ∪ {±2δ},

∆1̄ = {±εi ± δ,±δ}, and

Π = {α1 = δ + ε1, α2 = ε2, α3 = ε3 − ε2}

(2.2)

is a system of simple roots. Here we suppose that δ(h) = 1, and that h1 ⊂ sl3 ⊂ s1

consists of diagonal matrices d = diag{d1, d2, d3} with trace d1 + d2 + d3 = 0, and

εi(d) = di . We also assume that δ(h1) = 0 = εi(h2) or all i. Solving the system

α j(hi) = ai, j , where ai, j is the (i, j) entry of the Cartan matrix (see p. 49 of [K1])





0 1 0

−1 2 −3

0 −1 2



 ,(2.3)

we obtain the coroots

h1 = 2h + diag(−2, 1, 1)

h2 = diag(−1, 2,−1)

h3 = diag(0,−1, 1).

(2.4)

Now the conditions for Λ ∈ h∗ to be the highest weight of a finite-dimensional

irreducible g-module V (Λ) are given in [K1, Theorem 8] or [K2, Proposition 2.3] in
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terms of the values Λ(hi) = ai . For G(3) they are

(i) a2 and a3 ∈ Z≥0;

(ii) k = 1
2
(a1 − 2a2 − 3a3) ∈ Z≥0 and k 6= 1;

(iii) If k = 0, then all ai = 0, (i.e. Λ = 0); and if k = 2, then a2 = 0.
(2.5)

The roots that satisfy constraints (i) and (ii) are ε3 − ε1 (the highest long root

of G2), −ε1 (the highest short root of G2), and 2δ (the positive root of sl2 and the

highest root of G(3)). (Note that δ satisfies (i) but has k = 1.) Both Λ = ε3 − ε1

and Λ = −ε1 have k = 0 so they can be ruled out. Thus, the only finite-dimensional

irreducible modules having weights that are roots or 0 are the adjoint module (with

highest weight 2δ) or the trivial module. We allow the possibility that the highest

weight vector in these modules has its parity changed from even to odd.

F(4) Case

When g is of type F(4), its even part is a sum of two ideals, g0̄ = s1⊕ s2, where s1 is a

simple Lie algebra type B3 and s2 is sl2. We assume that h = h1⊕h2, where h2 = Fh, a

Cartan subalgebra of sl2, and h1 is a Cartan subalgebra of s1 (which we identify with

the orthogonal Lie algebra o7).

As in [K1, Section 2.5.4],

∆0̄ = {±εi ± ε j ,±εi | i 6= j, i, j = 1, 2, 3} ∪ {±δ},

∆1̄ =

{ 1

2
(±ε1 ± ε2 ± ε3 ± δ)

}

, and

Π =

{

α1 =
1

2
(ε1 + ε2 + ε3 + δ), α2 = −ε1, α3 = ε1 − ε2, α4 = ε2 − ε3

}

(2.6)

is a system of simple roots. Here we suppose that δ(h) = 2, and that h1 ⊂ s1 consists

of diagonal matrices d = diag{0, d1, d2, d3,−d1,−d2,−d3} with εi(d) = di . We

also assume that δ(h1) = 0 = εi(h2) for all i. Let t1 = diag{0, 1, 0, 0,−1, 0, 0},
t2 = diag{0, 0, 1, 0, 0,−1, 0}, and t3 = diag{0, 0, 0, 1, 0, 0,−1}. Then solving the

system α j(hi) = ai, j coming from the Cartan matrix









0 1 0 0

−1 2 −2 0

0 −1 2 −1

0 0 −1 2









,(2.7)

we obtain the coroots

h1 = −t1 − t2 − t3 +
3

2
h

h2 = −2t1

h3 = t1 − t2

h4 = t2 − t3.

(2.8)
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Here the conditions for Λ ∈ h∗ to be the highest weight of a finite-dimensional

irreducible g-module V (Λ) are, in terms of the values Λ(hi) = ai , given by

(i) a2, a3, and a4 ∈ Z≥0;

(ii) k = 1
3
(2a1 − 3a2 − 4a3 − 2a4) ∈ Z≥0 and k 6= 1;

(iii) If k = 0, then all ai = 0; if k = 2, then a2 = 0 = a4;

if k = 3, then a2 = a4 + 1.

(2.9)

Only the roots −ε2 − ε3, −ε3, δ, and − 1
2
(−ε1 − ε2 − ε3 + δ) satisfy (i), and for

each of them except δ, the corresponding value of k is 0. For Λ = δ (the highest root

of g), the value of k is 2 and a2 = 0 = a4, so that all conditions hold. Thus, again the

only finite-dimensional irreducible modules having weights that are roots or 0 are

the adjoint module (with highest weight δ) or the trivial module and parity changes

of them.

D(2, 1;α) Case

For a simple Lie superalgebra g of type D(2, 1;α) (α ∈ F \ {0,−1}), the even part

g0̄ = sl2⊕ sl2⊕ sl2 = sl2⊗FF
3. We identify F

3 with triples ξ = (ξ1, ξ2, ξ3), and the

Cartan subalgebra h of g with h ⊗ F
3, where Fh is the Cartan subalgebra of sl2. Let

εi(h⊗ ξ) = ξi for i = 1, 2, 3. Then the even and odd roots and simple roots are

∆0̄ = {±2εi , | i = 1, 2, 3},

∆1̄ = {±ε1 ± ε2 ± ε3},

Π = {α1 = −(ε1 + ε2 + ε3), α2 = 2ε2, α3 = 2ε3}.

(2.10)

Using the Cartan matrix





0 1 α
−1 2 0

−1 0 2



 ,(2.11)

we determine that the coroots are

h1 = h⊗
1

2

(

−(1 + α), 1, α
)

h2 = h⊗ (0, 1, 0)

h3 = h⊗ (0, 0, 1).

(2.12)

By [K2, Proposition 2.3], a root Λ gives a finite-dimensional g-module when the

values Λ(hi) = ai satisfy the conditions,

(i) a2 and a3 ∈ Z≥0;

(ii) k = 1
1+α (2a1 − a2 − αa3) ∈ Z≥0;

(iii) If k = 0, then all ai = 0; and if k = 1, then (a3 + 1)α = ±(a2 + 1).

(2.13)
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The only roots for which (i) and (ii) hold are 2ε2, 2ε3, −ε1 + ε2 + ε3 and −2ε1

(which is the highest root of g). But for the first two, k = 0. Now whenΛ = −ε1+ε2+

ε3, k = 1, and (iii) says that 2α = ±2 must be true. But α is assumed to be different

from 0 and−1. Whenα = 1, the Lie superalgebra D(2,1;α) is isomorphic to D(2, 1).

(We consider this next as part of the general D(m, n) case.) Hence for D(2, 1;α) with

α 6= 0,±1, the only finite-dimensional irreducible modules with weights that are

roots are the adjoint and trivial modules (and parity changes of them).

D(m, n) (m ≥ 2, n ≥ 1) Case

Let V = V 0̄ ⊕ V1̄ be a Z2-graded vector space over a field F of characteristic zero,

with dimV 0̄ = 2m and dimV 1̄ = 2n, where m ≥ 2 and n ≥ 1. We assume ( | ) is a

nondegenerate supersymmetric bilinear form of maximal Witt index on V . Thus, we

may suppose there is a basis {u1, . . . , u2m} of V 0̄ and a basis {v1, . . . , v2n} of V 1̄ such

that

(ui |ui+m) = 1 = (ui+m|ui) (i = 1, . . . ,m)

(v j |v j+n) = 1 = −(v j+n|v j) ( j = 1, . . . , n),
(2.14)

and all other products are 0.

The space EndF(V ) of transformations on V inherits a Z2-grading: EndF(V ) =
(

EndF(V )
)

0̄
⊕
(

EndF(V )
)

1̄
where x · u ∈ Va+b (subscripts read mod 2) whenever

x ∈
(

EndF(V )
)

a
and u ∈ Vb. Setting

g = {x ∈ EndF(V ) | (x · u|v) = −(−1)x̄ū(u|x · v) for all u, v ∈ V},

s = {s ∈ EndF(V ) | (s · u|v) = (−1)s̄ū(u|s · v) for all u, v ∈ V and str(s) = 0},

(2.15)

we have that g is the orthosymplectic split simple Lie superalgebra osp2m,2n of type

D(m, n). (In displays such as (2.15), we assume all elements shown are homogeneous,

and our convention is that ū = b (viewed as an element of Z2) whenever u ∈ Vb.)

The transformations s ∈ s are supersymmetric relative to the form on V and have

supertrace 0. Thus, str(s) = trV 0̄
(s) − trV 1̄

(s) = 0 whenever s ∈
(

EndF(V )
)

0̄
, and

the supertrace is automatically 0 for all transformations in
(

EndF(V )
)

1̄
. The space s

is an irreducible g-module under the natural action.

Using the basis in (2.14), we may identify linear transformations with their matri-

ces. The diagonal matrices in g form a Cartan subalgebra h. The corresponding even

and odd roots and a system of simple roots of g are given by [K1, Section 2.5]:

∆0̄ = {±εi ± ε j ,±δr ± δs,±2δr | 1 ≤ i < j ≤ m, 1 ≤ r < s ≤ n},

∆1̄ = {±εi ± δr | 1 ≤ i ≤ m, 1 ≤ r ≤ n},

Π = {δ1 − δ2, . . . , δn−1 − δn, δn − ε1, ε1 − ε2, . . . , εm−1 − εm, εm−1 + εm},

(2.16)
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where for any h = diag(b1, . . . , bm,−b1, . . . ,−bm, c1, . . . , cn,−c1, . . . ,−cn) ∈ h,

εi(h) = bi and δr(h) = cr for any i, r. The corresponding Cartan matrix is

































An−1

0
...

0

−1

0

0 · · · 0 −1 0 1 0 · · · 0

0

−1

0
...

0

Dm

































(2.17)

for m ≥ 3 (if n = 1, it is just the (m + 1)× (m + 1) bottom right corner above), where

An−1 =



















2 −1

−1
. . .

−1

−1 2 −1

−1 2



















and

Dm =























2 −1

−1
. . .

−1

−1 2 −1 −1

−1 2 0

−1 0 2























;

while for m = 2, the Cartan matrix is

(2.17 ′)























An−1

0
...

0

−1

0

0 · · · 0 −1 0 1 1

0
−1

−1

2 0

0 2























.

Let t1, . . . , tn+m ∈ h be the dual basis to δ1, . . . , δn, ε1, . . . , εm. Then relative to
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this basis of h, the coroots h1, . . . , hn+m have the following expressions:

hi = ti − ti+1 (1 ≤ i ≤ n− 1)

hn = tn + tn+1

hn+ j = tn+ j − tn+ j+1 (1 ≤ j ≤ m− 1)

hn+m = tn+m−1 + tn+m.

Now, suppose

Λ =

n
∑

i=1

πiδi +

m
∑

j=1

µ jε j ,

and Λ(hi) = ai in Kac’s notation. The conditions for Λ to be the highest weight of a

finite-dimensional irreducible module are given in [K1, Theorem 8]:

(i) ai ∈ Z≥0 for i 6= n;

(ii) k = an −
(

an+1 + · · · an+m−2 + 1
2
(an+m−1 + an+m)

)

∈ Z≥0;

(iii) If k ≤ m− 2, then an+k+1 = · · · = an+m = 0;

and if k = m− 1, then an+m−1 = an+m.

(2.18)

The first condition in (2.18) says

πi − πi+1 = ai ∈ Z≥0 i = 1, . . . , n− 1

µ j − µ j+1 = an+ j ∈ Z≥0 j = 1, . . . ,m− 1

µm−1 + µm = an+m ∈ Z≥0.

The second requirement is πn = an−
(

an+1 + · · · an+m−2 + 1
2
(an+m−1 + an+m)

)

= k ∈
Z≥0. These two conditions imply that π1 ≥ π2 ≥ · · · ≥ πn ≥ 0 is a partition and

µ1 ≥ µ2 ≥ · · · ≥ µm−1 ≥ |µm|, with µi ∈
1
2

Z for any i = 1, . . . ,m (compare the

results of [LS]).

The final condition is that when k = πn ≤ m − 2, µk+1 = · · · = µm = 0; while

if k = πn = m − 1, µm = 0. Hence both cases can be combined to say that when

πn ≤ m− 1, then µk+1 = · · · = µm = 0.

IfΛ ∈ ∆0̄∪∆1̄, then πn = 0, 1 or 2, and the three conditions above imply that for

n ≥ 2, Λ is either 2δ1 or δ1 + δ2; while for n = 1, Λ is either 2δ1 or δ1 + ε1. But 2δ1 is

the highest root, so V (2δ1) is the adjoint module. The root δ1 + δ2 if n ≥ 2 or δ1 + ε1

if n = 1 is the highest weight of s in (2.15). However, 2ε1 is a weight of s which is not

a root. Thus, again only the adjoint and trivial modules appear.

C(n) (n ≥ 3) Case

The simple Lie superalgebra g of type C(n) may be identified with the orthosymplec-

tic Lie superalgebra osp2,2(n−1). (The restriction n ≥ 3 comes from the isomorphism
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osp2,2
∼= sl2,1. Thus, C(2)-graded superalgebras are regarded as A(1, 0)-graded su-

peralgebras and are described in [BE2].) For simplicity of notation, take r = n− 1 so

that g = osp2,2r, and suppose in what follows that r ≥ 2. We make the same identifi-

cations as for D(m, n), but here m = 1, and as above assume the Cartan subalgebra h

of g consists of the diagonal matrices

h = diag(µ,−µ, d,−d)(2.19)

where µ ∈ F, and d = diag{d1, . . . , dr} is a diagonal matrix with entries in F. Now

for C(r + 1) = C(n):

∆0̄ = {±2δi ,±δi ± δ j | 1 ≤ i 6= j ≤ r}

∆1̄ = {±ε± δi | 1 ≤ i ≤ r}, and

Π = {α0 = ε + δ1, αi = δi − δi+1, (1 ≤ i ≤ r − 1), αr = 2δr}

(2.20)

is a system of simple roots. If h is as in (2.19), then ε(h) = µ, and δi(h) = di for

i = 1, . . . , n. The corresponding Cartan matrix is























0 1

−1 2 −1

−1 2
. . .

−1 2 −2

−1 2























,(2.21)

and the corresponding coroots
(

α j(hi) = ai, j

)

are given as follows (note that the

row and column indices here are−1, 0, . . . , 2r):

h0 = (E−1,−1 − E0,0) + (E1,1 − Er+1,r+1)

hi = (Ei,i − Er+i,r+i)− (Ei+1,i+1 − Er+i+1,r+i+1) (1 ≤ i ≤ r − 1)

hr = Er,r − E2r,2r.

(2.22)

In order for Λ ∈ h∗ to correspond to a finite-dimensional irreducible module V (Λ),

we must have Λ(hi) ∈ Z≥0 for all i = 1, . . . , r and Λ(h0) ∈ Z. Consideration of the

roots in (2.20) shows that only Λ = 2δ1, δ1 + δ2,−ε+ δ1, and ε+ δ1 (the highest root

of g) are possible solutions.

Now the Lie superalgebra g has a Z-gradation, g = g−1⊕g0⊕g1 with g0̄ = g0 and

g1̄ = g−1 ⊕ g1. Kac [K2, Section 2] shows that for a finite-dimensional irreducible

g-module V = V (Λ), V ′ = {x ∈ V | g1 · x = 0} is an irreducible g0-submodule of

highest weightΛ, and V is a quotient of the induced module U(g)⊗U(g0⊕g1)V
′, which

as a vector space is isomorphic to U(g−1) ⊗F V ′ (where U( ) denotes the universal

enveloping algebra). Thus, the weights of V are of the form ω+ν, where ω is a weight
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of the g0-module V ′ and ν is a weight of U(g−1). Hence ν is either 0 or a sum of roots

of the form−ε± δi .

Assume that Λ is either 2δ1, δ1 + δ2, or −ε + δ1. Then with c = E−1,−1 − E0,0,

(ω + ν)(c) ∈ Z≤0. But if V is a finite-dimensional module, the supertrace of the

action of c is 0, so it must be (ω + ν)(c) = 0 for any weight ω + ν of V . This implies

that c lies in the kernel of the representation, which is impossible since g is simple,

and V is a faithful module. Therefore, the only possibility left is Λ = ε + δ1, so V is

the adjoint module.

3 Complete Reducibility

Proposition 3.1 Let g be one of the split simple Lie superalgebras C(n) (n ≥ 3),

D(m, n) (m ≥ 2, n ≥ 1), D(2, 1;α) (α ∈ F \ {0,−1}), F(4), or G(3) with split

Cartan subalgebra h. Assume V is a locally finite g-module satisfying

(i) h acts semisimply on V ;

(ii) any composition factor of any finite-dimensional submodule of V is isomorphic to

the adjoint module g or to a trivial module (possibly with the parity changed).

Then V is a completely reducible g-module.

Proof Assume X is a submodule of V , and Y is a submodule of X such that Y and

X/Y are trivial or adjoint modules. By the diagonalizability of the action of h on X, if

X/Y and Y are isomorphic (possibly with a change in parity) with highest weight µ,

then there are linearly independent weight vectors xµ, yµ ∈ Xµ so that X = U(g)xµ +

U(g)yµ. But U(g)xµ and U(g)yµ are strictly contained in X (the dimension of their

highest weight spaces is 1), and both X/Y and Y are irreducible. The only possibility

is that both submodules are irreducible and that X = U(g)xµ ⊕ U(g)yµ, so that X is

completely reducible (this is the same argument used in the proof of Theorem 3.3 of

[BE1]).

As a result, it suffices to show that if Y is an adjoint module and X/Y is trivial,

or if Y is trivial and X/Y is adjoint, then X ∼= Y ⊕ X/Y . When g is of type C(n),

F(4), or G(3), its Killing form is nondegenerate and dim g0̄ 6= dim g1̄. Therefore in

these cases, the supertrace of the Casimir element is dim g0̄ − dim g1̄ 6= 0. Hence the

Casimir element acts nontrivially on the adjoint module, and X is the direct sum of

the two different eigenspaces for the Casimir element.

Now in all the remaining cases, g1̄ is an irreducible module for g0̄, which is a

semisimple Lie algebra. In addition, Homg0̄
(g0̄ ⊗ g1̄, F) = 0, and Homg0̄

(g1̄ ⊗ g1̄, F)

is spanned by a nondegenerate skew-symmetric bilinear form.

Assume initially that Y is an adjoint module. Changing the parity of X if necessary,

we may assume that there is an even isomorphism of g-modules ϕ : g → Y . By

complete reducibility for g0̄-modules, X = Y⊕Fv for some 0 6= v ∈ V with g0̄.v = 0.

If g1̄.v 6= 0, then by the irreducibility of g1̄, we may scale v so that x · v = ϕ(x) for

any x ∈ g1̄. But then for any x, y ∈ g1̄,

0 = [x, y] · v = x · (y · v) + y · (x · v) = x · ϕ(y) + y · ϕ(x)

= ϕ([x, y]) + ϕ([y, x]) = 2ϕ([x, y])
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so that ϕ(g0̄) = ϕ([g1̄, g1̄]) = 0, a contradiction.

Finally, suppose that Y is trivial and X/Y is adjoint. As X is a completely reducible

g0̄-module, X = Fv ⊕ Z where g0̄ · v = 0 and g0̄ · Z 6= 0. Again we may assume that

there is an even isomorphism ψ : g→ Z of g0̄-modules. If Z is not a g-submodule of

X, then v is odd, and for any x, y ∈ g1̄ and z ∈ g0̄, x ·ψ(y) = ψ([x, y])+(x|y)v, where

( | ) is a skew-symmetric form spanning Homg0̄
(g1̄ ⊗ g1̄, F), and x ·ψ(z) = ψ([x, z]).

Hence

ψ
([

[x, y], z
] )

= [x, y] · ψ(z) = x ·
(

y · ψ(z)
)

+ y ·
(

x · ψ(z)
)

= x · ψ([y, z]) + y · ψ([x, z])

= ψ
([

x, [y, z]
]

+
[

y, [x, z]
] )

+
(

(x|[y, z]) + (y|[x, z])
)

v

= ψ
([

[x, y], z
] )

+ 2(x|[y, z])v

so that (g1̄|g1̄) = (g1̄|[g0̄, g1̄]) = 0. We have arrived at a contradiction, so it must be

that Z is a g-submodule of X.

4 The Structure of Lie Superalgebras With Certain g-Module
Decompositions

From Proposition 3.1 it follows that every Lie superalgebra graded by the root system

C(n) (n ≥ 3), D(m, n) (m ≥ 2, n ≥ 1), D(2, 1;α) (α ∈ F \ {0,−1}), F(4), or

G(3) decomposes as a g-module into a direct sum of adjoint modules and trivial

modules. The next general result (which resembles Proposition 2.7 of [BZ]) describes

the structure of Lie superalgebras L having such decompositions. The restrictions

imposed on L in the next lemma will hold in particular in the∆-graded case.

Lemma 4.1 Let L be a Lie superalgebra over F with a subsuperalgebra g, and assume

that under the adjoint action of g, L is a direct sum of

(1) copies of the adjoint module g,

(2) copies of the trivial module F.

Assume that

(1 ′) dim Homg(g⊗ g, g) = 1 so that Homg(g⊗ g, g) is spanned by x ⊗ y 7→ [x, y].

(2 ′) Homg(g⊗ g, F) = Fκ, where κ is even, nondegenerate and supersymmetric,

and the following conditions hold:

(ii) There exist f , g ∈ g0̄ such that [ f , g] 6= 0 and κ( f , g) 6= 0;

(iii) There exist f , g, h ∈ g0̄ such that [ f , h] = [g, h] = 0; and κ( f , h) = κ(g, h) =

0 6= κ( f , g),

(iv) There exists f , g, h ∈ g0̄ such that
[

[ f , g], h
]

= 0 6=
[

[g, h], f
]

.

Then there exist superspaces A and D such that L ∼= (g⊗ A)⊕ D and

(a) A is a unital supercommutative associative F-superalgebra;
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(b) D is a trivial g-module and is a Lie superalgebra;

(c) Multiplication in L is given by

[ f ⊗ a, g ⊗ a ′] = (−1)āḡ
(

[ f , g]⊗ aa ′ + κ( f , g)〈a, a ′〉
)

[d, f ⊗ a] = (−1)d̄ f̄ f ⊗ da,

[d, d ′] (is the product in D)

for all f , g ∈ g, a, a ′ ∈ A, d, d ′ ∈ D, where

• 〈 , 〉 : A× A→ D, (a, a ′) 7→ 〈a, a ′〉 is F-bilinear, even and superskew-symmetric,

• [d, 〈a, a ′〉] = 〈da, a ′〉+(−1)d̄ā〈a, da ′〉 holds for d ∈ D and a, a ′ ∈ A. In particular,

〈A,A〉 is an ideal of D.

• Φ : D → DerF(A), d 7→ Φ(d) where Φ(d) : a → da is a representation with

〈A,A〉 ⊆ kerΦ.

• 0 =
∑

	
(−1)ā1ā3〈a1a2, a3〉 = 0 for any a1, a2, a3 ∈ A.

Conversely, the conditions above are sufficient to guarantee that a superspace L =

(g⊗ A)⊕ D satisfying (a)–(c) is a Lie superalgebra.

Proof When a Lie superalgebra L is a direct sum of copies of adjoint modules and

trivial modules for g (allowing for changes in their parity), then after collecting

isomorphic summands, we may assume there are superspaces A = A0̄ ⊕ A1̄ and

D = D0̄ ⊕ D1̄ so that L = (g⊗ A)⊕ D. Suppose such a superalgebra L satisfies con-

ditions (1), (2), (1) ′, and (2) ′. Notice first that D is a subsuperalgebra of L, since it is

the (super)centralizer of g. Fixing basis elements {ai}i∈I of A and choosing ai , a j , ak

with i, j, k ∈ I, we see that the projection of the product [g⊗ ai , g⊗ a j] onto g⊗ ak

determines an element of Homg(g⊗g, g), which is spanned by the supercommutator

on g. Thus, there exist scalars ξk
i, j so that

[x ⊗ ai , y ⊗ a j]|g⊗A =

∑

k∈I

ξk
i, j[x, y] ⊗ ak = [x, y]⊗

(

∑

k∈I

ξk
i, jak

)

.

Defining A× A→ A by ai × a j 7→
∑

k∈I ξ
k
i, jak and extending it bilinearly, we have a

product on A. Necessarily this multiplication is supercommutative because the prod-

ucts on g and L are superanticommutative. By similar arguments (compare [BZ]),

there exist bilinear pairings A × A → D, a × a ′ 7→ 〈a, a ′〉 ∈ D, and D × A → A,

d× a 7→ da ∈ A, such that the multiplication in L is as in (c).

Now the Jacobi superidentity J(z1, z2, z3) =
∑

	
(−1)z̄1 z̄3

[

[z1, z2], z3

]

= 0 (cyclic

permutation of the homogeneous elements z1, z2, z3), when specialized with homo-

geneous elements d1, d2 ∈ D and f ⊗ a ∈ g ⊗ A, and then with d ∈ D and f ⊗ a,

g ⊗ a ′ ∈ g ⊗ A will show that Φ(d)a = da is a representation of D as superderiva-

tions of A. We assume next that f , g are taken to satisfy (i). Then for homogeneous

elements d ∈ D, a, a ′ ∈ A, the identity J(d, f ⊗ a, g ⊗ a ′) = 0 gives the condi-

tion [d, 〈a, a ′〉] = 〈da, a ′〉 + (−1)d̄ā〈a, da ′〉. From J( f ⊗ a, g ⊗ a ′, h ⊗ a ′′) = 0
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with homogeneous a, a ′, a ′′ ∈ A and with f , g, h ∈ g as in assumption (ii), we de-

termine that 〈A,A〉 is contained in the kernel of Φ. Finally, J( f ⊗ a1, g ⊗ a2, h ⊗
a3) = 0 for a1, a2, a3 homogeneous and f , g, h ∈ g as in assumption (iii) gives

0 =
∑

	
(−1)ā1ā3〈a1a2, a3〉 = 0 and (a2a3)a1 = (−1)ā2(ā3+ā1)(a3a1)a2. By super-

commutativity, this is the same as (a2a3)a1 = a2(a3a1), and hence the associativity of

A follows.

The converse is a simple computation.

5 The Main Theorem

In order to apply Lemma 4.1 to the ∆-graded Lie superalgebras considered here, it

has to be checked that both Homg(g⊗g, g) and Homg(g⊗g, F) are one-dimensional,

g being a split simple classical Lie superalgebra of type C(n) (n ≥ 3), D(m, n) (m ≥
2, n ≥ 1), D(2, 1;α) (α ∈ F \ {0,−1}), F(4), or G(3). The existence of a nondegen-

erate even supersymmetric invariant bilinear form on g and the fact that g is central

simple over F immediately imply the assertion for Homg(g⊗ g, F).

Lemma 5.1 Let g be a split simple classical Lie superalgebra of type C(n) (n ≥ 3),

D(m, n) (m ≥ 2, n ≥ 1), D(2, 1;α) (α ∈ F \ {0,−1}), F(4), or G(3). Then

dim Homg(g⊗ g, g) = 1.

Proof Assume first that g is of type C(n) (n ≥ 3) and consider the Z-gradation

used in Section 2, g = g−1 ⊕ g0 ⊕ g1, with g0̄ = g0 and g1̄ = g−1 ⊕ g1. Then

g0 = Fc ⊕ sp2r, where c = E−1,−1 − E0,0 as in Section 3, which is central in g0,

and r = n − 1. The spaces g1 and g−1 are isomorphic, as sp2r-modules, to the

natural 2r-dimensional irreducible module for sp2r, while c acts as the identity on

g1 and as minus the identity on g−1. Once the Cartan subalgebra h = Fc ⊕ h ′ of

g0 and a system of simple roots are chosen as in (2.19) and (2.20), we may take a

highest weight vector v ∈ g1 and a lowest weight vector w ∈ g−1 (as g0-modules).

Then v ⊗ w generates g ⊗ g as a g-module (one gets easily that g1 ⊗ w is contained

in the g0-module generated by v ⊗ w, and hence that g ⊗ w is contained in the g-

module generated by v ⊗ w. But g ⊗ w generates g ⊗ g as a g-module). Thus, any

ϕ ∈ Homg(g ⊗ g, g) is determined by ϕ(v ⊗ w), which belongs to h = Fc ⊕ h ′

because v⊗w has weight 0. In particular, ϕ restricts to a g0-module homomorphism

g1⊗g−1 → g0. Since Homsp2r
(g1⊗g−1, sp2r) has dimension 1 (as sp2r-modules, this

is Homsp2r

(

V (ω1) ⊗ V (ω1),V (2ω1)
)

, where ω1 is the first fundamental dominant

weight for sp2r), it follows that there is 0 6= h ∈ h ′ such that ϕ(v ⊗ w) ∈ Fc ⊕ Fh for

anyϕ ∈ Homg(g⊗g, g) and dim Homg(g⊗g, g) ≤ 2. If this dimension were 2, there

would exist aϕ ∈ Homg(g⊗g, g) withϕ(v⊗w) = c and, therefore,ϕ(g1⊗g−1) = Fc.

Then, for any x ∈ g1, ϕ(g1 ⊗ [x, g−1]) ⊆ F[c, x] = Fx. It is not difficult to find

linearly independent elements x, y ∈ g1 such that both [x, g−1] and [y, g−1] are not

contained in sp2r, and there is a nonzero z ∈ [x, g−1]∩ [y, g−1]∩ sp2r. Then ϕ(g1 ⊗
z) ⊆ Fx ∩ Fy = 0, which implies ϕ(g1 ⊗ sp2r) = 0, since sp2r is simple and hence

generated by z as a g0-module. But thenϕ(g1⊗g0) = ϕ(g1⊗c) = ϕ(g1⊗[x, g−1]) ⊆
Fx, and also ϕ(g1 ⊗ g0) ⊆ Fy. Therefore, ϕ(g1 ⊗ g0) = 0. Since ϕ is adc-invariant,

ϕ(g1⊗g1) = 0 too. In the same way we prove that ϕ(g0⊗g−1) = ϕ(g−1⊗g−1) = 0.
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Finally, ϕ(g0 ⊗ g1) = ϕ([g1, g−1] ⊗ g1) ⊆ [g−1, ϕ(g1 ⊗ g1)] + ϕ(g1 ⊗ g0) = 0 and

also ϕ(g−1 ⊗ g0) = 0. Therefore ϕ(g⊗ g) ⊆ g0, but 0 6= ϕ(g⊗ g) is an ideal of g, a

contradiction.

Assume now that g is of type D(m, n) (m ≥ 2, n ≥ 1), D(2, 1;α) (α ∈ F\{0,−1}),

F(4), or G(3). Then g has a Z-gradation [K1, Section 2] g = g−2⊕g−1⊕g0⊕g1⊕g2,

with g0̄ = g−2 ⊕ g0 ⊕ g2 and g1̄ = g−1 ⊕ g1. The spaces g2 and g−2 are irreducible

contragredient g0-modules as are g1 and g−1; g0 = Fc ⊕ [g0, g0], where [g0, g0] is a

semisimple Lie algebra; and [c, xi] = ixi for any xi ∈ gi , i = ±2,±1, 0. As before

we fix a Cartan subalgebra h = Fc ⊕ h ′ of g0 and take a highest weight vector v ∈ g2

and a lowest weight vector w ∈ g−2. Then v ⊗ w generates g ⊗ g as a g-module,

and any ϕ ∈ Homg(g ⊗ g, g) is determined by ϕ(v ⊗ w), which belongs to h (by

adc-invariance, ϕ must respect the Z-gradation).

For types D(2, 1;α) (α ∈ F \ {0,−1}), F(4), or G(3), g±2 is one-dimensional

and annihilated by [g0, g0]. Hence ϕ(v ⊗ w) ∈ Fc and, therefore, Homg(g ⊗ g, g)

is one-dimensional. For type D(m, n) (m ≥ 2, n ≥ 1), [g0, g0] = o2m ⊕ sln and g2

and g−2 are annihilated by o2m. The argument in [BE1, Proof of (3.5)] applies here

to give the result.

Theorem 5.2 Assume L is a∆-graded Lie superalgebra with grading subalgebra g cor-

responding to a root system∆ of type C(n) (n ≥ 3), D(m, n) (m ≥ 2, n ≥ 1), D(2, 1;α)

(α ∈ F \ {0,−1}), F(4), or G(3). Then there exist a unital supercommutative associa-

tive F-superalgebra A and an F-superspace D such that L ∼= (g⊗A)⊕D. Multiplication

in L is given by

[ f ⊗ a, g ⊗ a ′] = (−1)āḡ
(

[ f , g]⊗ aa ′ + κ( f , g)〈a, a ′〉
)

[d, L] = 0

for all f , g ∈ g, a, a ′ ∈ A, d ∈ D, where κ( f , g) is a fixed even nondegenerate supersym-

metric invariant bilinear form on g, and 〈 , 〉 : A×A→ D is F-bilinear and superskew-

symmetric and satisfies the two-cocycle condition,
∑

	
(−1)ā1 ā3〈a1a2, a3〉 = 0.

Proof The results of Sections 2 and 3 show that every such∆-graded Lie superalge-

bra L is a direct sum of adjoint and trivial modules. Most of the conclusions of the

theorem will be immediate consequences of Lemma 4.1, once we verify that the hy-

potheses in (1) ′ and (2) ′ of that lemma are satisfied. The fact dim Homg(g⊗ g, F) =

1 = dim Homg(g ⊗ g, g) comes from Lemma 5.1 and the paragraph preceding it.

When g0̄ is a reductive Lie algebra of rank at least 2 (which happens in all our cases),

conditions (i)–(iii) of (2) ′ are always satisfied. Indeed, assume we have a root space

decomposition of g0̄ relative to the Cartan subalgebra h. For (i) take f in a root space

(say of root α) and g in the root space corresponding to the root −α; while for (ii)

and (iii) choose f , g as before. Let h ∈ h be such that α(h) = 0 for (ii); and for (iii),

take h ∈ h with α(h) 6= 0.

The only point left is the proof of the centrality of D. Condition (ii) of Defi-

nition 1.2 implies that L0 =
∑

µ∈∆[Lµ, L−µ]. This forces D = 〈A|A〉, which by

Lemma 4.1 is contained in kerΦ. Therefore D = 〈A|A〉 is abelian and centralizes

g⊗ A, hence it is central.
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Recall that a central extension of a Lie superalgebra L is a pair (L̃, π) consisting

of a Lie superalgebra L̃ and a surjective Lie superalgebra homomorphism π : L̃ → L

(preserving the grading) whose kernel lies in the center of L̃. If L̃ is perfect (L̃ =

[L̃, L̃]), then L̃ is said to be a cover or covering of L. Any perfect Lie superalgebra L has

a unique (up to isomorphism) universal covering superalgebra (L̂, π̂) which is also

perfect, called the universal central extension of L. From Theorem 5.2 we can draw

the conclusion that our∆-graded Lie superalgebras are coverings:

Corollary 5.3 A ∆-graded Lie superalgebra with grading subalgebra g corresponding

to a root system ∆ of type C(n) (n ≥ 3), D(m, n) (m ≥ 2, n ≥ 1), D(2, 1;α) (α ∈
F \ {0,−1}), F(4), or G(3) is a covering of a Lie superalgebra g⊗A, where A is a unital

supercommutative associative superalgebra.

Suppose now that A is a unital supercommutative associative superalgebra. Set

{A|A} = (A ⊗ A)/I, where I is the subspace spanned by the elements a1 ⊗ a2 +

(−1)ā1 ā2 a2⊗ a1 and
∑

	
(−1)ā1 ā3 a1a2⊗ a3 (ai ∈ A0̄ ∪A1̄, i = 1, 2, 3). As a shorthand

we write {a|a ′} = a ⊗ a ′ + I. Then it follows from Theorem 5.2 that the universal

central extension of the Lie superalgebra L = g⊗ A is

L̂ = (g⊗ A)⊕ {A|A}(5.4)

with {A|A} central and with

[ f ⊗ a, g ⊗ a ′] = (−1)āḡ
(

[ f , g]⊗ aa ′ + κ( f , g){a|a ′}
)

(5.5)

for all f , g ∈ g and a, a ′ ∈ A. In the special case that A is a commutative associative

algebra, this result appears in [IK].
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