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Could waves mix the ocean?
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A finite-amplitude propagating wave induces a drift in fluids. Understanding how
drifts produced by many waves disperse pollutants has broad implications for
geophysics and engineering. Previously, the effective diffusivity was calculated for
a random set of small-amplitude surface and internal waves. Now, this is extended
by Bühler & Holmes-Cerfon (J. Fluid Mech., 2009, this issue, vol. 638, pp. 5–26) to
waves in a rotating shallow-water system in which the Coriolis force is accounted for,
a necessary step towards oceanographic applications. It is shown that interactions of
finite-amplitude waves affect particle velocity in subtle ways. An expression describing
the particle diffusivity as a function of scale is derived, showing that the diffusivity
can be substantially reduced by rotation.
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1. Introduction

A slick of pollutants released at a depth of a few hundred metres in the ocean diffuses
horizontally for a couple of kilometres per month (see e.g. Ledwell, Watson & Law
1993). Molecular diffusion acting alone would make that happen in about a hundred
million years, just as it would take years for the aroma of coffee to diffuse from
the cup to the nose. A usual suspect – convective fluid flows – must be responsible.
The coffee aroma is principally carried by thermal convection in interior air, but the
ocean is stably stratified with density (owing to temperature and salinity differences)
increasing with depth. Could the random flows that cause diffusion be produced by
waves which are more ubiquitous than currents, particularly deep in the ocean?

The flow associated with a plane monochromatic wave with amplitude vk ,
wavelength 2π/k (k being the wavenumber) and frequency ωk looks very simple: the
velocity v depends on the coordinate x and time t sinusoidally, v(x, t) = vk sin(kx−ωkt).
This simplicity is deceptive, for example, how far does a particular fluid particle move
during a time t? To answer, one needs to use the ‘Lagrangian’ description, defined in
terms of the current particle coordinate x(t) whose time derivative is the velocity:

ẋ(t) = vk sin[kx(t) − ωkt]. (1.1)

This is a nonlinear equation for x(t), even for a linear plane monochromatic
wave. Moreover, its solution is not periodic. Assuming that the wave
amplitude is small, vk � ωk/k, one can solve the equation iteratively,
x(t) = x0 + x1(t) + x2(t) . . . . This procedure yields a periodic oscillation at the first
order in amplitude, x1 = (vk/ωk) cos(kx0 − ωkt), and the ‘Stokes drift’ at second order,
x2(t) = kv2

k t/2ωk +(kv2
k/2ω2

k) sin 2(kx0 − ωkt). At first order in the amplitude vk the
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perturbation propagates, while at second order the fluid itself flows with mean
velocity uk = kv2

k/2ωk .
Even in this simple one-dimensional example the Stokes drift at second order in

wave amplitude is only half of the story because nonlinear corrections to the linear
wave field (1.1) stemming from the full set of the dynamical equations (including
boundary conditions) may arise at the same order in wave amplitude. These nonlinear
corrections often contain a systematic mean-flow response that can compete with the
Stokes drift at second order. Thus both the Stokes drift and the mean-flow response
must be computed to obtain the mean velocity at leading order.

The situation is substantially more interesting when there are many waves.
The mean Stokes drift velocity is just the integral over the wave spectrum
〈u〉 =

∫
uk dk =

∫
k(|vk|2/2ωk) dk. The brackets denote the average over a time that

is large compared with all the wave periods; on a shorter time scale, the drift velocity
fluctuates, and the variance of such fluctuations determines the dispersion of the fluid
particles. To illustrate this, consider a situation in which either the Stokes drift is zero
or we are in a reference frame moving at that velocity 〈u〉. Then we are interested in
the mean squared displacement, which is given by the usual diffusion expression:

〈x2(t)〉 =

∫ t

0

dt ′
∫ t

0

dt ′′〈u(t ′) · u(t ′′)〉 = 2t

∫ t

0

〈u(0) · u(t ′)〉 dt ′ = 2Dt. (1.2)

The diffusivity D is thus proportional to the fourth power of the wave amplitudes vk .
Herterich & Hasselman (1982) were the first to calculate such diffusivity for surface

waves, followed by Sanderson & Okubo (1988), who did it for horizontally isotropic
internal waves. Balk & McLaughlin (1999) derived the diffusivity for a general
dispersion relation for the one-dimensional case using weak turbulence theory as
described in Zakharov, Lvov & Falkovich (1992). However, geophysically relevant
applications (e.g. large-scale oceanic diffusion) require that the effect of fluid rotation
on the waves is taken into account. Also, as noted above, nonlinear corrections to the
wave description can induce a mean flow which must be considered in concert with
the Stokes drift. Bühler & Holmes-Cerfon (2009, this issue, vol. 638, pp. 5–26) address
these two key topics, by calculating self-consistently the effective diffusivity for a
random set of waves that have small yet finite amplitude in a rotating shallow-water
equations system.

2. Overview

The shallow-water equations describe the evolution of the two-dimensional
(horizontal) velocity and the fluid depth. Importantly, shallow-water equations
account for both the effect of gravity and rotation through the action of the
Coriolis force. For a small velocity and an almost-constant depth, the linearized
equations describe non-interacting inertia–gravity waves with the dispersion relation
ω2

κ = f 2 + c2κ2, where f is the Coriolis parameter and is equal to twice the rotation
frequency of the system, c2 = gh, the product of the gravitational acceleration and
the fluid depth, and κ is the magnitude of the wavenumber vector. The frequency is
bounded from zero; i.e. f is a cutoff frequency, which sets a natural averaging time.

The central point of Bühler & Holmes-Cerfon (2009) is to calculate in a self-
consistent manner the two-time correlation function of the Lagrangian velocities
which enters (1.2). That requires first solving the full nonlinear shallow-water equations
(written in the fixed, Eulerian reference frame) up to the second order in the small
parameter κvκ/ωκ . That inherently nonlinear second-order contribution to the mean
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f = 0(a) (b) f > 0

Figure 1. Snapshots of random surface height field (red/yellow shading) and contours of
the second-order Lagrangian streamfunction (black dashed = positive values, blue dashed =
negative values, black solid = zero contour), viewed in the x–y plane.

flow must be taken together with the Stokes drift calculated from the first-order
linear wave-like contribution to calculate the diffusivity (neglecting one or the other
contribution marred some previous works on the subject).

Calculating the resulting fourth-order expression for the diffusivity is
straightforward but technically demanding. It is significantly simplified by assuming
that the wave amplitudes vκ are Gaussian random variables with a zero mean and
variance E(κ) = 〈|vκ |2〉. For sufficiently wide distribution of small-amplitude waves in
κ-space, this is a reasonable approximation, since phases of different waves can be
considered to be random, which leads to Gaussianity (see e.g. Zakharov et al. 1992).
For a Gaussian random field, a fourth-order correlation function is broken into a
product of two second-order correlation functions. The resulting general formula
from Bühler & Holmes-Cerfon (2009) (derived explicitly for inertia–gravity waves)
expresses the diffusivity D as the squared wave energy spectrum S(κ)2 integrated with
the non-negative spectral diffusivity density G(κ), i.e.

2D =
1

2πc3

1

2

∫
G(κ)S(κ)2 dκ. (2.1)

In the figure beside the title, the analytical formula for G as a function of non-
dimensional wavenumber n= κc/f is plotted, along with the diffusivity densities
induced by the Stokes drift (solid green line) and Eulerian nonlinear flow (dashed
blue line), and it is clear that the correct diffusivity is due to their joint action. The
authors also checked their calculations using Monte Carlo simulations of the velocity
field.

It is clear that rotation reduces the effective diffusivity, a key finding of the paper
of Bühler & Holmes-Cerfon (2009). In figure 1, snapshots of a random surface height
field and the second-order Lagrangian streamfunction are plotted from specific Monte
Carlo simulations of Bühler & Holmes-Cerfon (2009). These were calculated from
the same realization of a Gaussian random wave field, so that the height fields are
comparable. In figure 1(a), the streamfunction is calculated with rotation set to zero,
while in figure 1(b) the rotation is very strong. The height fields are virtually identical
(after being rescaled to have the same scale), but the streamlines show drastically
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different patterns: the rotating streamlines are closely aligned with the height contours,
while the non-rotating streamlines show a much larger-scale pattern. This hints at the
much stronger diffusive efficacy of the non-rotating streamfunction.

Alternatively, remember that increasing rotation increases wave frequency for a
given wavenumber and thus decreases the Stokes drift (assuming that vκ is constant).
That makes it natural to expect that the effective diffusivity is a decreasing function
of the Coriolis parameter f . The explicit formula presented in the paper quantifies
this decrease and reveals an interesting cancellation between the Lagrangian and the
second-order Eulerian contributions at the root of this decrease. In the limit of strong
rotation the diffusivity is shown to decay as the fifth power of f while the Stokes drift
contribution decays as the first power, showing yet again that an analysis in terms of
the Stokes drift alone can be very misleading.

3. Future

One can now use the formula derived by Bühler & Holmes-Cerfon (2009) to analyse
oceanographic data on a large-scale pollutant dispersion, to try to answer the question
originally posed: could waves mix the ocean? The theory itself can be developed in
different directions. First, one can go beyond the shallow-water equations model,
taking into account the full three-dimensional structure of the wave flow. Second,
one can go to higher wave amplitudes, considering mixing by finite-amplitude and
breaking waves. An example of other interesting finite-amplitude effects is described
in the work of Balk (2006), where diffusion appears already in the second order in
wave amplitude (for an anisotropic distribution of compressible wave flows). A third
promising direction is the consideration of the joint action of waves and vortical
currents (see e.g. Polzin & Ferrari 2004; Vucelja, Falkovich & Fouxon 2007) which
are, of course, ubiquitous in the oceans. Through such generalizations, it can be hoped
that the ideas of the paper of Bühler & Holmes-Cerfon (2009) can actually be applied
to real problems of dispersion and diffusion in the oceans.
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