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Abstract

Let M be a commutative cancellative atomic monoid. We consider the behaviour of the asymptotic length
functions l(x) and L(x) on M. If M is finitely generated and reduced, then we present an algorithm
for the computation of both l(x) and L(x) where x is a nonidentity element of M. We also explore the
values that the functions I(x) and L(x) can attain when M is a Krull monoid with torsion divisor class
group, and extend a well-known result of Zaks and Skula by showing how these values can be used to
characterize when M is half-factorial.

2000 Mathematics subject classification: primary 20M14, 20M25,13F05, 11Y05.

Introduction

Let N and N+ represent the nonnegative integers and positive integers respectively.
Call a mapping A. : N+ -» N+ subadditive if X(x + y) < k(x) + X(y) for all
x,y e M+, in which case, by an elementary argument, lim^ook(n)/n exists and
equals inf{A.(n)/« | n e N+}. Call A : N+ -+ H+ U (oo) superadditive if A(x +y) >
A(x) + A(y) for all x, y e N+, in which case linv^oo A(«)/n exists and equals
sup{A(«)//i | n € N+} (which is possibly oo). Let M be an atomic monoid, that is,
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422 S. T. Chapman and J. C. Rosales [2]

every nonunit can be expressed as a product of irreducible elements, and x a nonunit
from M. Define

L(x) = inf X and L(x) = sup*

where X = {/i e N+ | * = * ] • • • * „ with*, e M irreducible}. Then the mappings
n !->• £(x") and n i-> L(x") are subadditive and superadditive respectively. Thus

lim —
»oo

. AKx") 1 L(JC") fL(x") 1
= inf { n e N + and hm = sup \ n e N+ \.

[ n J «-*oo n [ n J

Following [2], denote these limits by t{x) and L(x) respectively. Their existence has
been observed in [2] for multiplicative monoids of atomic domains and in [11] for a
wider class of commutative monoids. Also in [2], the authors conjecture that if R is
a Krull or Noetherian domain, then these limits are always positive rational numbers.
In [10], this conjecture was proved for Krull domains and several kinds of Noetherian
domains, but an example of Noetherian domain R having an irreducible element x
with l(x) = 0 was given. In more generality, [10, Theorem 2] actually shows that if
H is an atomic monoid and x e H is a nonunit where the set

(y € H | v divides x" for some n > 1}

has only a finite number of non-associated irreducible elements, then l(x) and L{x)
are positive rational numbers (this result was also independently obtained in [1, The-
orem 12]).

Our purpose in writing this paper is twofold. First, in Section 1 we explore
the possible values that the functions t{x) and L(x) can attain in Krull monoids
with torsion divisor class groups. As a by-product, we obtain (in Theorem 1.4) an
extension of a theorem proved independently by Zaks [17, Theorem 3.3] and Skula
[15, Theorem 3.1] which characterizes certain Krull monoids which are half-factorial.
We also give in Theorem 1.6 and Corollary 1.8 a 'Carlitz type' version of this result
for algebraic rings of integers. We close this section by giving bounds for the values of
l(x) and L(x) when x is irreducible and show that these bounds are the best possible.
In Section 2, we build on the proof of Theorem 2 in [10] and give an algorithmic
process which allows us to compute the numbers l(x) and L(x) for a nonidentity x in
any finitely generated reduced cancellative monoid. We organize Section 2 into four
subsections. After some notation and definitions in Section 2.1, Section 2.2 presents
some general properties of the function l(x). These are then used in Section 2.3 to
develop an algorithm for its computation. Section 2.4 is devoted to the development
of a similar algorithm for L(x).

While the settings in each of the two sections are different, they allow us to empha-
size the strong similarities and differences which they present. By [7, Proposition 1],
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the study of lengths of factorizations in a Krull monoid M can be reduced to that of
the same study in an appropriate block monoid (see [9] for more information on block
monoids). If the divisor class group of M is finite, then the block monoid is finitely
generated and our algorithm of Section 2 can be applied. Conversely, in Section 2 we
present examples to demonstrate that many of the properties proved for the functions
l(x) and L(x) in Section 1 for Krull monoids, fail in the general finitely generated
case.

1. l(x) and L(x) in Krull monoids

Unless otherwise noted, we assume that M is a Krull monoid with torsion divisor
class group if (M) and set &/(M) of irreducible elements. Hence, if x is a nonunit of
M, then there exist unique prime divisors p\,... , p, and natural numbers nu • • • ,n,
such that x = pi' • • -pi'. Given a prime divisor p, let [p] represent the divisor class
of p in 'if(M). Forx as above, set

k(x) = j ^ —

where | [p j | represents the order of the element [pt] in ^(M). Setting k(u) = 0 if
M is a unit of M defines a function from M into Q>0 known in the literature as the
Zaks-Skula function (see [6]). For a nonunit x of A/, the value k{x) is also known as
the cross number of x [12]. If * and > are elements of M, then it is easy to verify that
k(xy) = k(x) + k{y). When k is considered as a function, it is merely an example
of what is known as a length function on M (see [2]). It is well know that M is a
half-factorial domain (that is, an atomic domain where the length of factorization of
a nonzero nonunit y into irreducibles is constant) if and only if k(x) = 1 for every
irreducible x e M (see [16, 17, 15]).

We explore further the functions I and L on Krull monoids with torsion divisor
class group, but begin with a few general results.

BASIC LEMMA 1.1. Let M be an atomic commutative monoid, x an irreducible
element of M and v a nonunit element of M.

(1) If y can be written as a product of m irreducibles (where m e N), then L{y) > m
and i(y) < m.
(2) i(x) < 1 and L(x) > 1. Hence, if t(x) = L(x), then I(x) = L(x) = 1.
(3) l(y) < 1 if and only if for some k e N, yk can be written as a product of less

than k irreducible factors.
(4) L(y) > 1 if and only if for some k e N, yk can be written as a product of more

than k irreducible factors.

https://doi.org/10.1017/S1446788700003396 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003396


424 S. T. Chapman and J. C. Rosales [4]

(5) If l(y) = L(y) then every irreducible factorization of y" (for any n e N) has
the same length.

PROOF. Parts (l)-(4) are immediate from the definitions and facts noted in the first
paragraph. For (5), suppose y" can be factored as a product of m and t irreducibles
where m < t. Then

- L((y*)') t m e«yny) -
L(y) = hm - > - > — > hm = l{y). D

»-»<» ns n n s-"-°° ns
PROPOSITION 1.2. Let M be an atomic commutative monoid. The following state-

ments are equivalent:

(1) M is half-factorial.
(2) £,(x) = L(x) for every nonunit x e M.

PROOF. That (1) implies (2) is obvious, and that (2) implies (1) follows from
Lemma 1.1 (5). •

Before proceeding, we introduce some notation. If M is a Krull monoid with ^(M)
a torsion group and x is a nonunit of M, then write

(1) x=p1...p,

where the /?, are prime divisors of M. Let k = \cm[\[p\]\,... , \[p,]\] and for each /
setJfc = Jk,-|[pi]|. Then

(2) ^ = (pl
I"

1V1---(plIp'11)*'

and setting a, = pfPl]l, we have that

(3) ** = «*'...«,*'

where each a, € #/(M) and k(at) = 1 for each i. Notice that (3) implies that

(4) *(*) = .

LEMMA 1.3. Let M be a Krull monoid with ^(M) a torsion group and suppose
thatx is nonunit element of M. Then t(x) = L(x) = 1 if and only if

(1) x is irreducible in M, and
(2) every irreducible divisor a of the collective powers ofx has k(a) = 1.
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PROOF. (=>) That x is irreducible follows from Basic Lemma 1.1 (1). By Basic
Lemma 1.1 (5), every irreducible factorization of x" has the same length. Now,
suppose that a is an irreducible divisor of some power of JC (say x'). Then as | x"
for every s e N. Since every x's has unique irreducible factorization length, then so
too must each a'. By writing ak in the form (3), we have that k = kx + • • • + k, and
*(«) = (*, + ... + * , ) / * = 1.

(*=) We argue that conditions (1) and (2) imply that t{x) — L(x). The result then
follows from Basic Lemma 1.1 (2). Suppose that x is irreducible and

with each yt and ft in $4{M). By the properties of the Zaks-Skula function,

k(xn) = nk{x) = k(yi) + ••• + Hys) = k(^) + ••• +

and condition (2) then implies that n — s = t. Thus, for each n, l(x") = L(x") and
hence l(x) = L(x). D

Lemma 1.3 allows us to extend a well known characterization of half-factorial
domains (see [16,17, 15]).

THEOREM 1.4. Let M be a Krull monoid with ̂ (M) a torsion group. The following
statements are equivalent:

(1) M is half-factorial.
(2) l(x) = L(x) for every nonunit x e M.
(3) k(x) = I for every x e szf(M).
(4) l{x) = L(x) = I for every x € &/{M).
(5) l(x') = L(x') = tfor every t e N andx e

PROOF. (1) and (2) are equivalent by Proposition 1.2. The equivalence of (1) and (3)
is proved in both [17, Theorem 3.3] and [15, Theorem 3.1]. Lemma 1.3 implies the
equivalence of (3) and (4). Clearly (1) implies (5) and (5) implies (4). •

We can also deduce the following from Lemma 1.3.

COROLLARY 1.5. Let M be a Krull monoid with ^(M) a torsion group.

(1) Ifx is irreducible and primary in M, then l(x') = L(x') = t for every t e N+.
(2) Ifx is primary, then £(x) and L(x) are positive integers.

PROOF. By [11, Satz 10A ii)], ifx is primary in M, then x = pr where p is a
prime divisor of M and \\p\\ divides r. Suppose that x is irreducible and primary.
Since every irreducible divisor of the powers of x is of the form a = pllp]l, that
l(x) = L(x) = 1 follows directly from Lemma 1.3, and it follows immediately for
each t e N+ that l{x') = L{x') = t. (2) now follows directly from (1). •
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Theorem 1.4 and Corollary 1.5 are not valid in general (see Examples 2.12 and 2.10).
If M is an atomic commutative cancellative monoid, set

l(M) = {£(x) | x a nonunit in M},

and

L(M) = {L(x) | x a nonunit in A/}.

If M is a Krull monoid, then the results of [10] imply that both 1{M) and L(M) are
contained in Q>0, a fact that we use below without further comment. If M is half-
factorial, then clearly l(M) = L(M) = N+. While the converse of the last statement
is not true in general (see Example 1.7 below), we show that it is true under a certain
assumption on a Krull monoid M.

THEOREM 1.6. Let M be a Krull monoid with torsion divisor class group C€(M')
such that every nontrivial divisor class of M contains a prime divisor. Conditions
(l)-(5) of Theorem 1.4 are also equivalent to:

(6) l(M) and L(M) are both contained in H+.
(7) l(M) = L(M) = N+.

PROOF. Clearly (7) implies (6). Under our hypothesis, M must contain an irre-
ducible primary element, and so (6) implies (7) by Corollary 1.5. We argue that (1)
implies (6). If M is half-factorial and x e M can be written as a product of t
irreducibles, then l(x") = L(xn) = tn and £(x) = L(x) — t\ proving (6). Sup-
pose (7) holds. To see (1), we argue that the divisor class group of M must be trivial
or Z2. From this the result follows very easily. Suppose that ^f(M) contains an
element g of order greater than 2. Let pl and p2 be prime divisors of M so that
[pi] — g and [p2] = —g. Then x = pxp2 is irreducible in M and t{xn^) = In
so l(x) = limn_oo2n/(n|g|) = 2/\g\ g N+. Suppose now that g] and g2 are in
"^(M) with |gi| = \g2\ = 2 and gx ^ g2. If g3 = gi + gi and [p,] = git [p2] = g2

and [p^ = gi, then x = p\p2pi is an irreducible element, L(x2") = 3n and so
L(x) = 3/2 $ N. Thus #(M) must be trivial or I2. •

EXAMPLE 1.7. We show for a general Krull monoid with torsion class group that (7)
does not imply (1). Let F = (pt,... , p6) be the free commutative monoid on 6
generators, expressed multiplicatively, and put

M = [ p ' 1 ' - - - p ? € F\Xl S - . - S J C 6 m o d 3 } .

It is routine to check that M is a Krull monoid with divisor class group isomorphic to
Zj and the irreducibles are p\,... ,p\ and/?) • • • p6. Further, if a = p\x • • -pi" e M,
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then one can easily verify that

Z(a) = (*, + • • • + * 6 ) / 3 and i(a) = L(a)-min{xu ... ,x6],

which are positive integers. Observe also that k(j>i •• -p6) = 2 and (as predicted
by Theorem 1.4) M is not half-factorial. For example, p\... p\ = (px... p6)

3 axe
factorizations of different length.

Theorem 1.6 can be applied to rings of algebraic integers.

COROLLARY 1.8. Let R be a ring of integers in a finite algebraic extension of the
rationals. Denote the multiplicative monoid of R by R*. Conditions (l)-(7) are
equivalent to

(8)

PROOF. Since R* is a Krull monoid with finite divisor class group with the property
that every divisor class of #(/?*) contains a nonzero prime divisor, we can apply
Theorem 1.6. (1) and (8) are equivalent by a well-known theorem of Carlitz [3]. •

Recall that the elasticity of M is defined as

p(M) = sup I — ct\ • • • an = p\ • • • fim where each a, and #, € si/(M) \.
I m >

We use the elasticity to provide some bounds for the values l(x) and L(x).

PROPOSITION 1.9. Let M be a Krull monoid with torsion divisor class group *jf (M)
and finite elasticity p(M). Suppose thatx is a nonunitofM. Then,

(a) l(x) < k(x) < l{x), and
(b) ifx is irreducible, then l/p(M) < l(x) < k(x) < L(x) < p(M).

PROOF, (a) Let x = p\ • • • p, be as in (1). By (3), xk = orf' • • • ak,' where the a, are
primary and for every m € U, xkm = akim • • • ak'm. The last equality and Corollary 1.5
imply

km -fe km -fa \[Pi]\ ktm j ^ \[p,]\

Similarly L(xkm)/km > k(x).
(b) Let^: be irreducible. Then l(xm), L(xm) and m represent factorization lengths

of the product xm. Hence,

1 /(xm) L(xm)
< p(M).p(M) m m
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Applying limits yields l /p(M) < t(x) < L(x) < p{M) and the result now follows
from (a). •

While we have shown previously that condition (7) of Theorem 1.6 does not in
general imply condition (1), when if(Af) is finite (7) does imply two interesting
properties. Our argument will require the following lemma.

LEMMA 1.10. Let M be a Krull monoid with torsion divisor class group and suppose
that k(y) > 1 for all atoms (and hence also for all nonunits) y € M. Then L(y) =

PROOF. Let y be a nonunit of M. If n e N+ and y" = z\ • • • zt is a factorization

of maximal length, then nk(y) = k(yn) = k(z\) + • • • + k(zt) > t = L(y") so that
L(y")/n < k(y). Thus L(y) < k(y). By Proposition 1.9 (a) (noting that the elasticity
is irrelevant) we get equality. •

PROPOSITION 1.11. Let M be a Krull monoid where ^(M) is afinite group. Con-
sider the following conditions on M.

(a) l(M) = L(M) = N+.
(b) k(y) e N+for every nonunit y 6 M.
(c) p(M) e N+.

Then (a) => (b) => (c) and none of these implications are reversible.

PROOF. Suppose (a) holds. If x is an atom then k(x) > 1, because otherwise, by

Proposition 1.9 (a), l(x) < k(x) < 1, which contradicts (a). By Proposition 1.9, (b)

holds.

Now suppose (b) holds. The finite divisor class group hypothesis implies that

[k(x) | x € s/{M)) achieves a maximum /x € N + . If ori ••• arm = /^ •••/}„, where

each a, , # e s/{M), then m < jk(o,) + • • • + * («„ ) = k(fit) + ••• + k(0n) < n\i,

so that m/n < ^i. Hence p(M) < fi. But taking x e &/(M) such that k(x) = n,
and using the notation of (1), (3) and (4), we get that xk = a*1 • • •ak

t', so that
p(M) >(ki-\ h k,)/k = k(x) = ix. Hence p(M) = n G N+, and (c) is proved.

That (c) does not imply (b) follows by considering any algebraic ring of integers
whose divisor class group contains an element of even order > 2. That (b) does not
imply (a) follows by Example 1.12 below. •

EXAMPLE 1.12. Let M be the set of nonnegative integer solution to the linear
Diophantine equation \5xx + 10JC2 + 6JC3 + ;c4 = 3Qx5. By [5, Theorem 1.3], M is

a Krull monoid with ^(A/) = 230 and the prime divisors pi, ... ,p* can be viewed
such that [p\\ = 15, [p2] = 10, [p3] = 6 and [p4] = I in ̂ (M). Using elementary
number theory (or the algorithm suggested in [17, Chapter 7]) one can verify easily
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that v = (1, 2,4, 1, 2) is the only irreducible (corresponding \.op\p\p\p\ and having
k(v) = 2) with Zaks-Skula value ^ 1. Consider u = (1, 2, 3, 7, 2) e M. By
considering the 3rd and 5th coordinates of u and v, it is straightforward then to verify
that t{,uk) = 2k- |3*/4J, so that l{u) = 5/4 £ N +

For more information on Krull monoids which satisfy condition (b) of Proposi-
tion 1.11, the interested reader is referred to [8, Section 4]. While the implications
in Proposition 1.11 are not reversible, there is a partial converse involving the first
implication.

COROLLARY 1.13. Let M be a Krull monoid with finite divisor class group. If
k(y) € H for every nonunit y € M, then L(M) = M.

PROOF. If k(y) e N for all nonunits y 6 M, then k(y) > 1 for each such y. Now,
L(v) = k(y) by Lemma 1.10 and the result follows. •

Recall that if G is a finite abelian group, then the Davenport constant of G (denoted
D(G)) is the length of the longest finite sequence of elements of G that sums to 0,
which has no nonempty subsum equal to 0.

COROLLARY 1.14. Let M be a Krull monoid with finite divisor class group *jf (M).
If x is irreducible in M then,

PROOF. This follows directly from Proposition 1.9 by using the well-known fact
that p(M) < D(^(M)) /2 (see [6, Introduction]). •

EXAMPLE 1.15. In general, the bounds presented in Corollary 1.14 are the best
possible. We have already seen in Lemma 1.10 an example where there are irreducibles
x with >t(jc) = L(x). It is easy to argue that if x is a primary element in a Krull monoid
with finite divisor class group, then k(x) = l(x). Suppose that M is an algebraic ring
of integers. If if (M) = Zn with n > 2, then let p\ and q\ be prime divisors of M
with [pi] = 1 and [qt] = n — 1. Setting* = p\qi, it is easy to see that l((x")k) — 2k
for each positive integer*. Thus l{x) = \\mk^aol({xn)k)/nk = 2/n = 2/D{^(M)).
Now, suppose that if(W) is an elementary 2-group of rank t > 1. Observe that
D(^"(A/)) = t + 1 [4, Theorem 1.4] and let pu ... , p,+l be a sequence of prime
divisors in M such that [p\] + • • • + [p,+\] = 0 in If (A/) and no nonempty proper
subsum of the [pi]'s is zero. Then v = px • • • p,+\ is irreducible in M and y2 =
W\ -) h iti,+i where the IO.-'S are irreducibles of the form w,. = pj for 1 < i < t + 1.
An argument similar to that used on x above yields that L(y) =
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2. The computation of l(x) and L(x) in finitely generated monoids

2.1. Notation and definitions All monoids appearing in this section are commuta-
tive and cancellative. By [10] and [13], when considering problems involving lengths
of factorizations, we can assume without loss of generality that the monoid we are
considering is reduced (it has only one unit, its identity element). Moreover, in [13]
an algorithmic method that allows us to compute from the presentation of a finitely
generated monoid a presentation of its associated reduced monoid is given. Since in
this section we consider quotients of N* (for some k e N), we use additive notation
and denote the identity element of a monoid (5, +) by 0. An element s of S is a unit
if there exists s' such that s + s' = 0. Denote by ^ ( 5 ) the set of units of 5.

The basic concepts related with factorizations are translated to additive notation as
follows. If a, b e S, then a divides b, denoted a | b, if there exists s e S such that
a + s = b. Two elements a, b 6 S are associated, denoted a ~ b, if there exists
i e f (S) such that a + s — b (note that a ~ b if and only if a | b and b \ a). An
element s e S is irreducible (or an atom) if a \ s implies that either a 6 *2/(S) or
a ~ s. Denote by &/(S) the set of all the atoms of 5. We say that a monoid 5 is
atomic if every element which is not a unit can be expressed as a sum of atoms.

It is well known and routine to see that if 5 is a commutative cancellative reduced
monoid with {s\,... ,sp) its minimal system of generators, then:

• a ~ b if and only if a — b,

• */(S) = [si sP).
As a consequence, we obtain in this setting that S is an atomic monoid.

Consider the monoid epimorphism <p : Np —> 5 defined by

<p(xi, ... ,xp) = X , J , H \-xpsp

and let a be the kernel of <p, so S is isomorphic to Np/a. Note also that if <p(x) = s,
then elements of the set [x]a correspond to factorizations of s in terms of irreducible
elements of 5, since (>i, . . . , yp) € [x]a if and only if yxsi + • • • + ypsp = s.

Given a subgroup HofZp, define the congruence ~ w on Np by a~« Z> if a — fee H.
Since Np/a is isomorphic to 5, the monoid Mp/a is cancellative and therefore, using
[14, Proposition 1.4], we deduce that there exists a subgroup M of V such that
o = ~M. Under the assumption that 5 is reduced, Np /a is also reduced, so by [14,
Propositions 3.6-3.7] we may assume that M D Np = {0}. Note also that in this
setting [AT]~M has finite cardinality (see [14, Lemma 9.1]) and using the results of [14,
Chapter 8] we can determine all its elements. Hence, from M we can compute all the
factorizations into irreducible elements of any element of 5.

Givena = (a, ap) € Np, we denote by |a| = ax-{ \-ap. Using this notation,
define £([a]~J = min{|6| | b e [a]~J and L([a]~J = max{|fc| | b € [a]~J which
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are equal to C((p(a)) and L(<p(a)), respectively, as defined in the introduction.

2.2. The asymptotic behaviour of / Throughout the remainder of this paper, our
standing hypothesis will be that M is a subgroup of Zp such that M r\W = {0}
(this simply means that the finitely generated cancellative monoid Np/<r is reduced).
The elements of N p / ~ w will be denoted by [a] (this element is equal to the set
[b | a~Mb}).

Let x € Np \ {0}. Our aim in this section is to describe the behaviour of l([nx])/n
as n goes to oo.

Let :< represent a graded order on Mp (a well order compatible with the operation
of the monoid such that \a\ < \b\ implies that a < b). One such graded order is given
by the lexicographical total degree order on Np. Let /x : Hp /~M -*• Np be the map
defined by (i([a]) = min-<([a]). Note that if y = [i([a]), then \y\ = l{[a\).

Let A = [fi([nx]) | n e N+}. Since A is a subset of Np, we deduce, by Dickson's
Lemma, that this set has only a finite number of minimal elements with respect to the
usual order of Np. Assume that these minimal elements are

B =

LEMMA 2.1. Let a,b,ce Np and assume that fi([a]) = b + c. Then b = fJ,([b]).

PROOF. Observe that fi([b]) + c e [a], so b + c < n([b]) + c < b + c, whence
b = p([b]). •

LEMMA 2 . 2 . Let a € N p \ {0} and k,keM. If[ka] = [la], then k = k.

PROOF. Assume that it > jfc. Then [(k - k)a] = [0] and therefore (k - k)a e M.
Applying the fact that M D Np = {0}, we deduce that k = k. •

LEMMA 2.3. Letn e N. There exist \x,... , Xr G N such that:

• fi([nx]) = kiiiQkiX]) + ••• + krfi([krx]),
• n = A.1̂ ] + • • • + Xrkr.

PROOF. Since B is the set of minimal elements of A, there exist / 6 {1, . . . , r)
and y 6 Np such that /x([nx]) = //([A:,*]) + y. Using Lemma 2.1, we deduce that
y = fi([y]) = fi([(n — Jfc,)*]) (observe that kt < n, since N p / ~ w is cancellative
and reduced). Performing this process as many times as necessary, we obtain that
t h e r e e x i s t ku ... , Xr e N + s u c h t h a t / x ( [ n ; c ] ) = X i f i ( [ k i x ] ) + ••• + X r [ z ( [ k r x ] ) .

Finally, [nx] = [(A.(Jti + ••• + krkr)x] and applying Lemma 2.2, we have that

n = A.,jfci H 1- krkr. D
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Set Y\ — f^([k\x]),... , yr = ii([krx]) and (by reordering if necessary) assume

LEMMA 2.4. Under the standing hypothesis we have that £([ny\]) = n\y\\for all

ne N + .

PROOF. By Lemma 2.3, there exist Xu ... ,kr e M such that

with X\k\ H (- Ar£r = nk\. Thus £([nyi]) = A.i|yi| H hXr|yr|. Applying now
that |y,| > /t,|yi |//fci for all 1 < i < r, we get

But l([nyi]) < n|y, |, whence ^([/iy,]) = n|yi|. D

THEOREM 2.5. Under the standing hypothesis, we have that i([x]) = |yi|/iti.

PROOF. We know that the £([*]) exists and equals limn_00£([n/:i;c])/7ijt1. Since
= [ny{], by Lemma 2.4

]) = hm = hm • = hm —— = -—. D
"-•<» nk\ n-*oo nk\ «-»oo nk\ k\

2.3. An algorithm to compute £([*]) Let x e Np \ [0). In this section, our goal
is to give an algorithm to compute limn_>00(£([«j:])/n) from x and M.

The algorithm is based in the following two lemmas.

LEMMA 2.6. Let y e M" such that y e [kx]for some k e N+ and /x([ny]) = ny
for aline N+. Then i([x]) = \y\/k.

PROOF. Since y e [ifcjc], we have that

= hm — = hm = — . •
k i

£([*]) = h m = h m = h m =

»-»oo nk «-»oo nk n->oo nit A:

The following lemma proves the existence of an element y with the properties of

the previous lemma.

LEMMA 2.7. There exists y e Mp such that y € [kx] for some k € M+ and
y]) = ny for all n e N+.
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P R O O F . Let yi, • • • . Yr be as in Section 2.2 and

C = {(A.i,... , A.r) e Nr | kiYi H h KYr = n([nx]) for some n e

By Lemma 2.3, we deduce that the cardinality of C is not finite. Thus, there exists
i e { 1 , . . . , r} such that n , (C) = {A, e N | (A, , . . . , kr) e C} is not finite.

Let n G N+. We will show now that (i([nYi]) = nYi- Since n , ( Q is not finite,
there exists A., 6 n,(C) such that A., > «. There exist ku ... , A.,_i, ki+u... , A.r e N
such that XiYi H + A.ryr = fi([mx]) for some m 6 N+. Applying Lemma 2.1, we
deduce that A.,y, = /n([A.,y,]). Therefore, /x([A,/,]) = A.,-y,- = (X, — «)y, + ny, which,
by Lemma 2.1, implies that ny, = /x([ny,]). D

In [14, proof of Proposition 8.2], it is proved that ~ w is a submonoid of Np x Np

generated by the minimal elements of ~ w \ {(0, 0)}. Denote this set by ^ ( ~ M ) (in
fact this set is the set of atoms of ~M). Furthermore, [14, Chapter 8] illustrates an
algorithm to compute from M the set ^ ( ~ w ) .

Assume that J ^ ( ~ W ) = {(au fa),... , (a,, /},)} and let

{0, 0,} = I a e Np a = max{a,, #•} for some / e {1 t) with a, # & | .

Given a = (a, ap) e Np, denote by Supp(a) the set {/ e {1, . . . , p} | a, j ^ 0}.

LEMMA 2.8. Under the standing hypothesis the following statements are equiva-
lent:
(1) n([nY]) = nY for all n e N+.
(2) Supp(0,) 2 Supp(Y)forall i e { 1 , . . . , / } .

PROOF. Assume that Supp(0,) c Supp(y) for some /. There exists n e N+

such that ny — 0, 6 Np. Without loss of generality, we can assume that a, <
0, = 0j = max^ctj^j}. Since (a ; , Pj) e ~ w and ny - y87 e Np, we have that
nY ~ Pj + aj e inY]- Furthermore, a ; -< Pj and thus ny — Pj + cij -< HY, allowing
us to assert that nUny]) ^ ny-

Suppose now that (2) holds and a e [nY]- Then (a, ny) e ~ M and there exist
ki,... ,k, e N such that (a, ny) = ki(cei, pi)-\ \-k,(a,,p,). Note that by (2) we
can deduce that if A., ^ 0, then pt < a,. Hence

a = A.!«i ^ h A.,a, > *-\P\ H 1- -̂r& = «K»

whence we get M(tMyl) = «y-

ALGORITHM 2.9. The input is an element x eHp and the output is l([x]).
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1. ifc=l.
2. Compute [kx].
3. Check if there exists y 6 [kx] such that Supp(0,) g Supp(y) for all i e

{1 , . . . , / } .
4. If there exists such y, then return \y\/k. Else k = k + 1 and go to 2.

By Lemma 2.6 and Lemma 2.8, if y exists, then ^([JC]) = \y\/k. By Lemma 2.7
the algorithm ends after a finite number of steps.

We illustrate the above algorithm with an example.

EXAMPLE 2.10. Let 5 = N \ {1, 2, 5} be the primitive numerical submonoid of
(N. +) generated by (3,4). Clearly S is a commutative cancellative reduced monoid
with minimal system of generators equal to {3, 4}. Furthermore, 5 is isomorphic to
N 2 / ~ M with M = {(x, y) e I2 \ 3x + 4y = 0). Applying the results of [14] we
have that */(-„) = {((1,0), (1, 0)), ((0, 1), (0, 1)), ((4, 0), (0, 3)), ((0, 3), (4,0))}.
Taking ;< as the lexicographical total degree order on N2, we get that / = 1
and {#]} = {(4,0)}. We use Algorithm 2.9 to compute 1(3) which is equal to

l, 0)])/n). For k = 1, 2, 3, we obtain

)] = {(*,0)} and Supp(01) = Supp((A:,O)).

But [4(1, 0)] = {(4, 0), (0, 3)} and Supp(0,) £ Supp((0, 3)) and therefore we can
assert that

l i m
n-»oo n 4

Notice that 3 is both irreducible and primary in S.

2.4. The asymptotic behaviour of L Let x e Np \ {0}. Our goal in this section is
to compute L([x]). The results and its proofs are analogous to the ones given in the
previous sections.

L e t ^ : Np/~M ->• N' be the map defined by JZ{[a\) = max^tfa]). Note that, as
we indicated in Section 2.1, the cardinality of [a] is finite and therefore its maximum
exists. Note also that if y = ~#([a]), then \y\ = L([a]). We take now

A = [JH([nx\) | n e H+)

and let B = [^([kix]), ... , ̂ ([krx])} be its minimal elements. As in Section 2.2
we have that:

) = b + c, then b = JH{[V\).
• Hn e N, then there exist X,, . . . , kr e N such that JZ{[nx]) = \xJ(([kxx]) +
h krj?([krx]) and n = A.,*, -\ h Xrkr.
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• Denote by y\ = -^([kix]),... ,yr = J?([krx]) and without loss of generality
we assume that |yi | / i t i <•••< \yr\/kr.

• L([nyr]) = n\yr\ for all n € N+.

The results of Section 2.3 can now be restated as follows:

• Let y e Hp such that y e [kx] for some k N + and *4?([ny]) = ny for all
neN+. ThenL([x]) = \y\/k.

• There exists y e Np such that y e[kx] for some k e N+ and J?([ny]) = ny
for all n e N+.

• If ^ ( ~ « ) = {(ari, fi\),..., (a,, f},)}, then we define [6\,... , 6;} as the set
[a € Np | a = miOjfa,-, Pi) for some i e ( l , . . . , t) with a, 5̂  jS,}.

• JZ([ny]) = ny for all n e N+ if and only if Supp(#,) g Supp()/) for all
I 6 { 1 , . . . , / } .

• Finally, with this notation, the algorithm to compute lim^oo L([nx])/n is
identical to the algorithm obtained from Algorithm 2.9 changing / by L.

EXAMPLE 2.11. Let 5 be as in Example 2.10. We compute now

L(3) = lim
n-t-oo n

We have that {0,} = {(0,3)} and [(1, 0)] = {(1,0)}. Since Supp(0,) g Supp((l, 0))
we can assert that

h m = r
"-*oo n 1 1

We close with an example which relates to behaviour observed in Section 1.

EXAMPLE 2.12. Let 5 = N5/~w where M = ((1, 1,1, - 1 , -1)>. If e, repre-
sents the ith basis vector of N5 for 1 < i < 5, then we have that ~M is generated
as a monoid by {(<?,, « , ) , . . . . (e5, e5), ((1, 1,1, 0, 0), (0,0,0, 1, 1)), ((0,0, 0, 1, 1),
(1, 1, 1, 0,0))}. The irreducible elements of 5 are {[e\\, [e2],... , [e5]} and an easy
application of the formulas in this section shows that £([«,]) = L([e,]) = 1 when
1 < i < 5. Also, [ei] + [e2] + [e3] = [e4] + [e5] and 5 is not half-factorial.
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