

Functional Oxides Prospective Article

A perspective on perovskite oxide semiconductor catalysts for gas phase photoreduction of carbon dioxide

Chunxiang Huang, Zhaosheng Li, and Zhigang Zou, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Ecomaterials and Renewable Energy Research Center (ERERC), Nanjing University, No. 22 Hankou Road, Nanjing 210093, People's Republic of China

Address all correspondence to Zhaosheng Li or Zhigang Zou at zsli@nju.edu.cn or zgzou@nju.edu.cn

(Received 15 June 2016; accepted 8 August 2016)

Abstract

Photocatalytic reduction of carbon dioxide (CO_2) into renewable hydrocarbon fuels using solar energy has gained much attention in the effort to conserve energy and enhance carbon cycling. This paper begins with a brief description of the basic concepts of the photocatalytic reduction of CO_2 , introduces some experimental challenges in the gas photoreaction system and provides a review of perovskite oxide semiconductor catalysts, including tantalates, niobates, titanates, zirconates and cerates, for use in the gas phase photoreduction of CO_2 . The prospects for the future research of CO_2 photoreduction are also presented.

Introduction

Recently, there are increasing concerns of energy and environmentalism due, in part, to the growing consumption of nonrenewable fossil fuels and the rising atmospheric levels of carbon dioxide (CO₂), a major greenhouse gas that is considered to be a major contributor to global warming and other unforeseen severe consequences. The photocatalytic reduction of CO₂ into hydrocarbons using solar energy, often referred to as artificial photosynthesis, is believed to be a potential and promising approach to solve both issues. [1-5] Since the reduction of CO2 by a TiO2 photocatalyst was reported by Inoue and Fujishima's group, [6] the photocatalytic reduction of CO₂ has attracted the attention of many researchers. The key to this process is to develop an efficient photocatalyst that can properly position the valence and conduction bands for the oxidation and reduction half-reactions of water and CO₂, respectively. [5,7] To date, various photocatalysts (such as TiO₂, [8] CdS, [9] GaP, [10] Zn₂GeO₄, [11] etc.) have been used for photocatalytic CO₂ reduction. Usually, the photocatalysts with an ideal perovskite structure are expected to exhibit good photocatalytic activity, which has been demonstrated in many studies.[12,13] Recently, a series of perovskite type materials of the form ABO₃ (such as BaZrO₃, [14] BaCeO₃, [15] SrTiO₃, [16] etc.) have been studied in the photocatalytic reduction of CO₂.

Although the photocatalytic reduction of CO_2 has been well studied, the conversion efficiency of CO_2 is still very low compared with that of water splitting. Two major photocatalytic systems are being studied: a solid–liquid interface prepared by an aqueous dispersion of photocatalysts and a solid–gas interface. Usually, both the liquid-phase (CH₃OH, HCHO, HCOOH) and gas-phase (CH₄) products can be detected in a

liquid photoreaction system, whereas only gas-phase (CH₄, CO) products could be detected in a gas photoreaction system.^[7] Although the solid-liquid reaction interface increases the accessible area for carriers and reactants, this approach has two drawbacks: the rather low solubility of CO2 and the reduction of water competing with CO₂ reduction in the aqueous suspensions. Although the solid-gas reaction interface promotes the separation of products and reactants, the ratio of gaseous CO2 and H2O is easily tunable, which thus inhibits competitive water reduction. [17,18] Because the products of the photocatalytic reduction of CO₂ are mostly C1 compounds, it is necessary to eliminate the effects of any organic or carbon residues on the whole photocatalytic reaction process because organic molecules (e.g., acetic acid) or carbon residues may undergo the photo-Kolbe reaction, photodegradation, photolysis reactions or reverse disproportionation reactions on the photocatalyst.[19,20]

This paper begins with a brief description of the basic concepts of the photocatalytic reduction of CO_2 and introduces some experimental problems encountered in the gas photoreaction system. In addition, this paper reviews perovskite oxide semiconductor catalysts used in the photocatalytic reduction of CO_2 . The prospects for future developments of CO_2 photoreduction are also presented.

Basic concepts of the photocatalytic reduction of CO₂

 CO_2 photoreduction is the conversion of CO_2 into hydrocarbon fuels using sunlight, which is also known as artificial photosynthesis. Because CO_2 is one of the most thermodynamically stable carbon compounds and because it cannot absorb light in the

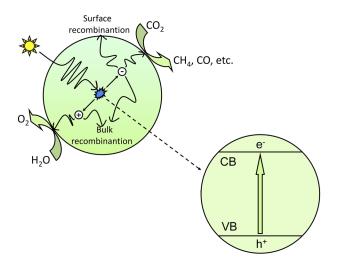


Figure 1. Schematic illustration of the photoexcitation and electron transfer process for the photocatalytic reduction of CO_2 with H_2O as a reductant.

wavelengths of 200–900 nm, the CO_2 photoreduction process requires a suitable photosensitizer, which is generally a semiconductor catalyst. Figure 1 shows the basic mechanism for the photocatalytic process of CO_2 reduction. In the photocatalytic process, photons having energy greater than or equal to the band gap energy are absorbed by the semiconductor, and the electrons in the valence band (VB) are excited to the conduction band (CB). Consequently, equal numbers of electrons and holes are generated in the CB and VB, respectively. The photogenerated electron–hole pairs separate from each other and transfer to the active sites on the surface of semiconductors; then, the photogenerated electrons with strong reduction potential reduce CO_2 into hydrocarbons such as CH_4 and CO, etc., and the photogenerated holes with strong oxidation potential oxidize H_2O into O_2 .

However, not all photogenerated electron—hole pairs reaching the surface of semiconductor catalysts can participate in the redox reaction, as the energy of the photogenerated electron—hole pairs must meet a certain thermodynamic conditions. [5,21] That is, the bottom of the CB of the semiconductor photocatalysts should have a more negative potential than the reduction potential of CO₂ forming HCOOH, CO, HCHO, CH₃OH and CH₄; likewise, the top of the VB should have a more positive potential than the oxidation potential of H₂O. Equations (1)—(8) show the possible reactions involved in CO₂ photoreduction and their corresponding theoretical potentials (vs. the normal hydrogen electrode in an aqueous solution at pH 7 and 25°C, assuming unit activity). [4,5,21]

$$CO_2 + e^- \to CO_2^{\bullet -}; \quad E^0 = -1.90 \text{ V}$$
 (1)

$$CO_2 + 2H^+ + 2e^- \rightarrow HCOOH; \quad E^0 = -0.61 \text{ V} \quad (2)$$

$$CO_2 + 2H^+ + 2e^- \rightarrow CO + H_2O; \quad E^0 = -0.53 \text{ V}$$
 (3)

$$CO_2 + 4H^+ + 4e^- \rightarrow HCHO + H_2O; \quad E^0 = -0.48 \text{ V} \quad (4)$$

$$CO_2 + 6H^+ + 6e^- \rightarrow CH_3OH + H_2O; \quad E^0 = 0.38 \text{ V} \quad (5)$$

$$CO_2 + 8H^+ + 8e^- \rightarrow CH_4 + 2H_2O; \quad E^0 = -0.24 \text{ V} \quad (6)$$

$$2H^+ + 2e^- \rightarrow H_2; \quad E^0 = -0.41 \text{ V}$$
 (7)

$$2H_2O + 4h^+ \rightarrow O_2 + 4H^+; \quad E^0 = 0.82 \text{ V}$$
 (8)

From a thermodynamic point of view, $[^{21,23}]$ the reaction of one electron to form $CO_2^{\bullet-}$ is highly unfavorable due to the very negative reduction potential of -1.9 V (vs. NHE) for this process [Eq. (1)]. Thus, many researchers believe that the photocatalytic reduction of CO_2 is a multi-electronic process, which requires less energy for electron transfer compared with a mono-electronic process [Eqs. (2)–(6)]. In the multi-electron CO_2 reduction pathway, the reaction requires the assistance of a corresponding number of protons [Eq. (8)]. The formation of products could be different, which is determined by the number of photogenerated electron–hole pairs participating in the redox reaction.

Although photocatalytic reduction of CO₂ has been well studied, the CO₂ conversion efficiency of this process is still very low. In addition to a suitable E_g and CB potential, many factors influence the conversion efficiency of the multi-electron CO₂ photocatalytic reduction process. These factors include excitation, transport, separation (recombination) of the photogenerated electron-hole pairs, the adsorption capacity of the gas molecules, the reduction of CO₂, the oxidation of H₂O, and so on. Furthermore, the selective formation of specific products is also a considerable problem in the photocatalytic reduction of CO₂. [3,4] So far, many strategies, including increased visiblelight excitation (e.g., impurity doping, sensitization, [24] and solid solution construction^[25]), improved transport and separation of the photogenerated electron-hole pairs (e.g., loading with cocatalysts, [26] synthesis of nanostructured photocatalysts, [27] and construction of semiconductor heterojunctions^[28]), enhanced adsorption of CO₂ (e.g., increasing the surface area^[29]), and suppression off-target side reactions (e.g., the competitive reaction of H₂O reduction in Eq. (7)^[30]), etc., have been designed to achieve a high efficiency and selectivity.

Key points of the experimental details

The efficiency of the photocatalytic reduction of CO_2 depends not only on the factors mentioned above, a suitable semi-conductor photocatalyst (with proper E_g , CB and VB), the excitation, transport and separation (recombination) of the photogenerated electron-hole pairs, etc., but also on the experimental conditions, [20,31-33] such as the light source, response time, reaction temperature, the ratio of H_2O and CO_2 , etc.

Photocatalytic reduction of CO₂ is mainly carried out at room pressure and temperature and is controlled by a cooling water recirculation system. A high pressure mercury lamp

and/or a 300 W xenon lamp, usually with a cutoff filter, are the most common light sources in CO₂ photoreduction. Yahaya et al. found that the traditional UV lamp had a drawback in that the light intensity would decrease with rising temperature due to the lengthy illumination time, and this decrease affects the efficiency of CO₂ photocatalytic reduction. [31] The selection of response time for the studies of CO₂ photoreduction is different, ranging from tens of minutes to hours. Zhao et al. studied nano-sized CoPc/TiO2 particles as a catalyst for photoconversion of CO2 and discussed the effect of irradiation time on the formation of photo-reduced products over a period of 6-50 h. [32] At short reaction times, the product yields increased rapidly because more photoelectrons were generated with increasing time of light exposure; however, the product yields flattened out after 20 h of irradiation. This result can be attributed to saturation of the reactive surface active sites absorbed with intermediate products. In addition, the molar ratio of H₂O and CO₂ is also found to play an important role in determining the reaction rate and product selectivity for CO₂ photocatalytic reduction. Zhang et al. investigated the photocatalytic reduction of CO₂ with H₂O on a Pt-loaded TiO₂ catalyst and studied the effect of the H₂O/CO₂ molar ratio on CH₄ yield. They found that the CH₄ yield of 0.15 wt.% Pt-loaded TiO₂ nanotube increased as the mole ratio of H2O and CO2 increased, while the different H₂O:CO₂ molar ratios had little effect on the CH₄ yield of 0.12 wt.% Pt-loaded TiO₂ nanoparticles.[33] The formation of CH₄ occurred mainly due to the high concentration of the surface OH group, which had been shown previously by Ikeue et al. [34]

The main products in a gas phase reaction system for photocatalytic reduction of CO_2 are generally CH_4 , which is usually on the µmol scale, as well as a small amount of $CO.^{[8,14-16]}$ As we mentioned above, the photocatalytic reduction of CO_2 is a complex multi-electronic reaction process. There are two plausible pathways for CH_4 formation [4,20]:

$$CO_2 \rightarrow HCOOH \rightarrow HCHO \rightarrow CH_3OH \rightarrow CH_4$$
 (9)

$$CO_2 \rightarrow CO \rightarrow CO_2^{\bullet -} \rightarrow CH_2 \rightarrow CH_4$$
 (10)

It is necessary to verify whether the carbon source for CH_4 production is actually the CO_2 for the gaseous CO_2 reduction because any organic adsorbates or carbon residues may take part in side reactions, such as the photo-Kolbe reaction, mineralization reaction, photolysis reaction or reverse disproportionation reaction. ^[19,20] These reactions could create a false impression of the formation of hydrocarbon products.

If there are any carbon residues deposited or buried on the surface of catalyst during the preparation of the catalyst for the photocatalytic reduction of CO₂, a reverse disproportionation reaction of the impurity might occur in the presence of CO₂ in the reaction system. In this case, the generated CO would react with the water adsorbed on the surface active sites of the catalyst; then, the generated CH₃OH would ultimately generate CH₄. This pathway has been shown by Yang

et al. through the combined use of in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and 13 C labeled CO₂ during CO₂ photoreduction over Cu-promoted crystalline TiO₂ catalysts. The reaction process could be described as follows^[19,35]:

C (impurity in or on catalyst) +
$$CO_2 \rightarrow CO + CO$$
 (11)

$$CO + 2H_2O \rightarrow CH_3OH + O_2$$
 (12)

Yui et al. demonstrated that organic adsorbates, especially CH₃COOH, had a significant effect on the formation of CH₄ in CO₂ photoreduction over TiO₂. The organic adsorbed on the surface of TiO₂ could participate in a so-called photo-Kolbe reaction (CH₃COOH, for example)^[36]:

$$CH_3COOH + h^+ \rightarrow {}^{\bullet}CH_3 + CO_2 + H^+$$
 (13)

$${}^{\bullet}\text{CH}_3 + \text{CH}_3\text{COOH} \rightarrow {}^{\bullet}\text{CH}_2\text{COOH} + \text{CH}_4$$
 (14)

In addition, if there are any alcohols and O_2 in the CO_2 photoreduction reaction system producing CH_4 , CO_2 would be generated in-situ due to the mineralization of alcohols on the surface of the semiconductor photocatalyst, which could be explained through the following mechanism^[20]:

Organic radical (OR) +
$$O_2 \rightarrow CO_2$$
 (15)

In conclusion, evaluations of the products for CO₂ photocatalytic reduction should be interpreted with caution. In other words, the C source should be carefully investigated with respect to the production of CH₄ and CO from CO₂ in a gaseous CO₂ photoreduction system. Most researchers carry out a series of contrast experiments with different conditions including H₂O, CO₂, irradiation and catalyst to exclude the effects of carbon residues and organic adsorbates on the formation of hydrocarbon products[14-16]; some other studies, however, reported a more precise and intuitive method: isotopic labeling (13C and ¹⁸O). [35-37] This approach can simultaneously evaluate the C source and the O source. To guarantee the reliability of the results of CO₂ photocatalytic reduction, carbon residues or organic adsorbates must be avoided throughout the entire reaction system. These residues and adsorbates may form during the synthesis of the catalyst if it involves the use of alkoxides and organic solvents (e.g., polyethylene glycol, PEG) as precursors or in washing steps if organic cleaning solvents are used. [35,38,39] These residues could be removed using particular methods, such as thermal treatment in a continuous flow of N₂ or Ar inert gas or at high temperature in air, as well as prolonged washing in a water environment. [19,35,36]

Perovskite oxide semiconductor photocatalysts for gaseous CO₂ reduction

An ideal semiconductor photocatalyst for CO_2 photoreduction should benefit from: (1) a suitable E_g such that the

semiconductor absorbs incident photons over a range of wavelengths to generate electron-hole pairs; (2) effective separation between the photogenerated electron-hole pairs that then transfer to the surface of semiconductors and subsequently take part in the oxidation-reduction reaction with CO₂ and H₂O absorbed on the surface active sites of the semiconductors; and (3) a welltuned CB and VB such that the bottom of the CB is located at a more negative potential than the reduction potentials of CO₂ and such that the top of the VB has a more positive potential than the oxidation potential of H₂O. Based on these principles, various photocatalysts, including metal oxides (e.g., TiO₂, [8] $ZnO_{3}^{[40]}$ BiVO₄, [41] and $Ga_{2}O_{3}^{[42]}$), metal sulfides (e.g., CdS^[9] and ZnS^[43]), metal phosphides (e.g., GaP^[10]), nitrides (e.g., $C_3N_4^{(44)}$), etc., have been reported for CO_2 reduction. Among them, perovskite oxide semiconductor photocatalysts are good candidates for CO₂ reduction due to their unique physical and chemical properties, including their stability, their controllable structure and their ability to be doped in two different cation sites. In addition, perovskite structures are expected to exhibit good photocatalytic activity as has been demonstrated in many studies. [12,13] Recently, a series of the perovskite type materials of the form ABO₃ (such as BaZrO₃, [14] BaCeO₃, [15] SrTiO₃, [16,45,46] etc.) have been studied for the photocatalytic reduction of CO₂. Table I shows the summary of perovskite oxide semiconductors used in the photocatalytic reduction of CO2 in a gas reaction system. These semiconductors were roughly divided into five types: tantalates, niobates, titanates, zirconates and cerates.

Tantalates

Teramura et al. carried out the photoreduction of CO2 over $ATaO_3$ (A = Li, Na and K) synthesized by a conventional solidstate reaction in the presence of H₂. CO was the only gaseous product over all of the samples tested under 200 W Hg-Xe lamp irradiation. [54] LiTaO₃ presented the highest activity for CO yield (0.42 µmol/g in 24 h), and the trend of the photocatalytic activities were consistent with that of the E_g (LiTaO₃> NaTaO₃ > KTaO₃). In addition, they also found that the amount of evolved CO gas depended on the amount of chemisorbed CO₂ (as shown in Fig. 2), [54] which meant that the adsorption of CO₂ had an effect on the reduction efficiency of CO₂. H₂ was used as reductant in this photocatalytic reduction of CO₂ process, whereas other gas reaction systems usually used H₂O as reductant.

Niobates

Niobates with a perovskite structure share many characteristics with tantalates and have been used in CO₂ photocatalytic reduction systems with water as the reductant. Shi et al. studied the photocatalytic reduction activities of CO2 into CH4 over NaNbO₃ samples upon irradiation from a Xe arc lamp. It was discovered that the CH₄ evolution rate (653 ppm/h/g) of Pt-loaded NaNbO₃ nanowires prepared by a hydrothermal method were much higher than that of bulk NaNbO3 particles synthesized by a solid-state reaction.^[53] Subsequently, they prepared alkali niobate ANbO₃ (A = K, Na) photocatalysts using a conventional solid-state reaction method and compared their photocatalytic performance for CO₂ reduction under similar conditions. They found that KNbO₃ (7.0 ppm/h) showed a higher photocatalytic activity than NaNbO₃ (2.3 ppm/h). [52] The perovskite NaNbO₃ studied in most research has a typical cubic structure, whereas NaNbO3 also has another crystal structure—an orthorhombic structure. The schematic crystal structures of cubic and orthorhombic NaNbO3 are shown in Fig. 3.^[51] Li et al. discussed the photocatalytic activities of CO₂ reduction over the cubic and orthorhombic NaNbO₃ in a gas phase system and found that the CO₂ reduction activity over the cubic NaNbO₃ was nearly twice that of the orthorhombic NaNbO₃. These results might be due to the unique electron structure of cubic NaNbO3, which may support electron excitation and transfer.[51] In addition, they studied the influence of the preparation temperature on the activity of NaNbO₃ photocatalyst. [50] The cubic NaNbO₃ prepared at 500°C presented the best photocatalytic performances, and the CH₄ evolution for gas phase CO₂ photoreduction over NaNbO₃ loaded with 0.5 wt.% Pt under a 300 W Xe lamp ($\lambda > 300 \text{ nm}$) could reach 12.6 μ mol/m²/h.

Moreover, differing from the simple ABO₃-type perovskite semiconduction photocatalysts, lamellar perovskite niobates, such as HNb₃O₈ and KNb₃O₈, have also been applied in the gas phase photocatalytic reduction of CO₂. [48,49] Figure 4 shows a schematic drawing of the layered structures of HNb₃O₈ composed of 2D Nb₃O₈ anion thin sheets of edgeand corner-shared NbO₆ octahedral with H⁺ intercalated between the layers. Li et al. found that hydrothermally synthesized HNb₃O₈ and KNb₃O₈ nanobelts exhibited much higher yields of CH₄ compared with the HNb₃O₈ and KNb₃O₈ particles prepared by conventional solid-state reactions as well as commercial TiO₂.^[48]

Titanates

Several perovskite titanates, such as SrTiO₃, PbTiO₃ and CaTiO₃, have also been explored for gas phase CO₂ photocatalytic reduction. [16,45–47] Among them, SrTiO₃ is the most widely studied photocatalysts. Xie et al. prepared a self-doped $SrTiO_{3-\delta}$ using a carbon-free one-step combustion, and they demonstrated that the chemical adsorption of CO2 could be improved by increasing the oxygen deficiency of the SrTiO₃. This deficiency promoted the photocatalytic activity of CO2 reduction to generate CH₄ under visible light irradiation.^[16] Zhou et al. discussed a leaf-shaped 3D hierarchical artificial photosynthetic system of $ATiO_3$ (A = Sr, Ca and Pb) prepared by a modified sol-gel method using fresh green leaves as a structure template. They studied the effects of various cocatalysts (Au, Ag, Cu, Pt, RuO₂ and NiO_x) on the photocatalytic activity of CO₂. As shown in Fig. 5, CH₄ and CO were the two main products, and Au as a suitable cocatalyst exhibited the best performance for the selectivity of both CH₄ and CO (using SrTiO₃ as an example). [45] In another study, Kou et al. synthesized a highly active photocatalyst with response to visible light by

Table I. Summary of perovskite oxide semiconductors for the photocatalytic reduction of CO₂ in a gas reaction system.

Catalyst/band gap energy	Co-catalyst	Reaction medium	Light source	Major products	Yield ^a	References
BaZrO ₃ /4.8 eV	0.3 wt.% Ag	CO ₂ and H ₂ O vapor	300 W Xe lamp (PE 300BUV)	CH ₄	0.57	14
BaCeO ₃ /3.2 eV	0.3wt.% Ag	CO ₂ and H ₂ O vapor	300 W Xe lamp (PE 300BUV)	CH ₄	0.55	15
SrTiO _{3-∂} /3.2 eV	Self-doped 0.3 wt.% Pt	CO ₂ and H ₂ O vapor	300 W Xe lamp λ > 420 nm	CH ₄	0.25 ^b	16
SrTiO ₃ /3.2 eV	1 wt.% Au	CO ₂ and H ₂ O vapor	300 W Xe lamp λ > 420 nm	CH ₄ CO	CH ₄ : 0.231 CO: 0.349	45
CaTiO ₃ /3.5 eV	1 wt.% Au	CO ₂ and H ₂ O vapor	300 W Xe lamp λ > 420 nm	CH₄ CO	CH ₄ : 0.029	45
PbTiO ₃ /2.9 eV	1 wt.% Au	CO ₂ and H ₂ O vapor	300 W Xe lamp λ > 420 nm	CH₄ CO	CH ₄ : 0.007	45
SrTiO ₃ /3.2 eV	0.02Co doped Pt loaded	CO ₂ Gas-closed system	300 W Xe lamp λ > 420 nm	CH ₄	63.6°	46
$Ca_xTi_yO_3/3.44 \text{ eV}$ (x = y = 1)	-	CO ₂ and H ₂ O vapor	6 W/cm ² UV lamp $\lambda = 365 \text{ nm}$	CH ₄	17 ^d	47
HNb ₃ O ₈ /3.66 eV nanobelts	-	CO ₂ and H ₂ O vapor	350 W Xe lamp	CH ₄	3.58	48
HNb ₃ O ₈ /3.5 eV SiO ₂ -HNb ₃ O ₈ /3.5 eV	0.4 wt.% Pt	CO ₂ and H ₂ O vapor	350 W Xe lamp	CH ₄	0.47 2.90	49
KNb ₃ O ₈ /3.66 eV nanobelts	-	CO ₂ and H ₂ O vapor	350 W Xe lamp	CH ₄	1.71	48
NaNbO ₃ /3.25 eV	0.5 wt.% Pt	CO ₂ Gas-closed system	350 W Xe lamp λ > 300 nm	CH ₄	12.6 ^b	50
c-NaNbO ₃ /3.29 eV o-NaNbO ₃ /3.45 eV	0.5 wt.% Pt	CO ₂ and H ₂ O vapor	300 W Xe lamp	CH ₄	0.486 0.245	51
NaNbO ₃ /3.4 eV	0.5 wt.% Pt	CO ₂ and H ₂ O vapor	300 W Xe lamp	CH ₄	2.3 ^c	52
KNbO ₃ /3.1 eV	0.5 wt.% Pt	CO ₂ and H ₂ O vapor	300 W Xe lamp	CH ₄	7.0 ^c	52
NaNbO ₃ /3.4 eV nanowires	0.5 wt.% Pt	CO ₂ and H ₂ O vapor	300 W Xe lamp	CH ₄	653 ^e	53
LiTaO ₃ /4.9 eV	_	CO ₂ and H ₂	200 W Hg-Xe lamp	CO	0.42 ^f	54
NaTaO ₃ /4.1 eV	-	CO ₂ and H ₂	200 W Hg-Xe lamp	CO	0.1 ^f	54
KTaO ₃ /3.7 eV	_	CO ₂ and H ₂	200 W Hg-Xe lamp	CO	0.06 ^f	54

 $^{^{}a}$ Maximum formation rate reported for the products in μ mol/h/g, unless stated otherwise.

substituting the ${\rm Ti}^{4+}$ in ${\rm SrTiO_3}$ to transition metal (Co, Fe, Ni) ions for gas phase ${\rm CO_2}$ reduction, and Pt-SrTi_{0.98}Co_{0.02}O₃ had the highest activity (the yield of CH₄ was 63.6 ppm/h). [46]

Zirconates

Apart from the above-mentioned tantalates, niobates and titanates photocatalysts, Chen et al. first investigated the

 $^{^{}b}In\ \mu mol/m_{cata}^{2}/h.$

cIn ppm/h.

^dThe entire yield for the main products in μ mol/g (7 h, x = y = 1).

^eln ppm/h/g.

^fThe entire yield for the main products in μ mol/g (24 h).

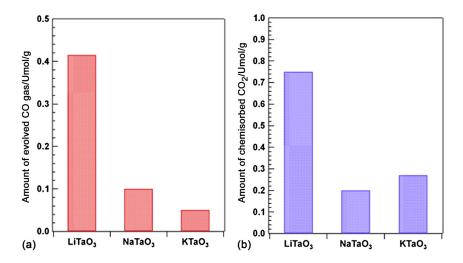


Figure 2. (a) Amount of evolved CO gas for the photocatalytic reduction of CO2 in the presence of H2 as a reductant over ATaO3 (A = Li, Na, K) after 24 h of photoirradiation. (b) Amount of Chemisorbed CO₂ on ATaO₃ (A = Li, Na, K). (Copyright 2010, Applied Catalysis B: Environmental. [54]).

photocatalytic properties of BaZrO₃ for CO₂ reduction into CH₄ in a gas reaction system.^[14] Barium zirconate made by the Pechini process has a bandgap of 4.8 eV, which means that BaZrO₃ only has a UV light response. They also confirmed the effects of different cocatalysts on the photocatalytic activities and optimized the loaded amount of metal nanoparticle cocatalysts. As shown in Fig. 6, Ag was a suitable cocatalyst that exhibited the best selectivity for producing CH₄ with the BaZrO₃ system. In addition, a CH₄ yield of up to 0.57 μmol/ h/g was obtained when 0.3 wt.% Ag cocatalyst was loaded onto the surface of the BaZrO₃. In this case, the Ag site acted as an electron trap to effectively decrease the recombination rate of the photogenerated electron-hole pairs.

Cerates

All the perovskite oxide semiconductor photocatalysts for CO2 reduction mentioned above consist of metal cations with d⁰ (Zr⁴⁺, Ti⁴⁺, Nb⁵⁺, or Ta⁵⁺) configurations. Wang et al. first reported the photocatalytic properties of BaCeO₃, whose conduction band mainly consists of Ce 4f orbitals, as a new photocatalyst for gas phase CO₂ reduction. [15] The activity of

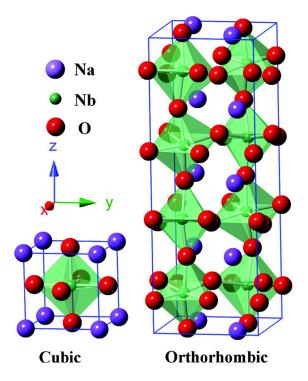


Figure 3. Schematic crystal structures of cubic and orthorhombic NaNbO₃. (Copyright 2012, The Journal of Physical Chemistry. [51]).

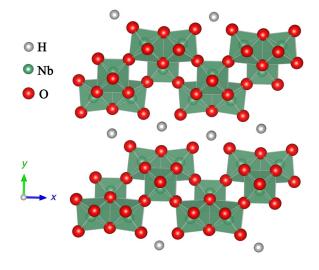


Figure 4. Schematic drawing of the layered structures of HNb₃O₈.

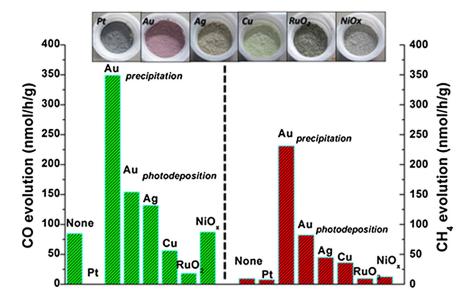


Figure 5. CO and CH₄ evolution on an artificial photosynthetic system of SrTiO₃ of CO₂ photoreduction loaded with different cocatalysts. (Copyright 2013, Scientific Reports. [45]).

photocatalytic reduction of CO_2 into CH_4 over $BaCeO_3$ loaded with 0.3 wt% Ag cocatalyst was up to 0.55 μ mol/h/g. This experiment proved that perovskite-type oxide semiconductor photocatalysts with conduction bands dominated by 4f electronic configuration could also react as well as the semiconductor photocatalysts with d^0 electronic configuration in gas phase CO_2 photoreduction.

Summary and outlook

The photocatalytic reduction of CO₂ into renewable hydrocarbon fuels using solar energy is a promising approach for simultaneously achieving carbon cycling and solving the shortage of sustainable energy. An ideal semiconductor photocatalyst for

 ${\rm CO_2}$ photoreduction should have a suitable $E_{\rm g}$ and proper positioning of the CB and VB, which should satisfy thermodynamic conditions of ${\rm CO_2}$ reduction. In addition, the photogenerated electron—hole pairs should separate effectively and transfer to the surface active sites of the semiconductor photocatalysts so that they can participate in the oxidation-reduction reactions with ${\rm CO_2}$ and ${\rm H_2O}$.

The photocatalytic reduction of CO_2 is a complex multielectronic reaction process. The main products in a gas phase CO_2 reduction are generally CH_4 as well as a small amount of CO, and the yield of CH_4 is usually on the µmol scale. This yield is relatively low compared with the conversion of water splitting. [14–16,45–54] The conversion efficiency and

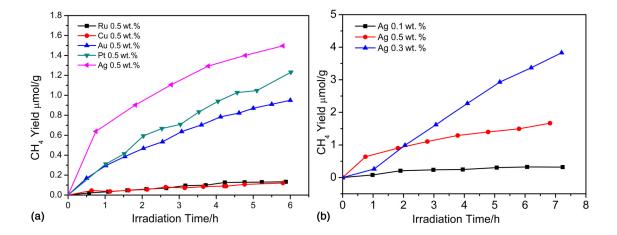


Figure 6. (a) CH₄ yields of BaZrO₃ deposited with different cocatalysts (Ru, Cu, Au, Pt, Ag) of the same apparent amount. (b) CH₄ yields of BaZrO₃ with different amounts of Ag deposition. (Copyright 2015, Catalysis Science & Techonology.^[14]).

products selectivity of gaseous CO₂ photoreduction not only depends on the characteristics of the photocatalyts but also depends on some experimental conditions, such as the light source, response time, reaction temperature, the ratio of H₂O and CO₂, etc. It is necessary to verify whether the formation of hydrocarbon products is actually from the photocatalytic reduction of CO₂ or is from some side reactions with organic adsorbates (e.g., acetic acid) or carbon residues. These adsorbates or residues may be formed during the photo-Kolbe reaction, mineralization reaction or reverse disproportionation reaction in photocatalytic reaction. A series of contrast experiments with different conditions (including H₂O, CO₂, irradiation and catalyst) or a more intuitive and precise method—isotopic labeling (13C and 18O)—is necessary to detect and/or exclude the effects of carbon residues and organic adsorbates. These contaminants can also be removed by thermal treatment in air or inert gas or by prolonged washing with water upon the formation of products.

Based on the research and the current development of related theories and practical applications, the photocatalytic reduction of CO₂ still has a long way to go. The future studies on CO₂ photoreduction should be initiated in the following areas.

Developing a new suitable photocatalyst

As we mentioned above, a wide variety of perovskite oxide semiconductors system have been applied to the photocatalytic reduction of CO₂ in a gas reaction system under UV or visible light irradiation. Most of them consist of metal cations with d^o configurations including tantalates, niobates, titanates, zirconates, with the exception being cerates such as BaCeO₃ with 4f orbitals electron configurations. It is believed that perovskite oxide semiconductor photocatalysts still have great prospects due to their unique physical and chemical properties in the future study of the photocatalytic reduction of CO₂. For example, alkaline earth stannates of MSnO₃ (M = Ca, Sr and Ba), which contain Sn⁴⁺ ions with a d¹⁰ electronic configuration, have been used as the photocatalyst applied to photocatalytic reactions for H₂ and O₂ evolution in water splitting.^[55] The bottom of the CBs are located at -1.46, -1.37 and -0.69 V (versus NHE, pH = 7) for CaSnO₃, SrSnO₃ and BaSnO₃, respectively, while the top of the VBs are 2.98, 2.69 and 2.41 V (versus NHE, pH = 7), respectively. Thus, the photogenerated electrons in the CB are more negative than the reduction potentials of CO₂ into HCOOH, CO, HCHO, CH₃OH and CH₄, and the corresponding photogenerated holes in the VB can easily oxidize H₂O in the ABO₃ structure of these stannates. In other words, $MSnO_3$ (M = Ca, Sr and Ba) is theoretically feasible as a photocatalyst for the reduction of CO₂. In addition, our group has already tested the photocatalytic reduction of CO₂ over BaSnO₃, and we hope that MSnO₃ (M = Ca, Sr and Ba) will be a promising photocatalyst for the gas phase photoreduction of CO₂ in

In addition, double perovskite oxides with the general chemical formula of A2BB'O6 have attracted much interest due to their variable crystal structures, flexible chemical compositions and other unique physicochemical properties such as being semi-metallic. These catalysts have been successfully applied to water splitting, such as Ba_2InTaO_6 with a E_g of ca. 4.17 eV. [56] A variety of elements are available for substitution into the A or B site; B site elements are usually transition metals with d-orbital configurations, and A site elements are usually alkaline earth ions such as Ca, Sr and Ba. [57] Based on these results, development of new double perovskite oxide semiconductors system seem to be one feasible direction for research on CO₂ reduction in future.

Cocatalysts

It is generally believed that cocatalysts play a crucial role in semiconductor-based photocatalysis. [3,4,58] Firstly, loaded cocatalysts could serve as electron traps to promote the separation of photogenerated electron-hole pairs resulting from the formation of a Schottky barrier between the semiconductor and the cocatalyst. Hence, they could improve the photocatalytic activity and selectivity for CO₂ reduction. Secondly, cocatalysts could effectively lower the activation barrier of CO2 due to their better conductivity and lower over potential. [59,60] To date, a series of cocatalysts including Pd, Pt, Au, Ag, Ru, Cu, Ni, Co, etc. have been used for photocatalytic reactions, and each presented different effects on the conversion efficiency. [26,45,61] In addition, it is worth noticing that the bimetallic cocatalyst systems (such as Cu and Pt) have also exhibited good activities for CO₂ reduction, [62] and the enhancement mechanism is still unclear. Thus, it is essential to better understand the photocatalytic mechanism of cocatalysts and to develop cheap, abundant and highly efficient cocatalyst systems (e.g., non-noble metal cocatalysts and new-type bifunctional cocatalysts with a proper structure) for the photocatalytic reduction of CO₂.

Gas adsorption ability on the surface of photocatalysts

It is well known that the reduction of CO₂ and the oxidation of H₂O are the two main half-reaction steps for the photocatalytic reduction of CO_2 . On one hand, effective adsorption of CO_2 is an important process that can be promoted by increasing surface area, [29] by introducing basic sites such as MgO, or by introducing surface oxygen vacancies^[16,63]. Optimization of adsorption is important for improving the conversion efficiency for the photocatalytic reduction of CO₂. The adsorption of CO₂ molecules on stoichiometric and oxygen-deficient SrTiO₃ has been theoretically and experimentally studied by Xie et al. They demonstrated that chemical adsorption of CO₂ molecules could be improved by increasing the oxygen deficiency in SrTiO₃, thus enhancing the photocatalytic performance for CO₂ reduction. ^[16] On the other hand, water oxidation favors the efficient separation of the photogenerated electron-hole pairs, thus improving the photocatalytic activity for CO₂ reduction. [3,19] In addition, deactivation of the photocatalysts may occur after long reaction times, which may be attributed to the active sites gradually becoming covered by the adsorption

of the reduction intermediate products or the final products accumulation on the photocatalyst surface over time. $^{[32,64]}$ In conclusion, it is important to refine the research on the adsorption of gaseous reactants (CO₂, H₂O) and the products on the surface of photocatalysts.

In short, the future development for the photocatalytic reduction of CO_2 remains challenging, and the comprehensive efforts (such as materials synthesis, doping, nanostructuring and heterojunction)^[4,25] are needed to achieve a breakthrough in the conversion efficiency of CO_2 reduction into hydrocarbon fuels that may eventually lead to industrialization.

Acknowledgments

This work is supported by National Basic Research Program of China (973 Program, 2013CB632404), a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, New Century Excellent Talents in University (NCET-12-0268), and the National Natural Science Foundation of China (Nos. 21473090 and 51272102).

References

- Z.S. Li, J.Y. Feng, S.C. Yan, and Z.G. Zou: Solar fuel production: strategies and new opportunities with nanostructures. *Nano Today* 10, 468 (2015).
- J.L. White, M.F. Baruch, J.E. Pander III, Y. Hu, I.C. Fortmeyer, J.E. Park, T. Zhang, K. Liao, J. Gu, Y. Yan, T.W. Shaw, E. Abelev, and A.B. Bocarsly: Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. *Chem. Rev.* 115, 12888 (2015).
- X. Li, J.Q. Wen, J.X. Low, Y.P. Fang, and J.G. Yu: Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO₂ to solar fuel. Sci. China Mater. 57, 70 (2014).
- W.G. Tu, Y. Zhou, and Z.G. Zou: Photocatalytic conversion of CO₂ into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects. Adv. Mater. 26, 4607 (2014).
- K.F. Li, X.Q. An, K.H. Park, M. Khraisheh, and J.W. Tang: A critical review of CO₂ photoconversion: catalysts and reactors. *Catal. Today* 224, 3 (2014).
- T. Inoue, A. Fujishima, S. Konishi, and K. Honda: Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. *Nature* 277, 637 (1979).
- S.N. Habisreutinger, L. Schmidt-Mende, and J.K. Stolarczyk: Photocatalytic reduction of CO₂ on TiO₂ and other semiconductors. Angew. Chem. Int. Ed. 52, 7372 (2013).
- L.J. Liu, H.L. Zhao, J.M. Andino, and Y. Li: Photocatalytic CO₂ reduction with H₂O on TiO₂ nanocrystals: comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry. ACS Catal. 2, 1817 (2012).
- S. Wang and X. Wang: Photocatalytic CO₂ reduction by CdS promoted with a zeolitic imidazolate framework. Appl. Catal. B-Environ. 162, 494 (2015).
- E.E. Barton, D.M. Rampulla, and A.B. Bocarsly: Selective solar-driven reduction of CO₂ to methanol using a catalyzed p-GaP based photoelectrochemical cell. *J. Am. Chem. Soc.* 130, 6342 (2008).
- 11. S.C. Yan, J.J. Wang, and Z.G. Zou: An anion-controlled crystal growth route to Zn₂GeO₄ nanorods for efficient photocatalytic conversion of CO₂ into CH₄. Dalton Trans. 42, 12975 (2013).
- H. Kato and A. Kudo: Water splitting into H₂ and O₂ on alkali tantalite photocatalysts ATaO₃(A=Li, Na, and K). J. Phys. Chem. B. 105, 4285 (2001).
- 13. A. Kudo, H. Kato, and S. Nakagawa: Water splitting into H₂ and O₂ on new Sr₂M₂O₇ (M=Nb and Ta) photocatalysts with layered perovskite structure: factors affecting the photocatalytic activity. *J. Phys. Chem. B.* **104**, 571 (2000).

- 14. X.L. Chen, J. Wang, C.X. Huang, S.Y. Zhang, H.T. Zhang, Z.S. Li, and Z.G. Zou: Barium zirconate: a new photocatalyst for converting CO₂ into hydrocarbons under UV irradiation. *Catal. Sci. Technol.* 5, 1758 (2015).
- 15. J. Wang, C.X. Huang, X.L. Chen, H.T. Zhang, Z.S. Li, and Z.G. Zou: Photocatalytic CO₂ reduction of BaCeO₃ with 4f configuration electrons. *Appl. Surf. Sci.* 358, 463 (2015).
- 16. K. Xie, N. Umezawa, N. Zhang, P. Reunchan, Y.J. Zhang, and J.H. Ye: Self-doped $SrTiO_{3-\delta}$ photocatalyst with enhanced activity for artificial photosynthesis under visible light. *Energy Environ. Sci.* **4**, 4211 (2011).
- 17. K. Mori, H. Yamashita, and M. Anpo: Photocatalytic reduction of CO₂ with H₂O on various titanium oxide photocatalysts. *RSC Adv.* **2**, 3165 (2012).
- M. Anpo and K. Chiba: Photocatalytic reduction of CO2 on anchored titanium oxide catalysts. J. Mole. Catal. 74, 207 (1992).
- Y. Izumi: Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coordin. Chem. Rev. 257, 171 (2013).
- 20. G.R. Dey: Chemical reduction of CO₂ to different products during photo catalytic reaction on TiO₂ under diverse conditions: an overview. *J. Nat. Gas Chem.* 16, 217 (2007).
- 21. V.P. Indrakanti, J.D. Kubicki, and H.H. Schobert: Photoinduced activation of CO₂ on Ti-based heterogeneous catalysts: current state, chemical physics-based insights and outlook. *Energy Environ. Sci.* 2, 745 (2009).
- S.C. Roy, O.K. Varghese, M. Paulose, and C.A. Grimes: Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 4, 1259 (2010).
- 23. J. Schneider, H. Jia, J.T. Muckerman, and E. Fujita: Thermodynamics and kinetics of CO₂, CO, and H⁺ binding to the metal centre of CO₂ reduction catalysts. *Chem. Soc. Rev.* 41, 2036 (2012).
- 24. S. Sato, T. Morikawa, S. Saeki, T. Kajino, and T. Motohiro: Visible-light-induced selective CO₂ reduction utilizing a ruthenium complex electrocatalyst linked to a p-type nitrogen-doped Ta₂O₅ Semiconductor. *Angew. Chem. Int. Ed.* 49, 5101 (2010).
- N. Zhang, S.X. Ouyang, T. Kako, and J.H. Ye: Mesoporous zinc germanium oxynitride for CO₂ photoreduction under visible light. *Chem. Commun.* 48, 1269 (2012).
- O. Ishitani, C. Inoue, Y. Suzuki, and T. Ibusuki: Photocatalytic reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metal-deposited TiO₂. J. Photochem. Photobio. A: Chem. 72, 269 (1993).
- 27. B.J. Liu, T. Torimoto, H. Matsumoto, and H. Yoneyama: Effect of solvents on photocatalytic reduction of carbon dioxide using TiO₂ nanocrystal photocatalyst embedded in SiO₂ matrices. *J. Photochem. Photobio. A: Chem.* **108**, 187 (1997).
- 28. G.C. Xi, S.X. Ouyang, and J.H. Ye: General synthesis of hybrid TiO₂ mesoporous "french fries" toward improved photocatalytic conversion of CO₂ into hydrocarbon fuel: a case of TiO₂/ZnO. Chem. Eur. J. 17, 9057 (2011).
- 29. D.K. Wang, R.K. Huang, W.J. Liu, D.R. Sun, and Z.H. Li: Fe-based MOFs for photocatalytic CO₂ reduction: role of coordination unsaturated sites and dual excitation pathways. ACS Catal. 4, 4254 (2014).
- 30. Q.G. Zhai, S.J. Xie, W.Q. Fan, Q.H. Zhang, Y. Wang, W.P. Deng, and Y. Wang: Photocatalytic conversion of carbon dioxide with water into methane: platinum and copper(I) oxide co-catalysts with a core-shell structure. *Angew. Chem.* 125, 5888 (2013).
- 31. A.H. Yahaya, M.A. Gondal, and A. Hameed: Selective laser enhanced photocatalytic conversion of CO₂ into methanol. *Chem. Phys. Lett.* 400, 206 (2004).
- Ž.H. Zhao, J.M. Fan, S.H. Liu, and Z.Z. Wang: Optimal design and preparation of titania-supported CoPc using sol-gel for the photo-reduction of CO₂. Chem. Eng. J. 151, 134 (2009).
- 33. Q.H. Zhang, W.D. Han, Y.J. Hong, and J.G. Yu: Photocatalytic reduction of CO₂ with H₂O on Pt-loaded TiO₂ catalyst. *Catal. Today* 148, 335 (2009).
- 34. K. Ikeue, S. Nozaki, M. Ogawa, and M. Anpo: Characterization of self-standing Ti-containing porous silica thin films and their reactivity for the photocatalytic reduction of CO₂ with H₂O. Catal. Today 74, 241 (2002).
- 35. C.C. Yang, Y.H. Yu, B. van der Linden, and J.C.S. Wu: Artificial photosynthesis over crystalline TiO₂-based catalysts: fact or fiction? *J. Am. Chem. Soc.* **132**, 8398 (2010).
- 36. T. Yui, A. Kan, C. Saitoh, K. Koike, T. Ibusuki, and O. Ishitani: Photochemical reduction of CO₂ using TiO₂: effects of organic adsorbates

- on TiO₂ and deposition of Pd onto TiO₂. ACS Appl. Mater. Inter. 3, 2594
- 37. P. Li, Y. Zhou, H.J. Li, Q.F. Xu, X.G. Meng, X.Y. Wang, M. Xiao, and Z.G. Zou: All-solid-state Z-scheme system arrays of Fe₂V₄O₁₃/RGO/CdS for visible light-driving photocatalytic CO2 reduction into renewable hydrocarbon fuel. Chem. Commun. 51, 800 (2015).
- 38. K. Kočí, L. Obalová, L. Matějová, D. Placháa, Z. Lacnýa, J. Jirkovskýc, and O. Šolcová: Effect of TiO₂ particle size on the photocatalytic reduction of CO₂. Appl. Catal. B: Environ. 89, 494 (2009).
- 39. W.Y. Lin and H. Frei: Bimetallic redox sites for photochemical CO2 splitting in mesoporous silicate sieve. Comptes Rendus Chimie. 9, 207
- 40. G. Mahmodi, S. Sharifnia, F. Rahimpour, and S.N. Hosseini.: Photocatalytic conversion of CO₂ and CH₄ using ZnO coated mesh: effect of operational parameters and optimization. Solar Energy Mater. Solar Cells 111, 31 (2013).
- 41. Y.Y. Liu, B.B. Huang, Y. Dai, X.Y. Zhang, X.Y. Qin, M.H. Jiang, and M. H. Whangbo: Selective ethanol formation from photocatalytic reduction of carbon dioxide in water with BiVO₄ photocatalyst. Catal. Commun. **11**, 210 (2009)
- 42. H. Park, J.H. Choi, K.M. Choi, D.K. Lee, and J.K. Kang: Highly porous gallium oxide with a high CO₂ affinity for the photocatalytic conversion of carbon dioxide into methane. J. Mater. Chem. 22, 5304 (2012).
- 43. H. Fujiwara, H. Hosokawa, K. Murakoshi, Y. Wada, and S. Yanagida: Surface characteristics of ZnS nanocrystallites relating to their photocatalysis for CO₂ reduction1. *Langmuir* **14**, 5154 (1998).
- 44. J. Mao, T.Y. Peng, X.H. Zhang, K. Li, L.Q. Ye, and L. Zan: Effect of graphitic carbon nitride microstructures on the activity and selectivity of photocatalytic CO₂ reduction under visible light. Catal. Sci. Technol. 3, 1253
- 45. H. Zhou, J.J. Guo, P. Li, T.X. Fan, D. Zhang, and J.H. Ye: Leaf-architectured 3D hierarchical artificial photosynthetic system of perovskite titanates towards CO₂ photoreduction into hydrocarbon fuels. Sci. Rep. 3, 1 (2013).
- 46. J.H. Kou, J. Gao, Z.S. Li, H. Yu, Y. Zhou, and Z.G. Zou: Construction of visible-light-responsive SrTiO₃ with enhanced CO₂ adsorption ability: highly efficient photocatalysts for artifical photosynthesis. Catal. Lett. **145**, 640 (2015).
- 47. B.S. Kwak and M. Kang: Photocatalytic reduction of CO2 with H2O using perovskite Ca_xTi_vO₃. Appl. Surf. Sci. 337, 138 (2015).
- 48. X.K. Li, H.Q. Pan, W. Li, and Z.J. Zhuang: Photocatalytic reduction of CO₂ to methane over HNb₃O₈ nanobelts. Appl. Catal. A: Gen. 413-414, 103
- 49. X.K. Li, W. Li, Z.J. Zhuang, Y.S. Zhong, Q. Li, and L.Y. Wang: Photocatalytic reduction of carbon dioxide to methane over SiO₂-pillared HN₃O₈. J. Phys. Chem. C. 116, 16047 (2012).
- 50. P. Li, S.X. Ouyang, Y.J. Zhang, T. Kako, and J.H. Ye: Surface-coordination-induced selective synthesis of cubic and orthorhombic NaNbO₃ and their photocatalytic properties. J. Mater. Chem. A. 1, 1185 (2013).
- 51. P. Li, S.X. Ouyang, G.C. Xi, T. Kako, and J.H. Ye: The effects of crystal structure and electronic structure on photocatalytic H₂ evolution and CO₂ reduction over two phases of perovskite-structured NaNbO₃. J. Phys. Chem. C. 116, 7621 (2012).
- 52. H.F. Shi and Z.G. Zou: Photophysical and photocatalytic properties of ANbO₃ (A=Na, K) photocatalysts. J. Phys. Chem. Solids 73, 788 (2012).
- 53. H.F. Shi, T.Z. Wang, J. Chen, C. Zhu, J.H. Ye, and Z.G. Zou: Photoreduction of carbon dioxide over NaNbO3 nanostructured photocatalysts. Catal. Lett. 141, 525 (2011).
- 54. K. Teramura, S. Okuoka, H. Tsuneoka, T. Shishido, and T. Tanaka: Photocatalytic reduction of CO2 using H2 as reductant over ATaO3 photocatalysts (A=Li, Na, K). Appl. Catal. B: Environ. 96, 565 (2010).
- 55. W.F. Zhang, J.W. Tang, and J.H. Ye: Structural, photocatalytic, and photophysical properties of perovskite MSnO₃ (M=Ca, Sr, and Ba) photocatalysts. J. Mater. Res. 22, 1859 (2007).
- 56. K. Song, J. Yang, P.F. Jiang, W.L. Gao, R.H. Cong, and T. Yang: Ba₂InTaO₆-A partially B-site-ordered double perovskite for overall water splitting. Eur. J. Inorg. Chem. 2015, 5786 (2015).

- 57. L. Li, Q. Gao, G. Lei, H.H. Xie, J.B. Deng, and X.R. Hu: First-principles investigations on electronic and thermodynamic properties of double perovskite Sr₂XMoO₆ (X=Ge and Si). *J. Phys. Chem. Solids* **94**, 30 (2016).
- 58. J.H. Yang, D.G. Wang, H.X. Han, and C. Li: Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 46, 1900 (2013).
- 59. F.E. Osterloh and B.A. Parkinson: Recent developments in solar watersplitting photocatalysis. MRS Bull. 36, 17 (2011).
- 60. K. Maeda and K. Domen: Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1, 2655 (2010).
- 61. S. Fukuzumi, D. Hong, and Y. Yamada: Bioinspired photocatalytic water reduction and oxidation with earth-abundant metal catalysts. J. Phys. Chem. Lett. 4, 3458 (2013).
- 62. O.K. Varghese, M. Paulose, T.J. LaTempa, and C.A. Grimes: High-rate solar photocatalytic conversion of CO₂ and water vapor to hydrocarbon fuels. Nano Lett. 9, 731 (2009).
- 63. S.J. Xie, Y. Wang, Q.H. Zhang, W.P. Deng, and Y. Wang: MgO- and Pt-promoted TiO₂ as an efficient photocatalyst for the preferential reduction of carbon dioxide in the presence of water. ACS Catal. 4, 3644 (2014).
- 64. Z. Xiong, Y.C. Zhao, J.Y. Zhang, and C.G. Zheng: Efficient photocatalytic reduction of CO2 into liquid products over cerium doped titania nanoparticles synthesized by a sol-gel auto-ignited method. Fuel Process. Technol. 135, 6 (2015).