ON THE DERIVATIVES OF THE r-FUNCTION

BY
Z. A. MELZAK

1. The coefficients of the two series

$$
\begin{align*}
& \Gamma(1+z)=\sum_{n=0}^{\infty} c_{n} z^{n}, \quad|z|<1, \tag{1}\\
& 1 / \Gamma(1+z)=\sum_{n=0}^{\infty} g_{n} z^{n}, \quad|z|<\infty,
\end{align*}
$$

are recursively given by Nielsen [1]: $c_{0}=g_{0}=1$ and

$$
\begin{aligned}
& (n+1) c_{n+1}=\sum_{j=0}^{n}(-1)^{j+1} s_{j+1} c_{n-j} \\
& (n+1) g_{n+1}=\sum_{j=0}^{n}(-1)^{j} s_{j+1} g_{n-j}
\end{aligned}
$$

where s_{1} is the Euler constant γ and for $n>1 s_{n}=\zeta(n)$. We have then from (1): $c_{n}=(n!)^{-1} \Gamma^{(n)}(1)$. Nielsen (loc. cit., p. 40) remarks that no simple direct representation of the coefficients c_{n} is known. Using the Faa di Bruno formula for the n-th derivative of a compound function, he shows, following Schlömilch, that

$$
c_{n}=(-1)^{n} \sum_{k=1}^{n} \frac{1}{k!} \sum_{i=1}^{k} s_{r_{i}} / r_{i}
$$

where the second summation is over all positive solutions of $r_{1}+\cdots+r_{k}=n$ and the s_{1} are as above. In this note we use a completely self-contained elementary method to calculate the coefficients c_{n} or, what amounts to the same thing, the derivatives of the Γ-function. We show that
(2)

$$
\begin{aligned}
\Gamma^{(k)}(1)= & 2 \lim _{n \rightarrow \infty} \\
& {\left[\left.(-1)^{n} \frac{n^{n+2}}{(n+1)!} \sum_{j=0}^{k / 2}(2 j)!\zeta(2 j)\left(1-2^{1-2 j}\right)\binom{k}{2 j} \cdot \frac{d^{n}\left(\log ^{k-2 j} a / a\right)}{d a^{n}}\right|_{n=a}\right] . }
\end{aligned}
$$

2. Starting with the Euler integral

$$
\Gamma(1+x)=\int_{0}^{\infty} e^{-t} t^{x} d t
$$

we have by differentiating k times and putting $x=0$

$$
\Gamma^{(k)}(1)=\int_{0}^{\infty} e^{-t} \log ^{k} t d t
$$

To evaluate this we begin by setting

$$
\begin{equation*}
I_{k}(a)=\int_{0}^{\infty} \frac{\log ^{k} x}{(a+x)^{2}} d x, \quad k=0,1, \ldots \tag{3}
\end{equation*}
$$

The reason for this indirection is following. Once $I_{k}(a)$ is known we have, differentiating n times with respect to a and setting $a=n$,

Since

$$
\int_{0}^{\infty} \frac{n^{n+2}}{(n+x)^{n+2}} \log ^{k} x d x=\left.(-1)^{n} \frac{n^{n+2}}{(n+1)!} \frac{d^{n} I_{k}(a)}{d a^{n}}\right|_{a=n}
$$

$$
\lim _{n \rightarrow \infty} \frac{n^{n+2}}{(n+x)^{n+2}}=e^{-x}
$$

justifying the passage to the limit on n under the integral above we find

$$
\int_{0}^{\infty} e^{-x} \log ^{k} x d x=\lim _{n \rightarrow \infty}\left[\left.(-1)^{n} \frac{n^{n+2}}{(n+1)!} \frac{d^{n} I_{k}(a)}{d a^{n}}\right|_{a=n}\right]
$$

3. To evaluate $I_{k}(a)$ we put $x=a y$ in (3) getting

$$
\begin{equation*}
I_{k}(a)=a^{-1} \sum_{j=0}^{k}\binom{k}{j} b_{j} \log ^{k-j} a \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{j}=\int_{0}^{\infty} \frac{\log ^{j} y}{(1+y)^{2}} d y \tag{5}
\end{equation*}
$$

The integral (5) is evaluated by being broken up into two parts corresponding to the integrals $0-1$ and $1-\infty$; letting $y=1 / u$ in the first one we get

$$
\begin{equation*}
b_{j}=\left[1+(-1)^{j}\right] \int_{1}^{\infty} \frac{\log ^{j} y}{(1+y)^{2}} d y \tag{04}
\end{equation*}
$$

This is evaluated by the substitution $x=\exp (y)$ and observing that

$$
\left(1+e^{x}\right)^{-2} e^{x}=\left(1+e^{-x}\right)^{-2} e^{-x}
$$

expanding in series and integrating term by term we have

$$
\begin{equation*}
b_{j}=0 \quad \text { for } j \text { odd, } \quad b_{j}=2(j!)\left(1-2^{1-j}\right) \zeta(j) \quad \text { for } j \text { even. } \tag{7}
\end{equation*}
$$

This holds for all j including $j=0$ as can be verified, either from (6) directly or recalling that $\zeta(0)=-\frac{1}{2}$. Now, putting together (3)-(7) we get (2).
4. It may be verified that for the first few values of k (2) gives us the correct $c_{k}^{\prime} s$ in (1). For instance, with $k=1$

$$
\Gamma^{\prime}(1)=\lim _{n \rightarrow \infty}\left[\left.(-1)^{n} \frac{n^{n+2}}{(n+1)!} \frac{d^{n}(\log a / a)}{d^{n} a}\right|_{a=n}\right]
$$

The n-th derivative of $a^{-1} \log a$ is computed by the Leibniz rule and we get

$$
\Gamma^{\prime}(1)=-\lim \frac{n}{(n+1)}\left(\log n-\sum_{j=1}^{n} 1 / j\right)=\gamma
$$

Similarly, we verify that

$$
\Gamma^{\prime \prime}(1)=\gamma^{2}+\pi^{2} / 6, \quad \Gamma^{\prime \prime \prime}(1)=-\gamma^{3}-2 \zeta(3)+\pi^{2} \gamma / 6, \text { etc. }
$$

Here it is to be observed that the quantity $\zeta(3)$ does not arise from the b_{j} of (7) but from the limit of the n-th derivative of $a^{-1} \log ^{3} a$.
5. The foregoing allows us to evaluate some improper integrals. For instance integrating (3) with respect to a from p to q we evaluate

$$
\int_{0}^{\infty} \frac{\log ^{k} x}{(x+p)(x+q)} d x, p \neq q, p \text { and } q>0
$$

In conclusion, we mention the well-known theorem of Hoelder which states that the Γ-function satisfies no polynomial differential equation of the type

$$
P\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0
$$

Thus any formulas, recursive or otherwise, for its n-th derivative are apt to be complicated.

Reference

1. N. Nielsen, Handbuch der Theorie der Gammafunktion, Chelsea, 1965.
the Unversity of British Columbia
