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1. Introduction
E. C. Posner (5) has shown that a ring R is primitive if and only if the

corresponding matrix ring Mn(R) is primitive. From this result he is able
to deduce that the primitive ideals in Mn(R) are precisely those ideals of the
form Mn(P), where P is a primitive ideal in R. This affords an alternative
proof that the Jacobson radical of Mn(R) is Mn(J), where J is the Jacobson
radical of R. But Patterson (3, 4) has shown that this last result does not
hold in general for rings of infinite matrices and thus that the above result
concerning primitive ideals cannot be extended to the infinite case. Never-
theless in this paper we are able to show that Posner's result on primitive rings
does extend to infinite matrix rings. Patterson's result depends on showing
that if the Jacobson radical J of R is not right vanishing then a certain matrix
with entries from J does not lie in the Jacobson radical of the infinite matrix
ring. In the final section of this paper we consider a ring R with this property
and exhibit a primitive ideal in the infinite matrix ring, which does not arise,
as above, from a primitive ideal in R. Finally the Jacobson radical of this
ring is determined.

2. Definitions and notations
Following Patterson (3) we shall use the notation MP(R) and M*(R) for the

complete ring of row-finite matrices with entries from a ring R and for the
complete ring of row-bounded matrices, i.e. each matrix having only a finite
number of non-zero columns, with entries from R. We shall use M(R) to
denote either of these rings in cases where results hold for both rings. The
corresponding column-finite and column-bounded rings of infinite matrices
are denoted by My(R) and M*(R). Similarly if V is a module we shall use
Fy(V) for the set of column vectors with entries from V and F*(V), FP(V),
F*(V) for the corresponding sets of column-bounded, row and row-bounded
vectors.

A ring R is (left) primitive if and only if it possesses a faithful irreducible
(left) module, i.e. a module V such that

(1) RV # 0,

(2) V and 0 are the only submodules of V,

(3) rV = 0, implies r = 0.
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An ideal P in a ring R is primitive if and only if R/P is a primitive ring. This
is equivalent to P being the annihilator of an irreducible i?-module. The
Jacobson radical of R is the intersection of all primitive ideals of R [See
Jacobson (1)].

If x is an element of a ring R we shall denote by xEitJ the matrix M(R)
with x in position (i,j) and other entries zero. Lk will denote the set of matrices
in M(R) whose kth columns are zero and Ik the set of matrices in M(R) all
of whose rows are zero, except perhaps the Ath row.

3. Primitive rings '-
Lemma. If v is a non-zero element of a faithful irreducible module V over

a ring R then Rv = V.

Proof. It is easily verified that Rv is a submodule of V. Thus if Rv # V
then Rv = 0. Since v is not zero the submodule generated by v must be V.
Hence, if u is any element of V, there exists r e R and an integer n such that
rv + nv = u. But rv = 0; thus nv = u, and therefore Ru = Rnv = nRv = 0.
It follows that RV = 0. But this contradicts (1). Therefore Rv = V.

Theorem 1. If R is a primitive ring so also is M(R).

Proof. Let V be a faithful irreducible iJ-module. Then Fy(V) forms an
M(i?)-module with respect to the natural definitions of addition in Fy(V) and
pre-multiplication of an element of Fy(V) by a matrix of M(R).

Let v be any non-zero element of F7(V) with the non-zero element v of V
in position k. Let u be any element of Fy(V) with the element u} of Vin position

j , for each j . By the Lemma Rv = V. Therefore, for each j , there exists
r} e R such that rp = u}. Let r be the matrix in M(R) whose (j, k)th entry
is rJt for each j , and whose other entries are zero. Then rv = u. Hence
M(-R)» = Fy{V). It follows that Fy(F) and 0 are the only submodules of
Fy(V) and that M(R)Fy(V) = Fy(V).

Now let [r,v] be a matrix of M(R) such that [ry]Fy(K) = 0. Then it is
easily seen that ry F = 0, for each i and / As K is faithful it follows that
rij = 0, for each i and / Hence [ry] = 0 and -Fy(F) is faithful.

Therefore Fy(V) is a faithful irreducible Af(i?)-module and so M(R) is a
primitive ring.

The above result is proved for left primitive rings. The corresponding
result may be proved for right primitive rings using F*(V), where V is now a
faithful irreducible right i?-module. Similar results hold for the column-
finite and column-bounded matrices.

Theorem 2. If M(R) is a primitive ring so also is R.

Proof. Let W be a faithful irreducible M(/?)-module. Let
V = {VE W\Llv = 0}.

Then clearly V forms a subgroup, with respect to addition, of the underlying
group of W. V is not zero. For, if r is a non-zero matrix of/,, then Lvr = 0
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and so rWc V. But, by (3), rW ± 0. A map of R x V into W is defined as
follows: for each r e R and v e V let rv = rEt t tv. As LirEj i = 0 it follows
that rv e V. With this definition it is easily verified that V forms an i?-module.

Let v be any non-zero element of V and let u be any element of V. By the
Lemma, M(R)v = PF. Therefore there exists a matrix r e M(i?) such that
rv = M. Let r = rEt i + li+cu where r e R,lleLl and cx has every column
zero except perhaps the first and has zero in position (1, l).also. Then

M = rv = rElt iV + l^v + c^v.

But l^v = 0. Thus CyV = u—rEi tv. But u and rE1> tu are in F. Hence
Cive V. Let 5 be any matrix in M(R). Then s = mx+d, where ml eLl

and dt has every column zero, except perhaps the first. As ctv e V it follows
that mjCji) = 0. As Cj has its first row zero it follows that dxcxv = 0. Thus
scjt; = (ml + di)clv = 0. Therefore M{R)c{v = 0. It follows from the
Lemma that ctv = 0. Thus u = rElt tv = rv. Hence Rv = V. Therefore
RV — V and 0 and V are the only i?-submodules of V.

Suppose now that rV = 0. Then rEx XV = 0. Let v be any non-zero
element of V. By the Lemma M(R)v = W. If w is any element of W then,
as above, there exists a matrix/, all of whose columns are zero except perhaps
the first, such that/y = w. Let/j be the element of J? in position (1, 1) of/.
Then rElt ^w = rEt tfv = rftEt tv = ris, ifxEx tv. But Z ^ , ti; is in V
and r^i > t V = 0. Therefore r ^ tw = 0. Hence r£ t , , W = 0. It follows
from (3) that rEx t is the zero matrix and so r = 0.

Therefore V is a faithful irreducible i?-module and R is a primitive ring.
Note that 7j We K But also V= RVaIxW. Hence IYW = V. However

it does not seem to be easy to prove the above results starting, as Posner does,
with such a definition of V. Of course any set Lk could have been used instead
of Lx and so lkW = Vk is a faithful irreducible i?-module, using the definition
rv = rEkkv, for the map of Rx Vk into Vk. But Posner's method of proof
that W is essentially a direct sum of the Vk will not go through as infinite sums
will arise in this case.

These results are for left primitive rings. Similar results may be obtained
for right primitive rings and also for the rings of column finite and column-
bounded matrices. The above proofs also hold for the rings of semi-infinite
matrices whose rows and columns are indexed by positive integers only. The
only changes necessary are to restrict /, j and k to be positive integers in the
proofs.

Theorem 3. An ideal P in a ring R is primitive if and only if M{P) is a primitive
ideal in M(R).

Proof. The rings M{RjP) and M(R)IM(P) are known to be isomorphic.
By Theorems 1 and 2, R/P is a primitive ring if and only if M{RjP) is a primitive
ring. Thus R/P is a primitive ring if and only if M(R)jM(P) is a primitive ring.
Hence P is a primitive ideal if and only if M(P) is a primitive ideal.

E.M.S.—D
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This gives an alternative proof to that of Patterson (3) that the Jacobson
radical J(M(R)) is contained in M(J) = M(nP) = n(M(P)), where J = nP
is the Jacobson radical of R, the intersections being taken over all primitive
ideals of R.

In the case of finite matrices it follows from results of Sands (6) and Posner
(5) that all prime or primitive ideals in Mn(R) are of the form Mn(P) where P
is prime or primitive in R. The proof in (6) involved the idea of embedding
R in a ring S with identity and using the result that the only ideals of Mn(S)
are those of the form Mn(A), A an ideal in S. More generally, Jacobson (1)
has proved this last result for rings .S with the property that a e SaS, for each
ae S. In the infinite case this condition remains necessary, f For if a 4 SaS
then the principal ideal generated by aEit j has only elements of SaS as entries
in positions (k, T) of its matrices, where k # i, I # j and so it cannot be of the
required form. But even in the case of M*(S) the condition is no longer
sufficient to ensure that every ideal has the form M*(A), A an ideal in S.

For if S does not satisfy the maximum condition on ideals then there exists
n - l

ideals At in S such that An is not contained in £ At. LetaneAn, but

Consider the ideal B = £ M*(At). Each element an occurs as an entry
i = 1

in a matrix of B. But the matrix whose («, l)th entry is an and whose other
entries are zero is not contained in any finite sum 2,M*(Ai) and so cannot be
in B. Thus B is not of the type M*(A).

Similar results hold in Mp(S). It is not known to the author whether the
conditions a e SaS and the maximum condition on ideals of S are sufficient
to imply that the only ideals of M*(S) are of the form M*(A), where A is an
ideal in S, or to imply that the only ideals of MP{S) are of the form

M%A) + MP(B),
where A, B are ideals in 5".

4. An example of a primitive ideal in Mp(R)
Kothe (2) defined a ring R as follows: let R be generated by elements

ru r2, ..., rh ... subject to the relations 2rt = 0, r\ = 0, r?+1 = r,. Then R
is a commutative ring. Each ideal Nt generated by r, is nilpotent of index 2*.
R is the sum, and also the union, of these nilpotent ideals. But R2 = R, so
R itself is not nilpotent.

Each element a in R may be expressed as a polynomial in some rk and so
in r, for l^.k. We denote by e(a) the exponent of the non-zero term of least
degree in such an expression as a polynomial in rh for each non-zero a. Then
a belongs to Nt_s but not to N,_s_u where 2s^e(a)<2s+1. If a and b are

t Jacobson ((1), p. 40) mentions the sufficiency only of this condition.
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expressed as polynomials in r, and e(a)<e(b) then we may divide a into b
starting with the terms of least degree. The term of least degree in the remainder
will eventually have degree greater than 2'. As rf = 0 the remainder is zero
and so there exists an element ce R such that ca = b.

If an element a e R is such that as Nk but a$ Nk_t then there exists an
element beR such that ab eNk, ab$Nk_x. For if a is a polynomial in rt

then k = l—s where 2sf^e(a)<2s+l. Taking b = rl + l and expressing ab as
a polynomial in r,+1, e(ab) = 2e(a)+l and so 2S+I^e(ab)<2s+2, giving the
required result.

Consider the ideal P in MP(R) given by P = M*(R)+ f] Mp(Nk). As
* = I

the ideals Nt form a strictly increasing chain

it is clear that P does not have the form M*(A)+MP(B) where A, B are ideals
in R. We show that P is the annihilator of an irreducible Mp(R)-modu\e and
so that P is a primitive ideal.

GO

V = Fy(R) is a module and W = £ Fy{Nk) is a proper submodule of V.
k — 1

Let i) e V, v $ W and let u be any element of V. As » $ W it follows that for
each k there exists a component t>, of » such that v{$Nk. Let Mm be the wth
component of u. Then wm is a polynomial in r, for all sufficiently large /.
There exists vim such that vim is a polynomial in some r, with e(vim)<e(um).
For if e(p;)^e(Mm) for all /, then each vt belongs to the same Nk as um, which is
impossible. Thus there exists cmeR such that cmvim = um. Let c be the
matrix whose (m, im)th entry is cm, for each w, and whose other entries are
zero. Thenc» = u. Therefore Mp(R)v = Fand so W is a maximal submodule
of V. Hence VjWis an irreducible Mp(i?)-module.

Let reM*(R) and H E K Then the only components of v which occur
in forming the components of rv are those in positions corresponding to the
finite number of non-zero columns in r. These components of v lie in a finite
number of ideals Nt and hence rv e W. Therefore M*(R) annihilates Vj W.

oo m

Let s e Y, MpiNJ. Then s is in some finite sum £ Mp(Nk). Hence
k = 1 * = 1

m oo
for any v e V, sv lies in £ Fy(Nk) and so in W. Thus £ Mp(Nk) annihilates

* = I * = I
VIW.

00

Now let a be a matrix not in M*(R)+ £ Mp{Nk). We construct a
* = I

vector v in F such that av is not in W. Pick any non-zero row, say row iu

in a. Let aiujt be an entry such that alltJleNkl,but is not in Nkl_t, and
such that atuJeNkl_1 for |j |>|./ ' i I- Let bjl be such that "j,,./,&,-, eN*,»
but is not in Nkl_u and let /t be such that bJt e Nh, bjt $ Nh_1 and so /x ^kt.
Not every entry ay, |./'|>|./i |, can lie in Nh. For, if so, a e M*(R) + Mp(Nh).
Thus there exists ahj2, such that |./2|>|./i|> ah,jiBNk2, «.-2,
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where k2>l1 and where ahijeNk2_1 for \j\>\j2\- Further there exists
bj2 such that ai2ij2bj2 e Nk2, $ Nkl.u where bj2 e Nh, i Nh_1 and /2^fc2. This
process may be continued to produce a sequence of elements aimJm, which
occur as entries in a, and elements bJm with these properties. Now let v be
the vector whose components are given by vJm = bJm, Vj = 0 otherwise. Con-
sider av; the /mth component of av is £ aimtjbj. For j = jm this gives

j
aim,jnPjm which is in Nkm but is not in Nkm_t. For | y |< |y m | , b3 is zero or
belongs to Nu where l,<km and hence all such terms belong to Nkm-i- For
IJ | > 17ra |> «im,; belongs to A f̂cm-i and so all such terms belong to Nkm.t.
Finally withy = —jm, bj is zero. Thus every term aim,jbj, except a,mijmbJm,
belongs to Nkm_ 1# Hence the /mth term of av belongs to Nkm but not to iV*m_ t.

m

As kx <k2 <... <km<... it follows that av belongs to no finite sum X Fy(Nk)-
it = i

Thus av is not in W. Therefore a is not in the annihilator of VjW.
Thus the annihilator of the irreducible Afp(i?)-module VjW\s

P = M%R)+ f>p(N,).
k = 1

Therefore P is a primitive ideal.
P is in fact the Jacobson radical of Mp(R). For being primitive it must

contain the Jacobson radical. But as J? is a sum of nilpotent ideals the Jacobson
radical of 7? is R. Thus, by results of Patterson (3), M*(R) is contained in
the Jacobson radical of Mp(R). As Nk is nilpotent so also is Mp(Nk). Therefore

CO

£ MJNk) is also in the Jacobson radical. Hence P is contained in the
k = 1

Jacobson radical and so must be the radical.
In this example the radical coincides with the ideal Mj(J)+EMp(B) where

J is the Jacobson radical of R and the summation is taken over the right
vanishing ideals B of R, as this ideal clearly contains P but is always contained
in the radical. Thus the question raised by Patterson (4) remains open as to
whether or not this ideal is always equal to the radical. Nilpotent ideals are
right vanishing, but the converse need not hold. It is not known to the author,
however, whether the sum of all nilpotent ideals is ever strictly contained in
the sum of all right vanishing ideals, i.e. whether or not the principal ideal
generated by a single element b in a right vanishing ideal B can be non-nilpotent.
Thus it is possible that the radical of MP(R) may be equal to M*(7)+£MP(JV)
where the summation is taken over all nilpotent ideals N of R, for any ring R.

5. Appendix
It has been suggested that the ring of Kothe used in Section 4 may perhaps

collapse and hence collapse to zero. For if r; = r,- where i # j it follows easily
that every rt is zero. In this section we construct a homomorphic image of
R which is clearly not zero.

Let S be an additive semi-group and A a ring. The generalised polynomial
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ring P(S, A) with coefficients in A and exponents in S may be defined as follows.
P(S, A) is the set of all maps/from S1 into A, such that/(s) is non-zero for only
a finite number of elements se S; sums and products are defined by

= E f(u)g(v),
u + v = s

where the summation is taken over the finite number of products f(u)g(v)
such that /(«) and g(v) are both non-zero; an empty summation is taken to
give zero. It is readily verified that P(S, A) is a ring and that if S is the set
of non-negative integers then P(S, A) is isomorphic to the usual polynomial
ring in one variable over A. (By taking direct sums of semi-groups generalised
polynomials rings in more than one variable may be defined similarly.)

If / is an ideal in the semi-group 5, i.e. I+S<=I, S+Ial, then the maps
of P(S, A) which are zero outside / form an ideal in P(S, A). Clearly this
ideal is isomorphic to P(I, A).

Now take the special case in which S is the additive semi-group of positive
rationals whose denominators are non-negative powers of 2 and in which
A is the field of two elements. Let / be the ideal consisting of those elements
of S which are greater than or equal to 1. Consider the quotient ring of P(S, A)
modulo the ideal B isomorphic to P(f, A).

For each positive integer i define the m a p / ^ " ' ) = l,/ f(s) = 0 otherwise.
Then 2fi = 0,fi

2
+1 =fi and f\ is the map g such that g(l) = 1, g(s) = 0

otherwise and so f\ e B. Clearly ft generate P(S, A). Thus P{S, A)jB is a
homomorphic image of R and clearly P(S, A)\B is not zero. Note th.dXflf2.--fn

is a map taking the value 1 at 1 —2"*" and being zero elsewhere. Thus

rxr1...ra # 0
and R is not right-vanishing.
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