ON PRIME ONE-SIDED IDEALS

BY
KWANGIL KOH

Let R be a ring and let $L_{\gamma}(R)$ be the lattice of right ideals. We define that $I \in L_{\gamma}(R)$ is a prime right ideal provided that if $A B \subseteq I$ for some A, B in $L_{\gamma}(R)$ such that $A I \subseteq I$ then either $A \subseteq I$ or $B \subseteq I$. Any prime ideal of a ring R is a prime right ideal and if R is commutative then an ideal is prime if and only if it is a prime right ideal. If R is a ring and $a \in R$, let $a R=\{x \in R \mid x=a r$ for some $r \in R\}$ and $a R_{1}=\{x \in R \mid x$ $=n a+a r$ for some integer n and $r \in R\}$. The purpose of this note is to prove the following two theorems:

Theorem 1. Let R be a ring such that $a R=a R_{1}$ for each $a \in R$. Then R is a right Noetherian ring if and only if every prime right ideal of R is finitely generated. Every right ideal of R is generated by one element if and only if every prime right ideal of R is generated by one element.

Theorem 2. Let R be a ring. Then every right ideal of R is a prime right ideal if and only if R is a simple ring and $a R=a R_{1}$ for all $a \in R$.

Proof of Theorem 1. Since R is right Noetherian if and only if every right ideal is finitely generated, if R is right Noetherian then, clearly, every prime right ideal is finitely generated. Assume now that every prime right ideal is finitely generated. If there is $I \in L_{\gamma}(R)$ such that I is not finitely generated then by Zorn's lemma, one can choose a $I_{0} \in L_{\gamma}(R)$, which is not finitely generated, such that $I_{0} \supseteq I$ and if $J \in L_{\gamma}(R)$ and $J \supseteq I_{0}$ then either $J=I_{0}$ or J is finitely generated. We will prove that I_{0} is a prime right ideal and hence finitely generated and thus the supposition that there is $I \in L_{\gamma}(R)$ such that I is not finitely generated is impossible.
If I_{0} is not a prime right ideal then there exists A, B in $L_{\gamma}(R)$ such that $A I_{0} \subseteq I_{0}$, $A B \subseteq I_{0}$ but $A \nsubseteq I_{0}$ and $B \nsubseteq I_{0}$. Let $a \in A$ such that $a \notin I_{0}$. Then $I_{0}+a R$ contains I_{0} properly. Hence $I_{0}+a R=x_{1} R+x_{2} R+\cdots+x_{n} R$ for some $x_{1}, x_{2}, \ldots, x_{n}$ in R. Let $J=\left\{x \in R \mid a x \in I_{0}\right\}$. Then J contains $I_{0}+B$. Since $B \nsubseteq I_{0}, J$ contains I_{0} properly and hence $J=y_{1} R+y_{2} R+\cdots+y_{m} R$ for some $y_{1}, y_{2}, \ldots, y_{m}$ in R. Now $x_{i}=b_{i}+a r_{i}$ for some $b_{i} \in I_{0}$ and $r_{i} \in R$ for $i=1,2, \ldots, n$. Clearly $b_{1} R+b_{2} R+\cdots+b_{n} R+a J \subseteq I_{0}$. If $w \in I_{0}$ then

$$
\begin{aligned}
w & =x_{1} c_{1}+x_{2} c_{2}+\cdots+x_{n} c_{n}=\left(b_{1}+a r_{1}\right) c_{1}+\cdots+\left(b_{n}+a r_{n}\right) c_{n} \\
& =b_{1} c_{1}+\cdots+b_{n} c_{n}+a\left(r_{1} c_{1}+\cdots+a r_{n} c_{n}\right)
\end{aligned}
$$

for some $c_{1}, c_{2}, \ldots, c_{n}$ in R. Since $r_{1} c_{1}+\cdots+r_{n} c_{n} \in J$,

$$
I_{0} \subseteq b_{1} R+b_{2} R+\cdots+b_{n} R+a J
$$

Since $a J=a y_{1} R+a y_{2} R+\cdots+a y_{m} R, I_{0}$ is finitely generated. This is impossible. Now to prove the second part of the theorem, assume that every prime right ideal is principal. Suppose there is a right ideal I such that it is not generated by one element. Again, by Zorn's lemma, one can choose, say $I_{0} \in L_{\gamma}(R)$ such that $I_{0} \supseteq I, I_{0}$ is not a principal right ideal and if $J \in L_{\gamma}(R)$ such that $J \supseteq I_{0}$ then either $J=I_{0}$ or J is a principal right ideal. We claim I_{0} is a prime right ideal. If not, there exists A, B in $L_{\gamma}(R), A I_{0} \subseteq I_{0}$ such that $A B \subseteq I_{0}$ but $A \nsubseteq I_{0}$ and $B \nsubseteq I_{0}$. Let $a \in A$ such that $a \notin I_{0}$. Then $I_{0}+a R=b R$ for some $b \in R$ since $I_{0}+a R$ contains I_{0} properly. $b=i_{0}$ $+a r_{0}$ for some $i_{0} \in I_{0}$ and $r_{0} \in R$. Let $b^{-1} I_{0}=\left\{x \in R \mid b x \in I_{0}\right\}$. Then $b\left(b^{-1} I_{0}\right)=I_{0}$ since $I_{0} \subseteq b R$. We claim that $b^{-1} I_{0}=I_{0}$. Since $b=i_{0}+a r_{0}, I_{0} \subseteq b^{-1} I_{0}$. If $b^{-1} I_{0} \neq I_{0}$ then $b^{-1} I_{0}=d R$ for some $d \in R$. Therefore, $I_{0}=b\left(b^{-1} I_{0}\right)=b d R$ which is contrary to the assumption that I_{0} is not principal. Hence $b^{-1} I_{0}=I_{0}$. Now consider $\left(a r_{0}\right)^{-1} I_{0}$, i.e. the right ideal $\left\{x \in R \mid a r_{0} x \in I_{0}\right\}$. Then $I_{0} \subseteq\left(a r_{0}\right)^{-1} I_{0}$. Since $B \subseteq\left(a r_{0}\right)^{-1} I_{0},\left(a r_{0}\right)^{-1} I_{0} \neq I_{0}$. However, since $b=i_{0}+a r_{0},\left(a r_{0}\right)^{-1} I_{0}=b^{-1} I_{0}=I_{0}$. This is impossible. Therefore I_{0} is a prime right ideal and it is principal by hypothesis. Thus the assumption that there is a right ideal which is not a principal right ideal is invalid.

Proof of Theorem 2. If R is a simple ring and $a R=a R_{1}$ for each $a \in R$ then every right ideal I of R is prime. For if $A B \subseteq I$, for some $A, B \in L_{\gamma}(R)$ then $A R B \subseteq I$ and $A R \subseteq I$ if $R B \neq 0$, since $R B$ is a two sided ideal. To prove the converse, we need the following Lemma:

Lemma. If every right ideal of R is prime then $a R=a R_{1}$ and R is semi-simple.
Proof. If $a R \neq a R_{1}$ for some $a \in R$ then $\left(a R_{1}\right) R \subseteq a R$ implies that $a R$ is not a prime right ideal. Therefore $a R=a R_{1}$ for each $a \in R$. This means that, first of all, R is not a radical ring. Let $J(R)$ denote the Jacobson radical of R. Then $J(R) \neq R$. First, we observe that if $A \in L_{\gamma}(R)$ and S is an ideal of R then $A(A \cap S) \subseteq A \cap S$. Since $A \cap S$ is a prime right ideal and $A S \subseteq A \cap S$, either $A \subseteq A \cap S$ or $S \subseteq A \cap S$. Furthermore, $A=A^{2}$ and $S=S^{2}$ since A^{2} and S^{2} are both prime right ideals. Therefore, either $A=A^{2} \subseteq A(A \cap S) \subseteq A S \subseteq A$ or $S=S^{2} \subseteq(A \cap S) S \subseteq A S \subseteq S$. Thus whether $A \subseteq A \cap S$ or $S \subseteq A \cap S, A S=A \cap S$. Now suppose $J(R) \neq 0$ and let $0 \neq x \in J(R)$. Let $I^{*}(x) \in L_{\gamma}(R)$ such that $x \notin I^{*}(x)$ and $I^{*}(x)$ is maximal with respect to this property. Let $A=x R+I^{*}(x)$. Then $A / I^{*}(x)$ is a simple R-module. Hence, $A J(R) \subseteq I^{*}(x)$. Since $A J(R)=A \cap J(R), x \in A \cap J(R) \subseteq I^{*}(x)$. This is impossible. Therefore, $J(R)=0$. Now to conclude the proof of Theorem 2, let S be a two sided ideal of R such that $R \neq S$. Let I be a maximal right ideal of R. Then $I S \subseteq I \cap S$ and either $I \subseteq I \cap S$ or $S \subseteq I \cap S$. In any case, $S \subseteq I$. Hence $S \subseteq J(R)=(0)$.

[^0]
[^0]: North Carolina State University, Raleigh, North Carolina

