ON PRIME ONE-SIDED IDEALS

BY KWANGIL KOH

Let R be a ring and let $L_{\gamma}(R)$ be the lattice of right ideals. We define that $I \in L_{\gamma}(R)$ is a prime right ideal provided that if $AB \subseteq I$ for some A, B in $L_{\gamma}(R)$ such that $AI \subseteq I$ then either $A \subseteq I$ or $B \subseteq I$. Any prime ideal of a ring R is a prime right ideal and if R is commutative then an ideal is prime if and only if it is a prime right ideal. If R is a ring and $a \in R$, let $aR = \{x \in R \mid x = ar \text{ for some } r \in R\}$ and $aR_1 = \{x \in R \mid x = na + ar \text{ for some integer } n \text{ and } r \in R\}$. The purpose of this note is to prove the following two theorems:

THEOREM 1. Let R be a ring such that $aR=aR_1$ for each $a \in R$. Then R is a right Noetherian ring if and only if every prime right ideal of R is finitely generated. Every right ideal of R is generated by one element if and only if every prime right ideal of R is generated by one element.

THEOREM 2. Let R be a ring. Then every right ideal of R is a prime right ideal if and only if R is a simple ring and $aR = aR_1$ for all $a \in R$.

Proof of Theorem 1. Since R is right Noetherian if and only if every right ideal is finitely generated, if R is right Noetherian then, clearly, every prime right ideal is finitely generated. Assume now that every prime right ideal is finitely generated. If there is $I \in L_{\gamma}(R)$ such that I is not finitely generated then by Zorn's lemma, one can choose a $I_0 \in L_{\gamma}(R)$, which is not finitely generated, such that $I_0 \supseteq I$ and if $J \in L_{\gamma}(R)$ and $J \supseteq I_0$ then either $J = I_0$ or J is finitely generated. We will prove that I_0 is a prime right ideal and hence finitely generated and thus the supposition that there is $I \in L_{\gamma}(R)$ such that I is not finitely generated is impossible.

If I_0 is not a prime right ideal then there exists A, B in $L_{\gamma}(R)$ such that $AI_0 \subseteq I_0$, $AB \subseteq I_0$ but $A \notin I_0$ and $B \notin I_0$. Let $a \in A$ such that $a \notin I_0$. Then $I_0 + aR$ contains I_0 properly. Hence $I_0 + aR = x_1R + x_2R + \cdots + x_nR$ for some x_1, x_2, \ldots, x_n in R. Let $J = \{x \in R \mid ax \in I_0\}$. Then J contains $I_0 + B$. Since $B \notin I_0$, J contains I_0 properly and hence $J = y_1R + y_2R + \cdots + y_mR$ for some y_1, y_2, \ldots, y_m in R. Now $x_i = b_i + ar_i$ for some $b_i \in I_0$ and $r_i \in R$ for $i = 1, 2, \ldots, n$. Clearly $b_1R + b_2R + \cdots + b_nR + aJ \subseteq I_0$. If $w \in I_0$ then

$$w = x_1c_1 + x_2c_2 + \dots + x_nc_n = (b_1 + ar_1)c_1 + \dots + (b_n + ar_n)c_n$$

= $b_1c_1 + \dots + b_nc_n + a(r_1c_1 + \dots + ar_nc_n)$

for some c_1, c_2, \ldots, c_n in R. Since $r_1c_1 + \cdots + r_nc_n \in J$,

$$I_0 \subseteq b_1 R + b_2 R + \dots + b_n R + aJ.$$
259

KWANGIL KOH

Since $aJ = ay_1R + ay_2R + \cdots + ay_mR$, I_0 is finitely generated. This is impossible. Now to prove the second part of the theorem, assume that every prime right ideal is principal. Suppose there is a right ideal I such that it is not generated by one element. Again, by Zorn's lemma, one can choose, say $I_0 \in L_{\gamma}(R)$ such that $I_0 \supseteq I$, I_0 is not a principal right ideal and if $J \in L_{\gamma}(R)$ such that $J \supseteq I_0$ then either $J = I_0$ or J is a principal right ideal. We claim I_0 is a prime right ideal. If not, there exists A, B in $L_{y}(R)$, $AI_{0} \subseteq I_{0}$ such that $AB \subseteq I_{0}$ but $A \not\subseteq I_{0}$ and $B \not\subseteq I_{0}$. Let $a \in A$ such that $a \notin I_0$. Then $I_0 + aR = bR$ for some $b \in R$ since $I_0 + aR$ contains I_0 properly. $b = i_0$ $+ar_0$ for some $i_0 \in I_0$ and $r_0 \in R$. Let $b^{-1}I_0 = \{x \in R \mid bx \in I_0\}$. Then $b(b^{-1}I_0) = I_0$ since $I_0 \subseteq bR$. We claim that $b^{-1}I_0 = I_0$. Since $b = i_0 + ar_0$, $I_0 \subseteq b^{-1}I_0$. If $b^{-1}I_0 \neq I_0$ then $b^{-1}I_0 = dR$ for some $d \in R$. Therefore, $I_0 = b(b^{-1}I_0) = bdR$ which is contrary to the assumption that I_0 is not principal. Hence $b^{-1}I_0 = I_0$. Now consider $(ar_0)^{-1}I_0$, i.e. the right ideal $\{x \in R \mid ar_0x \in I_0\}$. Then $I_0 \subseteq (ar_0)^{-1}I_0$. Since $B \subseteq (ar_0)^{-1}I_0$, $(ar_0)^{-1}I_0 \neq I_0$. However, since $b = i_0 + ar_0$, $(ar_0)^{-1}I_0 = b^{-1}I_0 = I_0$. This is impossible. Therefore I_0 is a prime right ideal and it is principal by hypothesis. Thus the assumption that there is a right ideal which is not a principal right ideal is invalid.

Proof of Theorem 2. If R is a simple ring and $aR = aR_1$ for each $a \in R$ then every right ideal I of R is prime. For if $AB \subseteq I$, for some A, $B \in L_{\gamma}(R)$ then $ARB \subseteq I$ and $AR \subseteq I$ if $RB \neq 0$, since RB is a two sided ideal. To prove the converse, we need the following Lemma:

LEMMA. If every right ideal of R is prime then $aR = aR_1$ and R is semi-simple.

Proof. If $aR \neq aR_1$ for some $a \in R$ then $(aR_1)R \subseteq aR$ implies that aR is not a prime right ideal. Therefore $aR = aR_1$ for each $a \in R$. This means that, first of all, R is not a radical ring. Let J(R) denote the Jacobson radical of R. Then $J(R) \neq R$. First, we observe that if $A \in L_\gamma(R)$ and S is an ideal of R then $A(A \cap S) \subseteq A \cap S$. Since $A \cap S$ is a prime right ideal and $AS \subseteq A \cap S$, either $A \subseteq A \cap S$ or $S \subseteq A \cap S$. Furthermore, $A = A^2$ and $S = S^2$ since A^2 and S^2 are both prime right ideals. Therefore, either $A = A^2 \subseteq A(A \cap S) \subseteq AS \subseteq A$ or $S = S^2 \subseteq (A \cap S)S \subseteq AS \subseteq S$. Thus whether $A \subseteq A \cap S$ or $S \subseteq A \cap S$, $AS = A \cap S$. Now suppose $J(R) \neq 0$ and let $0 \neq x \in J(R)$. Let $I^*(x) \in L_\gamma(R)$ such that $x \notin I^*(x)$ and $I^*(x)$ is maximal with respect to this property. Let $A = xR + I^*(x)$. Then $A/I^*(x)$ is a simple R-module. Hence, $AJ(R) \subseteq I^*(x)$. Since $AJ(R) = A \cap J(R)$, $x \in A \cap J(R) \subseteq I^*(x)$. This is impossible. Therefore, J(R) = 0. Now to conclude the proof of Theorem 2, let S be a two sided ideal of R such that $R \neq S$. Let I be a maximal right ideal of R. Then $IS \subseteq I \cap S$ and either $I \subseteq I \cap S$ or $S \subseteq I \cap S$. In any case, $S \subseteq I$. Hence $S \subseteq J(R) = (0)$.

North Carolina State University, Raleigh, North Carolina

260