
J. Functional Programming 7 (5): 555–556, January 1997. Printed in the United Kingdom

c© 1997 Cambridge University Press

555

Book review

Applications of Functional Programming by Colin Runciman and David

Wakeling, editors, UCL Press, 1995.

Runciman, Wakeling and the other contributors to this book set out to demonstrate how

Haskell can be used in realistic computing applications. They succeeded admirably. Anyone

interested in building software in Haskell should read this book. Anyone interested in

understanding the practical usefulness of functional languages should read this book. Anyone

who wants to stay on the forefront of modern approaches to software construction should

read this book. It provides a sound and engaging introduction for people with or without

experience in Haskell. It provides well-documented points of reference for researchers in the

field of functional program development. It supplies worthwhile ideas to functional language

implementors. And, it does all this in a compact 240 pages.

Chapter 1 explains the salient features of Haskell. This is one of the most cogent intro-

ductions to the language available anywhere. It is followed by a chapter on some of the tools

supporting Haskell development, in particular the Chalmers and Glasgow compilers and the

profiling tools associated with them.

Seven applications appear in the second part of the book, all of which exhibit significant

portions of their code and include explanations of roles played by various Haskell features

and analyses of performance trade-offs. Readers can benefit from the exemplary coding

practices exhibited in many of these programs.

For example, an application addressing a job scheduling problem contains instructive uses

of Haskell classes, inheritance, and overriding of operations and two excellent examples of

how lazy evaluation can reduce program complexity and lead to software formulated as

compositions of small, testable units. A text compression problem is another application

using lazy evaluation as an essential design element. This application uses a circular definition

in the output stream to extend the domain of the program while maintaining a separation

between its data encoding and input/output components.

The job scheduling application makes use of memoization and includes an analysis of the

trade-offs between the time savings afforded by memoization and the garbage collection it

triggers. An implementation of a geometric modelling system investigates memoization in

even greater detail. Its authors managed to save space by sharing memos and observe that

lazy evaluation is especially important in such contexts because it means fewer memos will

be generated.

The geometric modelling system implements essentially all of the functionality of a 16,000-

line C program in about one thousand lines of Haskell. This was accomplished primarily

through the extensive re-use of certain higher-order functions, with some interplay with lazy

evaluation. Other codes presented in the book were also concise, compared to implementations

in conventional languages, but usually more on the order of factors of three to five. The

impressive factor-of-sixteen reduction in the geometric modelling system shows what can be

done with the right combination of higher-order functions and algebraic data types.

Space leaks seem to be the most common problem in Haskell programs. Almost all of

the applications made use of heap profiling to chart patterns of storage utilization. Those

patterns were often surprising, and in most cases led to the discovery of ways to reduce

storage demands. It is encouraging that space problems in these applications were usually

https://doi.org/10.1017/S0956796897002815 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002815


556 Book review

solved, through the use of profiling tools, without negative effects on program structure

or correctness.

The third part of the book discusses parallelism, a longtime promise of functional pro-

gramming that has not yet been fulfilled. The authors report some progress: in the GRIP

project, garbage collection is down to 5 percent time consumption, the bus seems adequate

to the communication needs, statistics gathering degrades performance by only 2 percent,

and speed-up approximates half the number of processors. Global memory access seems to

be the main problem. But, parallelism is easy to express and performance concerns can be

separated from correctness concerns through the use of semantics-preserving annotations

directing parallel computation. Control of granularity remains problematic.

Applications in the book cover a broad range: software in which graphical user interfaces

play a big role (graphical design, proof assistance, geometric modelling), applications where

performance counts: including numeric (computational fluid dynamics); non-numeric (text

compression, job scheduling) and system-level programs (terminal emulation). This may not

be comprehensive, but there is enough breadth to support the conclusion that functional

programming is, in practice as well as theory, a general purpose paradigm.

The book’s value does not rest entirely on functional programming. For example, the

computational fluid dynamics application contains an excellent description of the essentials

of Jacobi iteration and the Choleski method and an insightful analysis of several methods

of sparse matrix representation. This is characteristic of the book’s approach: it is mostly

self-contained. It lists 125 references, but these are mostly for archival and follow-up purposes.

Most of the essential material can be gleaned from reading one or another section of the book.

The authors conclude that the main problems to be solved in Haskell development environ-

ments are improvements in interfaces to existing systems (for example, the lack of an interrupt

capability limits interactive applications), tools for runtime fault analysis (applications resort

to tricks such as placing extra tokens on the output stream, but run into problems when there

is no convenient output stream on which to place the tokens), performance improvement

(Haskell programs run, on the average, about ten times slower than equivalent programs in

conventional languages – arrays may help solve some of this, but good implementations had

not arrived at the time this book was written), and tools for analyzing space faults (a good

start has been made in this area). One application in the book, a virtual terminal model,

exposed a deficiency in Haskell’s polymorphic type system; but for most applications the

type system provided advantages in terms of conciseness and program correctness, as one

would expect.

There may be an intrinsic price to be paid for the expressive power of lazy evaluation and

higher order functions, but, as Runciman and Wakeling point out in their conclusion, Haskell

compilers are still in their infancy. The real price of its features cannot be estimated until

the effort invested in compilers for lazy functional languages begins to approach the effort

that has been invested in compilers for conventional languages. The concluding chapter also

notes that Haskell shares some of its greatest advantages with other declarative programming

languages: automatic memory management, independently testable units, program correctness,

and conciseness of expression. Haskell does have some advantages of its own, however. First

among these are its type classes, which, along with higher order functions, lazy evaluation,

and polymorphism, facilitate re-use.

In this book, Runciman, Wakeling and their co-authors present convincing evidence that

functional programming has earned a place in conventional practice and that its promise

justifies a great investment of future research and development effort.

Rex Page

University of Oklahoma

https://doi.org/10.1017/S0956796897002815 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796897002815

