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Abstract
Designers faced with the task of developing a new product model of a brand must balance
several considerations. The design must be novel and express attributes important to the
customers, while also recognizable as a representative of the brand. This balancing is left
to the intuition of the designers, who must anticipate how customers will perceive the new
design. Oftentimes, the design freedom used to meet a product attribute can compromise
the recognition of the product as a member of the brand. In this paper, an experiment is
conducted for measuring changes in ten styling attributes common to both design freedom
and brand recognition for automotive designs from four brands, Audi, BMW, Cadillac, and
Lexus, using customer responses to two- and three-dimensional vehicle designs created
and presented interactively through a crowdsourced web application. Results show that
while brand recognition is highly dependent on the manufacturer, two brands have strong
negative relationship between design freedom and brand recognition, suggesting that these
twomanufacturers face a significant challengewhen evolving their respective brand styling.
This study is a first effort toward quantifying and predicting tradeoffs between design
freedom and brand recognition, contributing to existing efforts that augment human
intuition during strategic design decisions.
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1. Introduction
When developing the next generation of an existing vehicle model, an automotive
designermust balance tradeoffs between two competing customer considerations.
One consideration is the customer’s desire for novelty, as the appeal of the current
model tends to fade with time (Martindale 1990; Coates 2003). The extent the
designer is able to reach toward increasingly novel designs, in other words by
deviating from past designs, defines the amount of design freedom available to
the design team. Another consideration is the customer’s desire for consistency
with past designs, which can play an important role in brand recognition. Much
as there is family resemblance among members of a family, the designer seeks
to maintain a recognizable brand character among all the brand’s members. Any
deviation from the past may reduce the new design’s association with the brand,
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as well as how it conveys design attributes known to be important to the customers
(e.g., luxuriousness) (Aaker & Keller 1990).

At the enterprise level, both design freedom and brand recognition are known
to contribute significantly to market competitiveness (Bloch 1995; Person et al.
2007; YinWong&Merrilees 2008). On the academic side, studies have shown that
vehiclemanufacturers that focus onmaximizing design freedom for vehicle styling
are more likely to capture market share through innovation capacity, particularly
during early stages of the product life cycle (Talke et al. 2009). Given too little
design reach relative to the market’s desire for change and the brand’s history
of innovation, the product appears weak and stale: given too much reach, the
customer reaction may be anxiety and discomfort (Berlyne 1971). If the reach is
in the wrong direction, because it either violates the brand’s identity or strays from
the benefits desired by the target market, the product may fail within the market
(Hartley 1996).

On the automotive industry side, brand loyalty is a significant factor in
customer purchase decisions. Brands such as BMW and Cadillac have takenmore
than 100 years to build a brand reputation; and oftentimes, in stated customer
responses, brand is near or at the top in influencing purchase decisions (Motors
2014). Bymaintaining brand recognition, the equity of the brandmay be leveraged
for new products, thus influencing customer preference (Barney 1991; Srinivasan,
Lilien & Rangaswamy 2006; Person & Snelders 2010; Schmitt 2012).

As a result, both design freedom and brand recognition are competing
considerations during the design process for both the designer and the enterprise
as a whole. Correctly balancing this tradeoff is paramount to realizing market
success (Moulson & Sproles 2000) – akin to musicians aiming to produce their
next great hit while still sounding true to their unique musical style.

1.1. Automotive design process
The automotive design process may be conceptualized as a long sequence of
depictions, each one becoming more detailed and realistic. The design may
begin as just a verbal description (e.g., ‘The next generation Chevrolet Malibu,
coming off engineering platform B, aimed at owners of midsize cars who want
a versatile and modern design at a moderate price.’). Or it may start with some
rough physical dimensions (e.g., overall length, width, and height, within specified
bounds).

Over a number of months, the depiction gains specificity in terms of physical
dimensions, features, and options. What began as a description in words and
numbers eventually transitions, first to two-dimensional (2D) images and
eventually to three-dimensional (3D)models and prototypes. In these latter stages
many decisions are made that will affect the aesthetic appeal and projected image
of the design, and consequently the emotional reaction of customers. While these
decisions are ultimately based on the intuition of highly trained designers, there
is a long history of attempts to influence these decisions with a more data-driven
approach.

The most common approach has been to conduct theme studies where
designs are shown to customers who then rate them on several dimensions
(e.g., appeal, innovativeness, distinctiveness, sportiness), and also take part in
focus groups. This approach has often fallen short because evidence counter to
designer intuition is met with skepticism by the designers. Another issue is that
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design activity typically occurs for 6–12 months before any customer feedback
is collected. This creates an environment where designers’ preferred designs gain
momentum and backing by management, and are subsequently less likely to be
changed given preliminary customer data.

1.2. Aim of this study
In this study, wemeasure how brand recognition and design freedom interact and
trade off with each other for four automotive luxury vehicle brands – Audi, BMW,
Cadillac, and Lexus. Luxury brands are chosen primarily due to strong brand
affiliation in their market segment (Aaker & Keller 1990; Mannering et al. 1991).
To make such measurements, we decompose both brand recognition and design
freedom to a common set of styling design attributes – an approach supported
by psychology and design research suggesting styling design attributes such as
‘aggressiveness’ may be more representative of visceral human perceptions of
design than geometric design variables such as ‘120 cm vehicle grill’ (Norman,
Ortony & Russell 2003; Norman 2004; Reid, Gonzalez & Papalambros 2010). By
manipulating the values of these styling design attributes rather than geometric
design variables, we can better trace relative changes in both design freedom and
brand recognition.

Manipulation of these design attributes, however, still requires a mapping
to the geometric design variables that the designer controls: We cannot choose
the ‘aggressiveness’ level of the vehicle, but we can decide the width of the
wheelbase. Accordingly, we build on a generalmethodology common in the design
community – determining the values of design attributes as functions of the
underlying geometric design variables using customer responses (McWilliam &
Dumas 1997; Louridas 1999; Mulder-Nijkamp & Eggink 2013). A key difference
in our approach, however, is that we do not explicitly model the functional form
of the nonlinear mapping between styling attributes and geometric variables.
Instead, we crowdsource thismapping as a black-box function that is hypothesized
to model the judgments of customers. This approach may be too simplistic – see,
e.g., (MacDonald, Gonzalez & Papalambros 2009) – but we adopt it here as a
starting point to address our research question of measuring the balance between
design freedom and brand recognition.

Our experimental procedure involved three steps: (1) Determination of styling
attribute values for existing vehicles using a Markov chain derived for partial
rankings over customer responses to 2D design representations; (2) Generation
of new conceptual designs using morphable 3D design representations; and
(3) Determination of design freedom and brand recognition via deviations from
previous designs of both styling design attributes and geometric design variables,
using a proposed design freedom distance metric and a conditional multinomial
logit model. Customer responses and new concept designs were gathered using
an online interactive survey consisting of sequential design evaluation and
design generation stages using both 2D images and 3D morphable vehicle
models rendered in real time. Using the data from this experimental procedure,
we quantitatively capture the relationship between design freedom and brand
recognition on a brand-by-brand basis.

This research approach thus puts its entire emphasis on determining an
accurate relationship between design freedom and brand recognition, at the
expense of being unable to ask the reasons ‘why’ this relationship exists. This
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causal relationship is important to uncover, but in the current implementation
we use nonparametric and nonlinear predictive models to assess design freedom.
These models do not have an explicitly known functional form much less a
known inverse. Therefore, we cannot explicitly link geometric design variables
to perceptual design attributes, but we can compute the corresponding design
freedom and brand recognition.

1.3. Significance of this study
The results of this study show that there is indeed a tradeoff between brand
recognition anddesign freedomaccording to the proposed design freedommetric.
The results agree with common intuition and are useful as a validation that
the computational procedure described in the paper leads to intuitive results.
The expectation is that the same procedure could be useful in situations with
no obvious intuition available. This brand recognition versus design freedom
tradeoff is predicted to affect BMW and Cadillac the most, suggesting that these
brands face greater challenges to maintain brand recognition while evolving the
styling of future vehicles. In particular, we find that designers at BMW have
by far the sharpest relationship between design freedom and brand recognition;
BMW also has the highest level of brand recognition. Thus BMW designers
appear to have little leeway in evolving future design concepts. The tradeoff is
predicted to affect Audi and Lexus less; however these tradeoffs are less not
conclusive as both these brands are found to have large spread in the obtained
data and low absolute brand recognition across customers surveyed throughout
the world, respectively.

The main contribution of this work is an extension of previous descriptive
investigations (McCormack, Cagan & Vogel 2004; Kreuzbauer & Malter 2005;
Ranscombe et al. 2012) of brand recognition and design freedom to a predictive
investigation involving modeling of brand recognition and design freedom.
While it is often qualitatively recognized that brand recognition and design
freedom must trade off with each other, we offer an early effort to a quantitative
measurement of this tradeoff.

This work does not seek to optimize the tradeoff between design freedom and
brand recognition, which would require modeling decisions by a multitude of
stakeholders – particularly designers, marketers, and strategic design managers.
Instead, we posit that the present work can augment stakeholder intuition during
the strategic design decision-making process.

Additional contributions include: (1) The combined use of multiple design
representations for predictive modeling including styling attributes and more
conventional geometric variables as previously studied (McWilliam & Dumas
1997; Orsborn, Cagan & Boatwright 2009; Ersal et al. 2011; Sylcott, Cagan
& Tabibnia 2013); (2) a hybrid combination of parametric models and
nonparametric representations; (3) the use of realistic, morphable 3D modeling
techniques in an interactive web-based environment, an approach gaining
popularity in areas such as design co-creation (Ramanujan et al. 2015); (4) filtering
crowdsourced data on ‘brand-conscious’ customers to filter data relevant for this
study; and (5) using the crowd as a ‘black box’ for modeling an implicit nonlinear
function distributed over a number of people.

Using the crowd as a ‘black box’ is perhaps themost importantmethodological
contribution. In particular, measuring styling has always been problematic
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because it is perhaps one of the most challenging problems from a statistical
and modeling standpoint. In particular, a realistic design’s styling, for example,
a full 3D model of a vehicle, must be represented by more than 10 000 to
100 000 dimensions (e.g., a door handle has length, width, curvature dimensions,
thickness, color, sheen, etc.). Building a function with unknown functional
form that maps styling from this high-dimensional space to a single number
is challenging. Instead, using crowdsourcing to ‘discover’ this function from the
responses of a large number of people does not require making a priori functional
form assumptions, similar to recent work on constructing and estimating implicit
functions from kernel feature spaces (Ren & Papalambros 2012; Burnap et al.
2016).

2. Background and related work
Balancing between design freedom and brand recognition has been studied
extensively in the product innovation and styling strategy literature as well as the
design research literature. From the strategic management and customer product
innovation communities, we establish qualitative justifications for upholding
design freedom and brand recognition. From the design community, we consider
previous efforts toward measuring tradeoffs between design styling and other
considerations, as well as methodologies toward eliciting customer preferences
via various design representations.

2.1. Design freedom and brand recognition
Several studies have considered the importance of design freedom from the
perspective of organizational innovation capability, with a consensus that there
is an optimal amount of deviation from previous designs (Hekkert, Snelders &
Wieringen 2003; Person et al. 2008). Customers expect novelty in new product
offerings (Martindale 1990), yet such novelty must be bounded (Berlyne 1971).
Companies that follow a ‘design-driven’ approach toward balancing this tradeoff
via strategic design decisions have been shown empirically to capture larger
market shares (Person et al. 2008).

The effect of brand recognition on customer preferences has been studied
in depth for new product offerings (Aaker & Keller 1990). General conclusions
from these studies are that brands are comprised of highly complex associations
between within-brand products and features (Milburn & Childs 2001; Ranawat,
Tuteja & Höltta-Otto 2012), as well as related people, places, and out-of-brand
products (Keller 2003). Particularly because automobiles fall under the category of
‘durables,’ namely, productswhere lifecycle use is important to the customer, brand
recognition plays a very important role (Zeithaml 1988). These conclusions are
aligned with observations in the automotive sector, where brand has been shown
to be one of the foremost contributors to customer preference (Mannering et al.
1991; Motors 2014).

The current study builds on recent results showing that the front fascia or
‘face’ of the vehicle – the view looking directly at the front of the vehicle – is
most closely associated with vehicle brand (Ranscombe et al. 2012). Moreover,
anecdotal evidence from experienced sources within the industry supports this
notion (Manoogian II 2013). Accordingly, all stimuli used in this study consider
the face view of vehicle designs.
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Figure 1. Example images shown to customers in the 2D representation portion of
the experiment. These images were used to assess styling attribute values, as well as
brand recognition. The images remained static (were not morphed by customers)
during the experiment and did not contain brand logos.

2.2. Brand-conscious customers
Brand-conscious customers, able to correctly identify brand from unbranded
vehicles, are used for filtering the data collected in the study. These brand-
conscious customers are filtered, because data from customers unable to identify
brand add noise to the construction of predictive models for brand recognition.
Moreover, appealing to brand-conscious customers has been found to be
important for premium brands such as those considered in this study (Aaker
2009).

To identify brand-conscious customers, we filter out customers not able to
correctly identify brands above a given threshold for designs that already exist
in the market (see below for filtering criteria). Recent literature in crowdsourcing
research has shown that data from ‘experts’ within a crowd, in this case ‘brand-
conscious customers’ within a crowd, may be aggregated to obtain an accurate
‘crowd consensus vote’ using simple algorithms such as majority vote (Sheng,
Provost& Ipeirotis 2008; Sheshadri&Lease 2013).However, if such filtering on the
‘experts’ in the crowd is not done, simple algorithms to aggregate customer input
may result in heavily biased crowd-level evaluations (Burnap et al. 2015b). In our
current case, this may skew estimates of design freedom when trading off brand
recognition. Such filtering of customer data to guide the design process has been
similarly explored by using customers to interactively guide the creative aspect of
early-stage design (Crilly, Moultrie & Clarkson 2004; Ind &Watt 2006).

2.3. Design representation
Design representation refers to the method that a design artifact is encoded by
either a computer or a customer during one of many steps in the design process
(Chandrasegaran et al. 2013).Wemake a distinction between the two as it has been
shown that computer representations and human representations may be entirely
different, resulting in the need to construct models and conduct experiments
in the appropriate space (Tversky & Gati 1978; Tversky & Hutchinson 1986).
Moreover, we consider three different forms of design representation: 2D and 3D
model geometries; parametric and nonparametric geometries; and as a function
of styling attributes and geometric variables.
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Figure 2. Example images shown to customers in the 2D representation portion of
the experiment. These images were used to assess styling attribute values, as well as
brand recognition. The images remained static (were not morphed by customers)
during the experiment and did not contain brand logos.

2.3.1. 2D and 3D representations
Recent studies have shown that brand recognition is dependent on the fidelity
of the design representation (Ranscombe et al. 2012; Rasoulifar, Prudhomme &
Eckert 2015). Informally, there is a level of realism to the design that must be
achieved for customers to correctly identify vehicle brand (Orbay, Fu & Kara
2015). We build on this notion by representing vehicle designs using the highest
fidelity representation possible whether a 2D image or a 3D high polygon mesh,
as shown in Figures 1 and 2, respectively.

Studies have also showndifferences between 2Dand 3Ddesign representations
regardless of fidelity. In particular, customer preferences assessed through conjoint
analysis have been found to be inconsistent when contrasting the type of design
representation (Reid, MacDonald & Du 2013; Bao et al. 2014; Toh &Miller 2014).
The area of assessing the level of fidelity or abstraction to a given threshold for a
customer’s perception is still an active area of research, including both 2D and 3D
representations.

2.3.2. Parametric and nonparametric
Design representations may be also categorized as parametric or nonparametric.
Parametric design representations have numerous applications via conjoint
analysis using 2D silhouettes (Orsborn et al. 2009; Petiot & Dagher 2010; Reid
et al. 2010; Sylcott et al. 2013), gestalt quantification using 2D representations
(Lugo et al. 2015), and 3D interpolated Bezier curves (Ren et al. 2013; Tovares,
Boatwright & Cagan 2014); however, perhaps the most realistic 3D interpolated
Bezier curves come from design research done within the automotive industry
(Kókai et al. 2007).

In the shape grammar literature, nonparametric design representations
are used as basic constituent shape elements to generate larger and more
complex forms (Königseder, Stanković & Shea 2016). These include automotive
applications (Orsborn et al. 2006; Orsborn & Cagan 2009), some with focus on
vehicle face details (McCormack et al. 2004) and vehicle side profiles (Pugliese
& Cagan 2002; Yannou, Dihlmann & Awedikian 2008; Bluntzer, Ostrosi & Sagot
2014). Such shape grammar techniques are applicable to generation of 3D design
representations, for example, with fluid channel layouts (Hooshmand&Campbell
2014).

The representation approach here is qualitatively similar to the shape grammar
approach in that it employs a design generation process where an agent creates
new designs, but it is limited in scope when contrasting the corresponding design
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spaces. In particular, shape grammars are able to generate a much larger set of
possible designs as defined by the Cartesian product of grammar enumeration,
whereas the design generation considered in this study is limited to the convex
hull defined by the morphing bounds on the 3D design representations.

In this study, we cast the 3D design representation as a set of geometric
variables defining a 3D mesh that morph not strictly related via a mathematical
function, nor nonparametrically such as volumetric deformation (Tiwari et al.
2014), but instead requiring predefined input, say from professional vehicle
designers (Manoogian II 2013). In other words, a human designer is asked to
manually definemorphing bounds over a subset of vertices, followed by Laplacian
deformation used to morph the entire mesh (Botsch & Sorkine 2008). This results
in a hybrid of the parametric and nonparametric design representations. Note
that we use morphable 3D models but only static images for the 2D design
representations.

2.3.3. Visceral attributes and geometric variables
While geometric variables via 2D and 3D representations, parametric or
nonparametric, capture the physical form of the design as a computer may
interpret it, human perceptions are better suited to a different representation
(Coates 2003; Norman 2004). In particular, design attributes such as ‘Friendly’
versus ‘Aggressive’ have been posited to represent human perceptual understand-
ing better than variables such as ‘130 cm long air dam’ (Norman 2004).

To develop analytical decision-making models (Papalambros & Wilde 2000),
we further assume that the attributes themselves are functions of geometric design
variables. Styling attributes are likely nonlinear functions of geometric variables,
e.g., slight geometric changes in the edges between a smile and a frownmay make
large differences in an attribute such as ‘happiness’ (Motors 2014). By gathering
customer responses within the space of design attributes versus design variables,
we are operating at a level analogous to similarity models in the psychological
literature (Tversky & Hutchinson 1986).

2.4. Quantitative models of product styling
Previous research in quantitative modeling of styling and aesthetics has often
come from themarketing community, where conjoint analysis has proven valuable
(Green, Carroll & Goldberg 1981). This modeling technique takes a number of
variables representing the design’s form as input and elicits customer preferences
across a set of discrete points within the design space.

The design community has similarly used conjoint analysis to model styling
form in efforts to optimize customer preferences in decision-based design
(Hazelrigg 1998; Papalambros 2002; Chen, Hoyle & Wassenaar 2013). Relevant
examples of such applications include 2D vehicle side view silhouettes (Orsborn
et al. 2009; Reid et al. 2010) and 2D vehicle faces (Petiot & Dagher 2010).
Recently, 3D vehicle studies such as perceived safety (Ren et al. 2013) and vehicle
interiors (Poirson et al. 2013), as well as virtual reality studies (Tovares et al.
2014) have been investigated. Some applications have used nonlinear conjoint
models such as explicit feature mappings (Fuge, Stroud & Agogino 2013) and
implicit feature mappings (Ren et al. 2013). Additional 3D extensions include the
use of hierarchical geometric representations that may be used for salient feature
extraction (Orbay et al. 2015).
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Figure 3. Dependencies between design freedom and brand recognition, design
attributes, and design variables. Note that while design freedom and brand
recognition are explicit linear functions of design attributes, design attributes
are nonlinear functions of geometric design variables implicit in the customer
perceptions of vehicles. In other words, we know the function for the top mapping,
while we do not know the function for the bottommapping. On the right-hand side,
we denote the functional form of the associated dependencies.

3. Problem formulation
We formally define brand recognition and design freedom, and the manner in
which the two are measured. We additionally define how customer responses to
conceptual designs are aggregated to assess the overall crowd consensus to changes
in conceptual designs.

Let f DF
b : A → R and f B R

b : A → [0, 1] denote design freedom and brand
recognition, respectively, in which A = {a = [a1, . . . , aM ] : am ∈ R} is the
space of styling attribute vectors, andR is the real space. Note that as discussed in
the background section, this definition assumes the styling design attributes are
a common set of inputs to both design freedom f DF

b (a) and brand recognition
f B R
b (a), and that both are defined over the set of existing and conceptual designs

x ∈ {x = [x1, . . . , xN ] : an ∈ R} for an associated brand b = 1 . . . B.
These design attributes aM

m1
are defined as the building blocks of customer

perceptual representation of design styling, following the idea of how human
perception is chunked (Norman 2004). Informally, humans conceptualize a
vehicle using terms such as ‘sportiness’ rather than a large number of geometric
design variables that constitute sportiness such as ‘length of upper air dam.’

The design attributes must be empirically manipulated to measure relative
changes across brand recognition and design freedom. Accordingly, we
parameterize the design attributes as a nonlinear function of a set of predefined
geometric design variables denoted by {xn}

N
1 . This parameterization attempts

to capture the notion that changing a given design variable may affect multiple
attributes at the same time in a complex manner.

The dependencies of design freedom and brand recognition, design attributes,
and design variables are shown in Figure 3. We next define the functional form of
each dependency. In particular, we detail the mathematical relationship between
(1) design freedom and design attributes, (2) brand recognition and design
attributes, and (3) design attributes and design variables.

9/28

https://doi.org/10.1017/dsj.2016.9 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2016.9


3.1. L1 multinomial logit for brand recognition
We define brand recognition as a linear combination of design attributes, in
which the attributes maximally discriminate between brands. To determine the
linear coefficients to predict brand, we assume a multinomial logistic regression
functional form, conditioned only on brand-conscious customers and regularized
using the L1-norm, as given in Eq. (1).

f B R
b (a) =

ew
T
b a∑B

b=1 ew
T
b a
+ |wb|1. (1)

To train the coefficients wb of this model, we use a quasi-Newton
optimization algorithm (l-BFGS) to maximize the penalized multinomial
likelihood (Papalambros & Wilde 2000). Note that we use here the notation
for coefficients from the machine learning literature; these coefficients are also
often denoted with the symbols β in marketing and θ in statistics. The data are
conditioned using a hard threshold, where a brand-conscious customer must
achieve greater than T percentage correct recognition of brands across a set of
existing designs.

3.2. Design freedom distance metric
Design freedom is the leeway designers have to generate conceptual designs while
accounting for many implicit and explicit constraints (Hartley 1996). To capture
this leeway, we adopt the information processing flow in Crilly et al. (2004) by
assuming that the communication fromdesigner to customer is conveyed through
information of multiple modes – in our case a vector of design attributes and
vector of geometric values representing the design artifact.

With this design representation of multiple modes, we define design freedom
as a distance from existing designs to a new conceptual design both across
design attributes and across geometric variables. This design freedom distance
is mathematically captured using a distance metrics; yet while various metrics
have been previously used for engineering specifications (Simpson et al. 1998),
representations such as abstract knowledge databases (Chandrasegaran et al.
2013), and text (Fu et al. 2013), these metrics do not accommodate various
stakeholder inputs as specifically needed in the current study.

We thus propose a distance metric between two designs α and β for brand b
as given in Eq. (2). This metric is used to assign a scalar value that captures both
geometric and perceptual styling differences between designs.

‖ f DF,α
b − f DF,β

b ‖ =

M∑
m=1

Iwb,m 6=0

[
λ1(a(α)m − a(β)m )2

+ λ2

N∑
n=1

rb,nm(x (α)n − x (β)n )2

]
(2)

where,

am = design attributes measured using 2D representation
xn = geometric design variables common to both 2D and 3D representations
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λ1 = importance/normalizing operator of design attributes
λ2 = importance/normalizing operator of geometric design variables
Iwb,m 6=0 = indicator function if attribute m is important for brand b

rb,nm = sensitivity of attribute m to variable n for brand b.

This distance metric captures stakeholder considerations to the overall design
freedom in two ways: First, design freedom implicit in the mind of the customer is
captured using r(b,nm) and Iwb,m 6=0, both of which are assessed using the customer
crowd. Informally, these values capture the notion that differences between two
designs exist with both geometric and perceptual representations in the mind of
the customer.

Second, design freedom explicit from stakeholders within the producing
organization is captured using λ1 and λ2, which may represent, say, relative
influences of the marketing and engineering departments, respectively.
Informally, we use these operators to tune how important it is to maintain an
attribute like ‘aggressiveness’ for a marketing campaign, or a certain geometric
shape for vehicle aerodynamics. Accordingly, these operators are specific to the
brand being considered.

Using this distance metric, overall design freedom is assessed as the distance
from the current design in Model Year 2014 (MY2014) to a proposed design
(x′, a′). Denoting the current design (x0, a0), design freedom for the proposed
design is given by Eq. (3) using vector notation for brevity.

f DF
b (x′, a′)= ‖ f DF

b (x′, a′)− f DF
b (x0, a0)‖

= λ1(a′ − a0)T diag[Iwb 6=0](a′ − a0)

+ λ2(x′ − x0)T diag[RIwb 6=0](x′ − x0) (3)

where,

Iwb 6=0 = Mx1 vector of indicator functions for brand b

R = N x M matrix of attribute – variable sensitivities
diag[·] = operator to transform vectors to diagonal matrices.

To calculate the sensitivities of design attributes to design variables r(b,nm),
we conduct a one-sided t-test between the baseline design variable x0

n and the
morphed x ′n from customer responses for a given attribute m and brand b. This
hypothesis test sets the r(b,nm) = 1 if the p-value for the t-test is less than 0.05, and
r(b,nm) = 0 otherwise. The values of the indicator function Iwb,m 6=0 are calculated
by assigning the value 1 to all nonzero elements of the corresponding weight
vector described in Section 3.1. This weight vector is already sparse due to L1
regularization, and is thus suited to picking out attributes that most contribute to
the brand styling (Ranawat et al. 2012).

3.3. Crowdsourced Markov chain for design attributes
Our next goal is to develop a method of obtaining the attribute values for each
design, for example, ‘this vehicle is 0.7 out of 1.0 for aggressiveness, 0.2 out of 1.0
for distinctiveness,’ and so on. This method is a function that maps a design’s
geometric variables x to the design’s corresponding attributes a.
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Within the design community, this function has conventionally been
approximated by explicitly assuming a functional form, such as the linear logit
model often used in design utility theory treatments, followed by estimating
part-worth coefficients of the assumed model. However, this function is
likely highly nonlinear, particularly when dealing with high-dimensional
representations required for realistic design stimuli.

Here we take a different approach by assuming that the nonlinear function
relating design attributes to design variables is implicitly captured by the responses
of brand-conscious customers. By crowdsourcing the attribute values of the
designs – asking a crowd of customers to evaluate designs over attributes – we
avoid needing to make a priori assumptions regarding this complex nonlinear
functional form explicitly. This has advantages as we are capturing a function
that may exist in a more expressive function space, allowing complex modeling
of nonlinear interactions. Moreover, we avoid the need of explicit mathematical
representation of geometric variables, given that realistic 3D vehicle polygon
meshes may contain more than 100 000 vertices.

Under this approach, there are several ways to extract attribute values of
designs from the evaluations provided by the crowd. We choose to extract these
values using only relative comparisons between the set of designs, avoiding the
notion of a nonrelative scale, i.e., ‘what would it mean to give a design a 0.4 out
of 1.0 ‘aggressive’ score without seeing the entire set of designs, and how could we
ensure everyone used the same scale?’

In particular, we ask the crowd to evaluate the attributes of designs as a
ranking between just a few designs at a time. Formally, the responses rc

C
1 made

by customers c = 1 . . .C , in which each evaluation is in the form of a partial
ranking for a single design attribute. Partial rankings without ties are chosen as
more intuitive for human evaluation (Gonzalez & Nelson 1996).

To obtain attribute values using this set of evaluation responses from the
crowd, i.e., to aggregate these partial rankings into numbers for each attribute
and for each design, we derive a Markov chain solved using a modified version
of PageRank (Brin & Page 1998) as given in Eqs (4), (5), and (6). Informally, this
Markov chain treats the ranking of all designs for a specific attribute as a set of
‘states,’ for car designs to jump between. Every time a car is ranked above another,
that car pair jumps to the higher ranked state. The set of states that correspond to
themaximal number of correctly ranked cars is called the ‘stationary distribution.’
Finding this desired final ranking of states requires an iterative optimization
procedure.

This iterative procedure is characterized by theMarkov chain jumping around
different states as shown in Figure 4. This jumping action is governed by a
transition probability from one state to another, and in our case those transition
probabilities depend on partial rankings. The converged stationary probability
distribution of the Markov chain is then used as the value of the attribute.
Specifically, we define the attribute value as the probability that the car is ranked
higher than other cars, thus the attribute value of a car equals its average
percentage of the time that it is ranked higher than other competing cars.
Following the jumping analogy, if a car is more likely to be ranked higher than
others, then the agent will jump into that state more often.

More formally, the transition probability Pi j , i, j = 1, . . . , N from the state
representing car i to the state representing car j is defined as the frequency that
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Figure 4. Diagram of Markov chain used to aggregate customer responses in the
form of partial rankings of cars to obtain design attribute values for each brand.
Black arrows show nonzero transition probabilities from the raw transition matrix,
while red dashed arrows show perturbation probabilities added to ensure a unique
stationary distribution.

car j is ranked higher than car i in all partial ranks that contain car i . If the
transition probability Pi j is large, we define car j as being more likely to have
greater relative attribute value than car i . We denote the transition probability
matrix as P = (Pi j ), hereafter referred to as the raw transition probability matrix.
The stationary distributionπ of aMarkov chain is a distribution vector unchanged
after the operation of transition matrix P, as given in Eq. (4).

π = πP (4)
π = (π1, π2, . . . , πN )

πi > 0 and
N∑

i=1

πi = 1.

Consistent with Markov chain theory, there is no guarantee that the raw
transition probability matrix P will have unique stationary distribution (Ross
1996) without some strong assumptions. To achieve uniqueness in the resulting
distribution, we make two extensions to convert the raw transition matrix P to a
stochastic, irreducible, and aperiodic matrix (Brin & Page 1998).

3.3.1. Extension 1
The rows in P containing only 0’s are replaced with 1

N eT , where eT is a column
vector consisting of 1’s, and T denotes the transpose operator. This adjustment
results in a stochastic matrix denoted by S as given in Eq. (5).

S = P+Q
(

1
N
eT
)

(5)

Qi =

{
1 if Pi = 0
0 otherwise.

3.3.2. Extension 2
To convert S into an irreducible and aperiodic matrix G, we use Eq. (6).

G = γ S+ (1− γ )
1
N
eeT (6)
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where γ is a scalar between 0 and 1 controlling the intensity of the perturbation
that ensures uniqueness.

With these extensions, a unique stationary distribution exists for G. From
Eq. (6), the stationary distribution vector π can be obtained by calculating the
eigenvectors of G or by iteratively calculating π(k+1)

= π(k)G, k = 1, 2, . . . until
convergence. To calculate the values of attributes ab for brand b based on the set
of all partial rankings from customer responses rc

C
1 , we define the attribute value

for car i as πm,m = 1, 2, . . . ,M .

4. Experiment
We conducted two experiments to measure how brand recognition changed
as design freedom increased. Experiment 1 assessed brand recognition using
2D images of current MY2014 vehicle designs, followed by generation of new
morphed concept designs using 3D morphable models. Experiment 2 assessed
brand recognition using 2D images of both the MY2014 vehicle designs and the
new morphed concept designs.

The data collected from the MY2014 baseline designs allowed us to measure
current brand recognition for each brand, as well as develop a predictive model
for brand recognition as a function of design attributes. The data collected from
the morphed concept designs allowed us to measure brand recognition at various
values of design freedom.

4.1. Customers
We gathered a total of 315 customers through the crowdsourcing platform
Amazon Mechanical Turk. As online crowdsourcing has been empirically shown
to be a noisy process, partially due to various motivations of customers (Gerth,
Burnap & Papalambros 2012; Pilz & Gewald 2013; Sheshadri & Lease 2013;
Panchal 2015), we filtered out data fromcustomers using twodata processing steps
to ensure data fidelity.

First, customers that simply ‘clicked through’ the survey were filtered out by
requiring their average time on the 2D portion of the site to be greater than 6 s per
ranking. Second, a brand recognition accuracy threshold of 30% was chosen to
filter out customers who were not ‘brand-conscious’ as justified in Section 2. For
reference, the average brand recognition accuracy for the unfiltered crowd was
32.78%. Brand recognition accuracy was treated as a constant variable across the
entire survey, and all data were filtered out for a given participant if he or she did
not fall above the threshold.

After filtering mechanisms, 139 customers were retained from a total of
315 customers gathered over two experiments, as described in the experimental
procedure. In particular, experiments gathered 196 and 119 customers, of which
96 and 43 remained after filtering, respectively.

4.2. Vehicle brands and models
The brands chosen were Audi, BMW, Cadillac, and Lexus (B = 4), due to their
relative similarities over a targeted market segment of luxury vehicles, as well as
similarity of product offerings across vehicle classes. For each brand, five models
were chosen fromMY2014 corresponding to five vehicle classes as given inTable 1.
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Table 1. Description of the four vehicle manufacturer brands and five associated
vehicle classes used in this study

Brand Compact Midsize Full Size Crossover SUV

Audi A4 A6 A8 Q5 Q7
BMW 3 Series 5 Series 7 Series X3 X5
Cadillac ATS CTS XTS SRX Escalade
Lexus IS GS LS RX GX

Figure 5. 2D Images of MY2014 Vehicles with brand emblems removed.

4.3. 2D images and 3D morphable vehicle models
Images of the vehicle face were sourced from an online vendor. The face viewpoint
has been shown to be more correlated with brand recognition than side view or
rear vehicle view (Ranscombe et al. 2012). Each image consisted of a white vehicle
on awhite background tominimize confounding interactions from color as shown
in Figure 1. Moreover, the brand logo was removed for each vehicle image in
order to focus customer responses just on styling as in Orbay et al. (2015). All
2D representations are shown in Figure 5.

Four morphable 3D models, one for each brand, were created as shown in
Figure 2. Morphing was precomputed offline using Laplacian deformation and
volumetric-based mesh deformation techniques (Botsch & Sorkine 2008). The
models were then imported into the web-based survey using the browser-based
WebGL renderer, allowing real-time and realistic deformation via client-side
graphics processing unit interpolation.
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Table 2. Description of the four vehicle manufacturer brands and five associated
vehicle classes used in this study

Low Attribute High Attribute Low Attribute High Attribute

Awkward Well Proportioned Passive Active
Weak Powerful Traditional Innovative
Conservative Sporty Understated Expressive
Basic Luxurious Friendly Aggressive
Conventional Distinctive Mature Youthful

Figure 6. Overview of the experimental procedure for both Experiment 1 and
Experiment 2. Experiment 1 asked participants to give partial rankings of current
MY2014 baseline designs for a given design attribute, followed by asking which
brand each of the images corresponded to. Participants were then asked to morph
a 3D design to create new concept designs given the same design attribute.
Experiment 2 asked a different set of participants to give partial rankings of current
MY2014 baseline designs mixed with images of the morphed concept designs from
Experiment 1. Similarly, participants were then asked which each brand the images
corresponded to.

4.4. Design attributes
As discussed above, design attributes link brand recognition with design freedom.
We selected ten design attributes given in Table 2 based on input from actual
design teams in the automotive industry (Motors 2014).

4.5. Experimental procedure
Weconducted two experiments: Experiment 1 gathered attribute values and brand
recognition accuracies via partial rankings of 2D images of MY2014 baseline
designs. This was followed by generation of new morphed concept designs using
a 3D morphable model. Experiment 2 similarly gathered attribute values and
brand recognition accuracies, except this time using 2D images of both the
MY2014 baseline designs mixed with 2D images of the 3D morphed concept
designs from Experiment 1. The overall procedure is given in Figure 6, and was
as follows.
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Figure 7. Snapshot of 3D morphing design from online web application.

4.5.1. Experiment 1
Participants were first directed to an introduction page, where they were given
instructions on ranking vehicles according to a semantic differential. This
semantic differential consisted of only one of the ten attributes from low to high
value or vice versa to act as a counterbalance for ordering biases. Over the entire
interactive survey, a participant was always given the same semantic differential
to reduce participant burden.

Next, participants were directed to the 2D design ranking page, with the
four vehicles in a top row and four outlined placeholders in a bottom row as
shown in Figure 7. Instructions on the page were given to drag and drop the four
MY2014 baseline designs from the top row to the bottom row using the mouse,
including possibility of reordering the partial ranking. Upon clicking the ‘Submit’
button for the partial ranking, participants were then asked to choose the brand of
each MY2014 baseline design using a drop-down menu with 34 possible options
(e.g., Audi, Volvo, Toyota).

After participants chose a recognized brand for each of the vehicles, they were
allowed to continue to the next partial ranking. After participants completed five
partial rankings on the 2D portion of the site, they were directed to the 3D portion
of the site for generating new designs. In this portion, each participant was given a
randomly chosen 3D model in the midsize vehicle segment from the four brands
as shown in Figure 8. Participants were then asked to maximize the same design
attribute as their semantic differential from the 2D portion of the site bymorphing
the 3D design using four sliders. They were able to rotate the 3D vehicle model to
assess the gestalt of the face. Upon submitting their chosen 3D design, participants
were then directed to a short survey in which they were asked basic demographic
information as well as task relevant information.
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Figure 8. Snapshot of 3D morphing design from online web application.

4.5.2. Experiment 2
A new set of participants was asked to give partial rankings for a randomly
assigned design attribute, but now with both 2D images of MY2014 baseline
designs mixed with 2D images of face views of the 3D morphed concept designs
from Experiment 1. Recall that this mixture of MY2014 baseline designs and
morphed concept designs is necessary to get relative attribute values using the
partial ranking Markov chain method derived earlier. A total of 52 possible
2D images was shown to participants, 20 from the original MY2014 baseline
designs given in Table 1, and 32 from 3D designs morphed concept designs from
Experiment 1.

4.6. Brand recognition versus design freedom data analysis
We give a diagram in Figure 9 of the data analysis using the methods detailed and
developed in Section 3, and list this methods flow here: We aggregated the partial
rankings from each brand-conscious participant using the method described
earlier to obtain the design attribute values for each new conceptual design. These
design attributes were used to build a model of brand recognition. The filtered
data included participants from 2D images of both morphed and nonmorphed
designs due to the relative values obtained using the partial ranking aggregation
method.

Brand recognitionwas assessed by calculating the number of correct responses
to the set of 32 morphed conceptual designs over the total number of times
that particular conceptual design showed up in the partial rankings. Design
freedom was calculated using the metric described above. The operators λ1 and
λ2 are chosen to scale the design freedom by subtracting the mean and dividing
the standard deviation of each brand’s design variables and design attributes,
respectively, resulting in a normalized design freedom. This operation was chosen
on a brand-by-brand basis as this did not change the brand recognition versus
design freedom distributions.
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Figure 9. Diagram of the data flow and methods used in the data analysis of the
experiment. As described earlier and shown in Figure 5, Experiment 1 provides
the Partial Ranking Markov Chain and L1 Multinomial Regression with data from
only MY2014 vehicle designs, thus provided the attribute–variable sensitivities R
and brand–attribute sensitivities I(ω 6=0). Experiment 2 provides the Partial Ranking
Markov Chain with combined MY2014 and morphed vehicle designs, of which
only morphed design attributes and variables are passed on to the Design Freedom
Distance Metric. The values of design freedom for each morphed design are then
compared with their corresponding brand recognition to obtain the desired slope on
a brand-by-brand basis.

5. Results
Four plots depicting the empirical relationships between brand recognition and
design freedom for each manufacturer are given in Figure 10. Each plot includes
a trend line obtained using Theil–Sen robust linear regression to assess, to
first order only, how fast brand recognition decreases as design freedom is
increased (Sen, 1968). The slopes of each of these trend lines are given in
Table 3. As given by the median absolute deviation, linear relations for Audi
and Lexus are not very meaningful but one can still discern a trend. Histograms
showing the marginal distributions are also plotted in Figure 10 to convey
the relative coverage of the data for each brand. Note that while it is highly
unlikely that these trends are strictly linear, linear regression is used to capture
general trends.

The brand recognition versus design freedom slope for each of the four
manufacturers is negative, a result obtained entirely from the data, confirming
intuition that increasing design freedom results in decreased brand recognition.
From these slopes, we can see that BMW and Cadillac have the quickest loss
of brand recognition with increasing design freedom. These results suggest that
designers at BMW have much less leeway in their freedom to create future design
concepts without sacrificing brand image and heritage. Cadillac is second in this
ordering, yet has significantly less sharp of a slope, suggesting that designers at
Cadillac are not as constrained as designers at BMW.

Lexus and Audi are shown to be third and fourth in this ranking; however,
both of these manufacturers have results that are less meaningful due to both
poor linear fit as given by Table 3, as well as low overall brand recognition. In
particular, Figure 11 shows the overall brand recognition accuracy across the four
brands for both brand-conscious customers and non-brand-conscious customers.
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Figure 10. Brand recognition versus design freedom for the four vehicle brands in
this study over 2D images taken of the conceptual designs generated during the 3D
portion of the experiment. Brand recognition accuracy is defined as the percentage
of time a brand-conscious customer – a customer who correctly identifiedmore than
30% of the MY2014 baseline vehicle brands – was able to correctly recognize a new
morphed design. Note that design freedom values have been normalized within the
brand such that the four brands may be meaningfully compared – this operation
results in negative values of design freedom though the original values are always
nonnegative.

We observe that BMW and Cadillac have the most recognizable brand, justified
as the ‘All Customers’ data consist of over 5428 brand identifications from a
pool of 315 customers. Audi and Lexus were found to have the lowest brand
recognition, both among brand-conscious customers and nonfiltered customers.

5.1. Application to industry
The study was inspired by working with real automotive design teams, and direct
practical implementation seems likely. One such implementation may be a tool
to generate ‘thought seeds’ to act as inspiration for new design concepts. Such
thought seeds may be used at very early stages of the design process in an effort to
inspire creativity in directions that are most likely successful in the marketplace.
Another implementation may be a check for promising design concepts such that
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Table 3. Slope coefficients of Theil–Sen robust linear model fit to brand recognition versus design freedom
for the four brands in this study

Brand Slope of brand recognition vs. design freedom Median absolute deviation

Audi −0.009 0.302
BMW −0.085 0.074
Cadillac −0.054 0.134
Lexus −0.047 0.426

Figure 11. Brand recognition for the four vehicle brands in this study. Brand-
conscious customers refer to those customers who could correctly identify at least
on average 30% the brands of baseline (MY2014) designs.

they may be steered away from areas of ‘too much brand recognition’ and not
enough innovation and appeal, or on the other hand, ‘too much design freedom’
and not enough adherence to brand.

A future implementation could be a decision support tool for product
researchers and strategic design managers to document explicitly which visceral
design attributes and geometric design variables have the most leeway when
creating a future design. As an example, we show in Figure 12 a baseline BMW
5 Series, along with two morphed BMW 5 Series with the least and most design
reach from the baseline according to the data.

We can see that the ‘kidney bean’ grill significantly affects the relationship
between design freedom and brand recognition. This was intuited a priori
and is only confirmed by the present analysis, i.e., we did not find this result
introspectively – see the Limitations section for more discussion of the lack of
ability to ask ‘why’ questions in the present state of this research.

Such tools can augment the experience and intuition of designers and strategic
design managers using real-time feedback from a targeted crowd of customers.
This tool could be combined with more advanced 3D design and semantic
representations (Yumer et al. 2015), gamification of real-time crowd feedback
(Ren, Bayrak&Papalambros 2015), and advances in virtual and augmented reality
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Figure 12. Example application to industry of the approach and results of this study.
Three representations are given corresponding to the MY2014 Baseline BMW 5
Series, the morphed BMW 5 Series with the least design freedom from the baseline,
and the morphed BMW 5 Series with the most design freedom from the baseline
according to the data. Note that the MY2014 baseline is a 2D image, while the two
morphed vehicles are images of the 3D morphing model.

technologies (Faas et al. 2014; Ramani et al. 2014; Shankar & Rai 2014; Tovares
et al. 2014). Combinations of these recent technologies, all characterized by having
a human-in-the-loop, would likely improve the outcomes of such efforts.

5.2. Limitations
Perhaps the most limiting aspect of this work is the inability to ask ‘why’ design
freedom trades off with brand recognition; in particular, which changes in the
aesthetic styling of the design most affect brand recognition. This is due to
the setup of this work itself, in that we are dealing with a nonparametric and
nonlinear mapping between the geometric design variables and perceptual design
attributes, up to the functions representing design freedom and brand recognition
themselves. Since we do not even know the functional form of this mapping
(due to being obtained by the partial ranking Markov chain) much less its
inverse, we are not able to perform such introspection. Such a limitation provides
further justification for future work into such nonlinear function introspection,
with particularly promising avenues in the area of ‘feature learning’ and ‘feature
interpretation’.

The design space spanned by the parameterization of geometric variables for
the 3D models does not capture the entire set of possible vehicle face design
concepts. While this is in part why we assumed brand recognition as a linear
function of attributes – and attributes as an implicit nonlinear function of
geometric variables – it must be noted that future studies may greatly differ in
their parameterizations.

Filtering the data for brand-conscious customers has some limitations. We
assumed that brand recognition accuracy is a static quantity throughout the
survey. This does not account for familiarity with the brands after consistently
seeing the same four images throughout the survey. Further, a larger number
of data points would reduce the uncertainty in Figure 10, as well as allowing
filtering on customers with higher average brand recognition accuracy over
current MY2014 vehicles.

Several limitations to the crowdsourced function estimation approach are
noted. First, attribute values will change depending on which cars are involved in
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the ranking. Second, the formulation assumes that customers are homogeneous
in their perceptions of the design attributes. While this assumption is certainly
not always true, we mitigate the effect of heterogeneity by normalizing for the
relative contribution of a design attribute to either design freedom or brand
recognition as given in Eq. (6). Finally, we note that including heterogeneity in
customer responses to design attributes may significantly increase fidelity of the
brand recognition prediction model. Such heterogeneity may be captured using
models that incorporate clustering formulations or formulations that impose
deviations from a common crowd prior distribution (Evgeniou, Pontil & Toubia
2007; Abernethy et al. 2008).

This study only considered designs from MY2014, limiting these static
findings from time-series trends. Future work considering design data over
a number of years would provide additional insight as brands and design
languages often undergo dramatic shifts (Tucker & Kim 2011; Ma, Kwak & Kim
2014). Furthermore, this study considered only luxury brands, in part because
such brand imagery tends to be more recognizable. Insights into whether the
same findings and methodology are appropriate for nonluxury brands would
be interesting to explore. Further, design domains besides automotive offer
additional opportunities for exploration.

6. Conclusion
Design freedom and brand recognition are considerations that were measured for
four vehicle manufacturers – Audi, BMW, Cadillac, and Lexus – since balancing
between these two considerations has been shown to significantly influence
customer purchase decisions. Two experiments were conducted for measuring
changes in ten styling design attributes common to both design freedom and
brand recognition for automotive designs. The first experiment solicited customer
responses to existingMY2014 vehicle designs according to these design attributes,
followed by a stage of interactively creating newmorphed vehicle concept designs;
while the second experiment solicited customer responses to both the existing
MY2014 vehicle designs and the new concept designs.

The data from these experiments were input to a design freedom metric
function, giving a value of design freedom for each design concept. These values
of design freedom were plotted against the design concept’s corresponding brand
recognition on a brand-by-brand basis. Results showed that brand recognition
is highly dependent on the particular vehicle manufacturer, but we were able
to measure tradeoffs between design freedom and brand recognition for BMW
and Cadillac. In particular, we found that BMW has the sharpest relationship
between increasing design freedom and decreasing brand recognition, suggesting
that designers at BMW have significantly less leeway during the design of new
concepts in contrast to other premium market segment manufacturers. Cadillac
has more leeway during the design process; however, brand recognition still drops
precipitously with too much design freedom. Our results for Audi and Lexus were
less conclusive, due to spread in the data and low absolute brand recognition,
respectively.

The methodology given in this work is an additional step toward predictive
modeling of aesthetic styling in the automotive design process with the goal of
augmenting human intuition during the strategic design decision process. The
current work is not able to answer ‘why’ design freedom and brand recognition
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trade off at the rate they do, due to the unknown functional form of the
nonparametric and nonlinear predictive models used in the computations;
accordingly, further work focused on interpretation is warranted and would
increase the value of such research for real design teams.
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