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Abstract. In this paper we study the problem of the existence on non-inner
automorphisms for the class of torsion-free supersolvable groups, answering a
question raised by Robinson.
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Introduction. The famous, seminal papers by GaschuÈ tz [2],[3] on the existence
of outer automorphisms in ®nite p±groups have been both the conclusion of a long
process and the starting point of a number of extensions and generalisations in dif-
ferent areas. The existence of non-inner automorphisms for in®nite nilpotent p-
groups was proved by Zalesskiõ� [9]; moreover, apart from the obvious exceptions,
in®nite nilpotent p-groups admit outer automorphisms of p-power order [6]. For
general nilpotent groups the situation is quite di�erent. In fact Zalesskiõ� gives an
example of a torsion-free nilpotent group, all of whose automorphisms are inner (see
[10]) while, on the other hand, the existence of non-inner automorphisms had been
proved by R. Ree [7] (but see also [1] and [4]) in the case of ®nitely generated, torsion
free nilpotent groups. It is worth mentioning that it is still unknown whether an
in®nite ®nitely generated nilpotent group has an outer automorphism.

The problem of the existence of outer automorphisms has been addressed for
other classes of groups and in this short note we will consider this question for tor-
sion-free supersoluble groups. Our interest is motivated by a result proved by D.J.S.
Robinson in [8]. In this paper the author shows that a torsion-free supersoluble
group with trivial center always admits a non-inner automorphism. On this basis the
following question was also asked by Robinson:

does every torsion-free supersoluble group have non-inner automorphisms?

In this note we show that the answer to the above question is negative, by con-
structing a class of torsion-free supersoluble groups, possessing only inner auto-
morphisms.

An invariant which seems to play a decisive role in this context is the torsion-free
rank of the abelian factor group G=G0; we denote it by �0�G�. We prove the following
results.

(1) If G is a torsion-free supersoluble group and �0�G� � 2, then G has non-inner
automorphisms.
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(2) There are nontrivial torsion-free supersoluble groups G with �0�G� � 0 such
that Aut�G� � Inn�G�.

It is however not clear what happens when �0�G� � 1. Namely we have not been
able to show that, if this is the case, the group G admits non-inner automorphisms,
nor could we provide examples of such groups all of whose automorphisms are inner.

In Section 1 we obtain, by elementary means, some su�cient conditions in order
that a torsion-free supersoluble group admit non-inner automorphisms; these will
imply our ®rst result. Section 2 is devoted to the construction of a class of torsion-
free supersoluble groups, without non-inner automorphisms, thus proving the sec-
ond part of our statement.

1. General facts. We begin with an easy lemma.

Proposition 1. Let G be a ®nitely generated torsion-free group. If Aut�G� �
Inn�G�, then

(1) Z2�G� � Z�G�;
(2) Z�G� \N � 1, for every N /G with G=N in®nite cyclic.

Proof. (1) Suppose there is u 2 Z2�G�, u =2Z�G�. The subgroup U � hu;Z�G�i is
abelian and normal in G, and the factor group G=CG�U � is a non-trivial, ®nitely
generated, torsion-free abelian group. There is K /--G such that CG�U � � K and G=K
is in®nite cyclic; moreover, CG�K� � K. Choose g 2 G such that G � hg;Ki, and set
A � Z�K�; asA � Z�G� 6� 1, we haveA > �g;A�. For every a 2 An�g;A� the assignment

g 7!ga
x 7!x; for every x 2 K;

�
gives an automorphism of G which is not inner: but this is a contradiction.

(2) Assume, by contradiction, that 1 6� z 2 N \ Z�G�. If G � hg;Ni, then the
assignment

g 7!gz
x 7!x; for every x 2 N;

�
de®nes a non-trivial central automorphism of G. By part (1), all such automorph-
isms are non-inner.

Theorem 2. Let G be a supersoluble torsion-free group such that
Aut�G� � Inn�G�. If G=G0 is in®nite, then

(1) Z�G� is in®nite cyclic,
(2) Z�G� \ G0 � 1,
(3) �0�G� � 1.

Proof. In our case G has a normal subgroup N with in®nite cyclic factor group
G=N; of course, G0 � N. Moreover, Z�G� 6� 1 [8]. By Proposition 1,(2) Z�G� \N � 1,
which implies (1) and (2).
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Suppose now that �0�G� � 2. Then G=Z�G�G0 is in®nite, and there is a subgroup
N � Z�G�G0 such that G=N is in®nite cyclic. But this again contradicts Proposition
1,(2).

2. Examples. The following construction is in the spirit of some work of H.
Heineken [5].

Theorem 3. For every integer n � 5 there is a supersoluble torsion-free group G of
Hirsch length 2n and derived length 3 with Aut�G� � Inn�G�.

Proof. Let A be the group given by the following generators and relations:

A � ha1; . . . ; an j �ai; aj; ak� � 1 for all i; j; k;
�ai; aj� � 1 for all i; j such that j 6� i� 1; j 6� iÿ 1i

(n � 5; here and later on, all indices are taken mod n, with representatives
1; 2; . . . ; n).

A is nilpotent of class 2, torsion-free, and A0 � Z�A� � h�ai; ai�1� j i � 1; . . . ; ni
is free abelian.

Let q1; q2; . . . ; qn be distinct odd primes, and put q � q1 � � � qn. For i � 1; . . . ; n
we de®ne the following elements

yi � a
qiÿ1qi
i ;

ui � �ai; ai�1�qi ;
vi � a

qiÿ1
i a

2qi�1
i�1 �ai; ai�1�qiÿ1qi�1�qiÿ1�:

It is easy to see that

v
qi
i � yiy

2
i�1

and to compute the relevant commutators:

�yi; yi�1� � u
qiÿ1qiqi�1
i ;

�vi; yiÿ1� � u
ÿqiÿ2qiÿ1
iÿ1 ; �vi; yi� � u

ÿ2qiÿ1qi�1
i ; �vi; yi�1� � u

qiÿ1qi�1
i ;

�vi; yi�2� � u
2qi�1qi�2
i�1 ; �vi; vi�1� � u

qiÿ1
i u

4qi�2
i�1 ; �vi; vi�2� � u

2qi�1
i�1 :

The remaining commutators �yi; yj�; �vi; yj�; �vi; vj� all vanish.
As a ®rst step in the construction of the example we need a particular subgroup

of A. Namely we set F � hy1; . . . ; yn; u1; . . . ; un; v1; . . . ; vni. There are two subgroups
of F which will be of some importance for our aim. They are U � hu1; . . . ; uni, and
H � hy1; . . . ; yn; u1; . . . ; uni. Notice that U is central in A (hence in F ), U is free
abelian with basis u1; . . . ; un, F 0 � U and H=U is free abelian with basis
y1U; . . . ; ynU.

We now derive some properties of F.

(1) Z�F � � U.
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Suppose ®rst that x 2 H \ Z�F �, x � �Q
i

ytii �u, for some u 2 U. If some tk 6� 0

then �x; yk�1� � �ytkk ; yk�1��ytk�2k�2; yk�1� 6� 1. This shows that H \ Z�F � � U. If now

x 2 FnH, say x � Q
i

yrii
Q
j

v
sj
j mod U with sk 6� 0 mod qk, we get

xq �
Y
l

ytll mod U;where tl � �rlqlqlÿ1 � slqlÿ1 � 2slÿ1ql��q=qlqlÿ1�

and so in particular tk 6� 0 mod qk; hence x
q =2Z�F �, and x =2Z�F �, proving our claim.

(2) If x 2 F and �x;F � � U2, then xU is a square in F=U.

Again, suppose ®rst that x 2 H, x � Q
i

ytii mod U. If tk is odd for some k, then

�x; yk�1� � �yk; yk�1�tk �yk�2; yk�1�tk�2 � u
tkqkÿ1qkqk�1
k u

ÿtk�2qkqk�1qk�2
k�1

is not a square in U: hence (2) holds for elements of H. If now x 2 F and
�x;F � � U2, then xq 2 H and �xq;F � � U2, so that xqU is a square in F=U; since q is
odd, xU is a square too.

(3) hykU i is a pure subgroup of F=U, for k � 1; . . . ; n.

Suppose that xU � Q
i

yrii
Q
j

v
sj
j U and �xU �m 2 hykU i, for some m 6� 0. Then

�xU �mq �Q
l

�ylU �tlm 2 hykU i with tl � �rlqlqlÿ1 � slqlÿ1 � 2slÿ1ql��q=qlqlÿ1� as above;
so, for l 6� k, rlqlqlÿ1 � slqlÿ1 � 2slÿ1ql � 0. This implies qlÿ1 j slÿ1 and ql j sl, for
every l 6� k; i.e. xU 2 H=U. As we remarked above, H=U � hy1U i � � � � � hynU i;
hence ®nally xU 2 hykU i.

(4) �x;F � has rank 2 if and only if U 6� hxU i � hyiU i, for some i � 1; . . . ; n.

It is clear that, if r 6� 0, �yri ;F � has rank 2. On the other hand, suppose
xU =2 hyiU i, for i � 1; . . . ; n; by (3) the same is true for xqU, so that
xq � Q

i

yrii mod U with at least two non-zero exponents, say rj and rk ( j 6� k). It is

easy to check that, since n � 5, at least three of

�xq; yjÿ1�; �xq; yj�1�; �xq; ykÿ1�; �xq; yk�1�

are independent. Hence �xq;F � and �x;F � have rank at least 3.

(5) U, hyi;U i (i � 1; . . . ; n) and H are characteristic subgroups of F.

U � Z�F � by (1); the set fhy1U i; . . . ; hynU ig is Aut�F �±invariant by (4), which
implies that also H is characteristic. Now � yi;H � � huqiÿ2qiÿ1qiiÿ1 ; uqiÿ1qiqi�1i i has index
qiÿ2q2iÿ1q

2
i qi�1 in its pure closure huiÿ1; uii in U. If i 6� j these indices are di�erent,

which proves our claim.
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At this point, we notice that A admits an automorphism � such that

a�i � aÿ1i �i � 1; . . . ; n�:

It is obvious that � induces the identity on A0 � Z�A� and that �2 � 1. Since
y�i � yÿ1i and u�i � ui, we have H

� � H. Moreover, the equality

viv
�
i � a

qiÿ1
i a

2qi�1
i�1 �ai; ai�1�qiÿ1qi�1�qiÿ1�aÿqiÿ1i a

ÿ2qi�1
i�1 �ai; ai�1�qiÿ1qi�1�qiÿ1� �

� �ai; ai�1�2qiÿ1qiqi�1 � u
2qiÿ1qi�1
i

shows that v�i � vÿ1i u
2qiÿ1qi�1
i , so that F � � F.

(6) Put b � Qnÿ1
i�1
�yi; yi�1� and L � fx�x j x 2 F g. Then b =2L.

Since x� � xÿ1 mod U and for u 2 U �xu��xu � x�xu2, the set L is the union of
some cosets of U modulo U2. Moreover, q odd and �x�; x� � 1 give
�xq��xq � �x�x�q � x�x mod U2. It follows that if a coset cU2 � L for any c 2 U,
then c � x�x mod U2, for some x 2 H. Now let x �Q

i

ytii u 2 H; we have

x�x � yÿt11 � � � yÿtnn yt11 � � � ytnn u2 � �
Y

1�i<j�n
�yi; yj�titj�u2 �

�
Ynÿ1
i�1
�yi; yi�1�titi�1 �yn; y1�ÿtnt1u2:

Suppose b � x�x mod U2: since the set f�yi; yi�1�U2 j i � 1; . . . ; ng is a basis of U=U2,
this forces titn � 0 mod 2; but then either �y1; y2� or �ynÿ1; yn� would be missing from
b, a contradiction.

We can now complete our construction. De®ne G � hF; si, where f s � f �, for all
f 2 F, and s2 � bÿ1. It is clear that Z�G� � Z�F � � U, G is supersoluble of Hirsch
length 2n, G has derived length 3 and �0�G� � 0. Moreover, G is torsion-free: F is
torsion-free and, if some sf ( f 2 F ) is periodic, then �sf �2 � 1; but this is impossible,
since �sf �2 � s2f sf � bÿ1f �f and b =2L.

Choose now � 2 Aut�G�. The subgroup F is the Fitting subgroup of G; hence F,
H, U, hyi;U i (i � 1; . . . ; n) are characteristic in G. This implies that y�i U � y�1i U,
(i � 1; . . . ; n). Suppose that there is i such that y�i U � yiU and y�i�1U � yÿ1i�1U. It is
a consequence of the choice of vi that yiy

2
i�1U 2 �F=U �qi . Also yiy

ÿ2
i�1U �

�yiy2i�1��U 2 �F=U �qi ; hence y2i U 2 �F=U �qi . This in turn, qi being odd, implies
yiU 2 �F=U �qi , a contradiction to (3).

We have thus proved that � induces �1 on H=U, hence also on F=U. After
multiplication, if necessary, with the inner automorphism of F induced by s, we may
assume that � induces the identity on F=U; it then follows that � induces the identity
also on F 0 and on U.

We now set s� � sy, where y 2 F, and compute �x; y� for an arbitrary x 2 F.
Notice that s2, xsx, �x; ��, �x; y� are in U, so ®xed by � and central in G.
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�xs�� � �sÿ1xs�� � �sy�ÿ1x�x; ��sy � xsy�x; ��;
xsx � �xsx�� � �xs��x�x; �� � xsy�x; ��2x;

�y; xs� � �xsy�ÿ1xs � �x; ��2;
�x; y� � �x; y�s � �xs; yÿ1� � �y; xs� � �x; ��2

since s2 � �s2�� � �sy�2 � s2ysy gives ys � yÿ1.
It follows from (2) that yU � �wU �2, for some w 2 F; hence �x; �� � �x;w�, for

all x 2 F. If we multiply � by the inner automorphism induced by wÿ1, we may
assume that � is the identity on F (and of course on G=F which has order 2). Hence �
comes from a derivation G=F! Z�F �. Such derivations are in fact homomorphisms
because Z�F � � U � Z�G�. However, jG=F j � 2 and U torsion-free imply that the
only homomorphism G=F! U is the trivial one, which shows that � is the identity.
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