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Velocity gradient tensor, Aij ≡ ∂ui/∂xj, in a turbulence flow field is modelled by separating
the treatment of intermittent magnitude (A = √

AijAij) from that of the more universal
normalised velocity gradient tensor, bij ≡ Aij/A. The boundedness and compactness of
the bij-space along with its universal dynamics allow for the development of models that
are reasonably insensitive to Reynolds number. The near-lognormality of the magnitude
A is then exploited to derive a model based on a modified Ornstein–Uhlenbeck process.
These models are developed using data-driven strategies employing high-fidelity forced
isotropic turbulence data sets. A posteriori model results agree well with direct numerical
simulation data over a wide range of velocity-gradient features and Reynolds numbers.
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1. Introduction

The velocity gradient (VG) evolution in incompressible turbulent flows depends upon
four fundamental processes: inertial, pressure, viscous and large-scale forcing if present
(Cantwell 1992; Jeong & Girimaji 2003; Meneveau 2011; Das & Girimaji 2022). The
inertial effect, arising from the fluid momentum term in the Navier–Stokes equation,
is local and nonlinear in character. Here locality refers to the fact that the inertial
term depends only on the velocity and VG of the corresponding fluid particle. The
pressure effect manifesting through the pressure Hessian can be separated into an
isotropic part, which is local, and an anisotropic part, which is non-local. The anisotropic
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pressure-Hessian is strongly non-local as pressure is governed by the elliptic Poisson
equation. The locality of the isotropic pressure component is a direct consequence of the
incompressibility condition. The viscous forces on the evolution of VGs at any point in the
flow depend on its immediate neighbourhood, thus also representing a weaker non-local
contribution. The large-scale forcing effect stems from the application of external forces
that sustain the turbulence. The interaction among these effects can be complicated and
leads to various aspects of observed behaviour such as small-scale intermittency and
multifractality in turbulence (Siggia 1981; Kerr 1985; Meneveau & Sreenivasan 1991;
Sreenivasan & Antonia 1997; Ishihara et al. 2007; Tsinober 2009; Yakhot & Donzis 2017).
Despite these features, small-scale turbulence exhibits a certain degree of universality
(Kolmogorov 1941; Sreenivasan 1998; Schumacher et al. 2014; Das & Girimaji 2022).

Due to its theoretical significance and its practical importance in a variety of
applications, there have been numerous attempts at modelling the Lagrangian evolution of
the VG tensor. As mentioned previously, the local inertial and isotropic pressure Hessian
contributions appear in closed form, while the remaining non-local processes require
closure. The earliest attempts (Cantwell 1992; Girimaji & Speziale 1995; Martın, Dopazo
& Valiño 1998) at modelling VG dynamics neglected the non-local terms and modelled
only the closed restricted Euler (RE) equations (Vieillefosse 1982; Cantwell 1992).
Beginning with the work of Girimaji & Pope (1990), a series of stochastic VG evolution
equations were proposed using diverse closure techniques for modelling the effects of the
non-local pressure and viscous contributions (Chertkov, Pumir & Shraiman 1999; Jeong &
Girimaji 2003; Chevillard & Meneveau 2006; Chevillard et al. 2008; Wilczek & Meneveau
2014). Some of the current modelling efforts such as the recent deformation of Gaussian
fields (Johnson & Meneveau 2016a), the multifractal process stochastic model (Pereira,
Moriconi & Chevillard 2018), temporal strain-rotation rate correlation model (Leppin &
Wilczek 2020) and the data-driven pressure Hessian closure (Tian, Livescu & Chertkov
2021) have shown significant improvements over the original models. Still, most models
cannot simultaneously capture intermittency and the self-similar geometric features of
VGs with high accuracy.

In this work, we adopt a different closure modelling approach devised along the lines of
Kolmogorov (1962). The approach seeks to isolate the universal geometric features of the
VGs from the intermittency of the magnitude. To separate the magnitude effects from that
of geometry, a normalised VG is defined as follows (Girimaji & Speziale 1995):

bij ≡ Aij

A
where A ≡ ‖A‖F =

√
AmnAmn, (1.1)

where ‖·‖F is the Frobenius norm of a tensor. The normalised VG tensor, bij, is a
mathematically bounded tensor and is statistically more self-similar than Aij across
different types of turbulent flows at different Reynolds numbers (Das & Girimaji 2019,
2022). The geometric shape features of the small scales of turbulence are encoded in the
bij tensor, whereas scale and intermittency information are contained in the VG magnitude
A (Das & Girimaji 2020). The idea here is to develop separate models for bij and A tailored
for capturing the dynamical behaviour of each uniquely, resulting in an overall improved
prediction of Aij evolution. Within the bij closure framework, the effects of different
turbulence processes including the non-local pressure, viscous and forcing, are nearly
universal, well-behaved and more amenable to generalisable modelling (Das & Girimaji
2020, 2022) than the corresponding terms in Aij equation.

To model the nonlocal terms, we employ a simple data-driven approach based on
our physical understanding of the small-scale dynamics. For this, we utilise highly
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resolved direct numerical simulations (DNS) data and propose a lookup table approach
in a four-dimensional compact space. The compactness of the bij-parameter space and
universality of the underlying physics permits the use of the lookup table approach. In
the future, neural network strategies can be adopted for this part. Overall, this leads to a
reasonably generalisable closure of the non-local pressure and viscous processes at high
enough Reynolds numbers within the bij framework.

Once the non-local terms are modelled, the VG magnitude A does not require any
additional closures, as will be seen later. Consequently, we model the evolution of
magnitude A (pseudodissipation rate ∼ A2) within an Ornstein–Uhlenbeck (OU) process
(Uhlenbeck & Ornstein 1930) framework. This approach takes advantages of: (i) the
near-lognormal probability distribution of pseudodissipation rate and (ii) the exponential
decay of its auto-correlation (Kolmogorov 1962; Oboukhov 1962; Yeung & Pope 1989;
Yeung et al. 2006). Although studies in multifractal formalism (Mandelbrot 1974;
Nelkin 1990; Benzi et al. 1991; Frisch 1995) suggest that pseudodissipation rate is
not precisely lognormal, studies have shown support for the lognormal framework of
modelling the temporal dynamics of VG magnitude (Girimaji & Pope 1990; Pope &
Chen 1990; Huang & Schmitt 2014). Therefore, we model the VG magnitude as a
Reynolds-number-dependent modified lognormal process. We further incorporate DNS
data-based physical modifications within the OU process, with the expectation of
capturing the intermittent nature of small-scale turbulence more accurately than a simple
lognormal process.

Overall, this work presents a data-driven Lagrangian model to accurately reproduce
all the essential characteristics of VG dynamics in turbulent flows for a broad range of
Reynolds numbers with minimal computational effort. The novelty of our model lies
in two primary features of the proposed approach. (1) Inspired by Kolmogorov’s 1962
self-similarity hypothesis, we separate the universal features of VG tensor (bij) from its
intermittent magnitude (A) for model development. (2) We determine the smallest set
of independent components of bij subject to kinematic and normalisation conditions.
A data-driven approach is used to model only these irreducible components which arise
from non-local physics.

The remaining sections of the paper are arranged as follows. In § 2 we discuss
the properties and present the governing differential equations for the normalised VG
tensor and VG magnitude in an incompressible turbulent flow. The entire modelling
methodology is described in § 3, including the philosophy of the modelling approach
and its generalisability, formulation of the model equations and closures, and a complete
model summary. The numerical procedure of the simulations performed using the model
is outlined in § 4. Finally the results of the model are compared with that of DNS and
previous models in § 5 and the conclusions are presented in § 6.

2. Governing equations

The Navier–Stokes and continuity equations for velocity fluctuations, ui, in an
incompressible turbulent flow can be written as

∂ui

∂t
+ uk

∂ui

∂xk
= − ∂p

∂xi
+ ν∇2ui + fi, (2.1a)

∂ui

∂xi
= 0, (2.1b)
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where p is the kinematic pressure fluctuation, ν is the kinematic viscosity and fi represents
the large-scale forcing. Pressure and viscous effects are the key non-local processes in
turbulence. Forcing, which causes the energy production at large scales to compensate for
the viscous dissipation at small scales, can be expressed in the following general form for
most commonly encountered flows with a mean flow:

fi = −〈Uk〉 ∂ui

∂xk
− uk

∂〈Ui〉
∂xk

+ ∂

∂xk
〈uiuk〉, (2.2)

where Ui = 〈Ui〉 + ui is the total velocity and 〈 〉 indicates ensemble or spatial averaging in
homogeneous directions. The effective forcing fi varies from one turbulent flow to another
depending on the mean flow field as well as the inhomogeneity and anisotropic nature
of the flow geometry (Rogallo 1981). In homogeneous isotropic turbulence with no mean
flow, forcing fi simply entails injecting energy at the lowest wavenumbers (Eswaran &
Pope 1988; Donzis & Yeung 2010).

From (2.1), the governing equation for the VG tensor can be derived as follows:

dAij

dt
= −AikAkj + 1

3
AmkAkmδij + Hij + Tij + Gij, (2.3a)

where Hij = − ∂2p
∂xi∂xj

+ ∂2p
∂xk∂xk

δij

3
, Tij = ν∇2Aij, Gij = ∂fi

∂xj
− ∂fk

∂xk

δij

3
. (2.3b)

Here, d/dt = ∂/∂t + uk∂/∂xk is the material or substantial derivative. The first two terms
on the right-hand side of (2.3a) represent the nonlinear effects, including both inertial and
isotropic pressure, but they are local in space. The tensor Hij is the anisotropic pressure
Hessian tensor, Tij is the viscous Laplacian tensor, and Gij is the anisotropic forcing
tensor. The Hij and Tij tensors represent the non-local effects in VG dynamics and Gij
depends on the nature of the forcing. The forcing term represents the influence of mean
flow and its anisotropy on the evolution of fluctuating VGs. Such effects are discussed in
greater detail in our previous works (Girimaji & Speziale 1995; Das & Girimaji 2022).
The general modelling framework proposed in this work can be applied to different types
of such forcing. In the current study, we demonstrate the modelling of isotropically forced
turbulence.

2.1. Normalised VG tensor
The evolution equation for bij in the flow frame of reference, derived from (2.3a), is

dbij

dt′
= −bikbkj + 1

3
bkmbmkδij + bijbmkbknbmn + (hij − bijbklhkl)

+ (τij − bijbklτkl) + (gij − bijbklgkl), (2.4)

where dt′ = A dt is the time increment normalised by local VG magnitude, and the
timescale t′ is referred to as the local timescale. Here,

hij = Hij

A2 = 1
A2

(
− ∂2p

∂xi∂xj
+ ∂2p

∂xk∂xk

δij

3

)
, τij = Tij

A2 = ν

A2 ∇2Aij,

gij = Gij

A2 = 1
A2

(
∂fi
∂xj

− ∂fk
∂xk

δij

3

)
,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (2.5)
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are the normalised anisotropic pressure Hessian, viscous Laplacian and anisotropic forcing
tensors, respectively. In the bij (2.4), the first three terms on the right-hand side are closed
and represent the nonlinear (N), inertial and isotropic pressure Hessian, effects. The next
three terms constitute the non-local pressure (P), viscous (V) and forcing (F) effects on
bij evolution that require closure. Consideration of the bij evolution in local timescale is
not only consistent with Kolmogorov’s refined similarity hypothesis but also leads to the
added practical advantage that all the terms on the right-hand side of (2.4) are normalised
tensors. Although not necessarily bounded, these normalised tensors (hij, τij, gij) are
well-behaved and considerably more amenable to modelling than the unnormalised tensors
in the Aij equation, as shown in Das & Girimaji (2022). They further exhibit a nearly
universal behaviour in the phase plane of bij invariants across different turbulent flows
of different Reynolds numbers (Das & Girimaji 2020, 2022). Therefore, the Lagrangian
evolution of bij can be modelled in the local timescale t′ without any explicit dependence
on the VG magnitude. The magnitude dependence comes in only when determining the bij
evolution in real time.

In order to most effectively employ data-driven techniques, we now establish the
minimum number of free parameters required to completely describe the bij tensor.
A detailed derivation can be found in Das & Girimaji (2020); only the main outcomes
are summarised in the following. Without any loss of generality, we can express bij in the
principal (eigen-)reference frame of normalised strain-rate tensor, sij, as follows:

b̃ =
⎡⎣a1 0 0

0 a2 0
0 0 a3

⎤⎦ +
⎡⎣ 0 −ω̃3 ω̃2

ω̃3 0 −ω̃1
−ω̃2 ω̃1 0

⎤⎦ where a1 ≥ a2 ≥ a3. (2.6)

Here, (̃ ) represents vectors and tensors in the principal reference frame of sij and ai are
the eigenvalues of sij in decreasing order, such that a1(> 0) is the most expansive strain
rate, a3(< 0) is the most compressive strain rate and the intermediate strain rate a2 can
be positive, negative or zero, in incompressible flows. Further, ω̃i are the components of
the normalised vorticity vector along the strain-rate eigen-directions. Since the signs of
the strain-rate eigenvectors are not uniquely determined by the eigendecomposition, we
consider the eigen-directions that provide all vorticity components to be of the same sign
(either all positive or all negative).

Applying the constraints of incompressibility (b̃ii = 0) and normalisation (b̃ijb̃ij = 1),
the b̃ij state space can be reduced to a four-dimensional space of only four independent
variables (shape-parameters): q, r, a2 and ω̃2. Here, q and r are the second and third
invariants of the tensor, respectively:

q ≡ −1
2 bijbji = −1

2 b̃ijb̃ji, r ≡ −1
3 bijbjkbki = −1

3 b̃ijb̃jkb̃ki. (2.7a,b)

All the remaining elements of b̃ij can be determined uniquely once these four variables are
known, as follows:

a1 = 1
2
(−a2 +

√
1 − 3a2

2 − 2q), a3 = 1
2
(−a2 −

√
1 − 3a2

2 − 2q), (2.8a)

ω̃1 = ± 1

2
√

2

√√√√√(1 + 2q − 4ω̃2
2) − 8a3

2 + 8r − a2(3 − 2q − 12ω̃2
2)√

1 − 3a2
2 − 2q

, (2.8b)
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ω̃3 = ± 1

2
√

2

√√√√√(1 + 2q − 4ω̃2
2) + 8a3

2 + 8r − a2(3 − 2q − 12ω̃2
2)√

1 − 3a2
2 − 2q

. (2.8c)

Thus, q, r, a2 and ω̃2 completely define the tensor b̃ij and thence the geometric shape of
the local flow streamlines. These four variables are also mathematically bounded:

q ∈
[
−1

2
,

1
2

]
, r ∈

[
−1 + q

3

(
1 − 2q

3

)1/2

,
1 + q

3

(
1 − 2q

3

)1/2
]

, (2.9a,b)

a2 ∈
[
−

√
1 − 2q

12
,

√
1 − 2q

12

]
, and ω̃2 ∈

[
−

√
q
2

+ 1
4
,

√
q
2

+ 1
4

]
. (2.10a,b)

2.2. VG magnitude
The VG magnitude or pseudodissipation rate has been shown to have a nearly lognormal
distribution (Kolmogorov 1962; Oboukhov 1962; Monin & Yaglom 1975; Yeung & Pope
1989). For this reason, we consider the dynamics of the logarithm of VG magnitude:

θ ≡ ln A, (2.11)

which is expected to exhibit a near-normal distribution in a turbulent flow field. We
introduce a scalar variable, θ∗, referred to as the standardised log VG magnitude:

θ∗ ≡ θ − 〈θ〉
σθ

where σθ =
√

〈(θ − 〈θ〉)2〉, (2.12)

which exhibits an approximate standard normal distribution, N (0, 1), in a variety of
turbulent flows (Das & Girimaji 2022). The evolution of θ∗, derived from (2.3a) is given
by

dθ∗

dt∗
= 1

σθ 〈A〉 (−bikbkjAij + hijAij + τijAij + gijAij), (2.13)

where dt∗ = 〈A〉 dt. Here, t∗ is referred to as the global timescale and it represents the
timescale normalised by the global mean of VG magnitude. This normalisation is, in

essence, similar to normalisation by the Kolmogorov timescale (τη ∼ 1/〈A2〉1/2) and is
found to be more appropriate for examining VG magnitude than the local timescale used
for bij. The four terms on the right-hand side of the above equation represent the nonlinear,
pressure, viscous and forcing effects, respectively, on the VG magnitude evolution. The
unclosed pressure, viscosity and forcing tensors in this equation are identical to those in
bij (2.4). Hence, no new closure terms are encountered in the VG magnitude equation once
the bij equation is closed.

3. Model formulation

Instead of considering the evolution of Aij directly, this work isolates the modelling of
the normalised VG tensor (bij) from that of the magnitude (A) as shown in the schematic
of figure 1. In this section, we first discuss the universal features of VG dynamics that
should be captured and can be used to our advantage in the modelling approach. This
is followed by the main modelling strategies and a detailed presentation of the complete
model. Finally, all model equations and parameters are summarised.
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Turbulent flow
with large enough scale separation

Large scales
Flow dependent

VG geometry
bij

Nearly universal

VG magnitude
A ≡ AklAkl

Intermittent

Small scales
VG tensor Aij

Less flow dependent

but intermittent

Figure 1. Flowchart to explain the behaviour of VG tensor and its constituents in turbulence.

3.1. Generalisability of modelling VG dynamics
As outlined in figure 1, the large scales of motion in a turbulent flow depend upon the
flow geometry and driving mechanism of the flow. It is therefore difficult to develop
generalisable models for the large scales that will apply to different turbulent flows. Models
of small-scale dynamics are likely to be more generalisable in comparison since the
small scales in turbulent flows (with a large enough scale separation) tend to be isotropic
and universal. The notion of small-scale universality, which began with the eminent
work of Kolmogorov (1941), has been refined significantly over the years to account for
the intermittent nature of small-scale turbulence (Kolmogorov 1962; Oboukhov 1962;
Sreenivasan & Antonia 1997; Schumacher et al. 2014). The VG tensor, Aij, governs
these small-scale motions and exhibits certain universal features across different types
of turbulent flows (Sreenivasan 1998; Schumacher et al. 2014). However, Aij also shows
a strong dependence on Reynolds number (Donzis, Yeung & Sreenivasan 2008; Yeung,
Sreenivasan & Pope 2018), particularly due to its multifractal and intermittent nature that
causes its higher-order moments to scale with Reynolds number (Yakhot & Donzis 2017).

Here, we separate Aij into bij and A, such that the tensor bij is nearly universal across
different turbulent flows while the scalar A reflects all the Reynolds number dependence.
The universality of bij is evident in its probability density function (p.d.f.) and higher-order
moments (Das & Girimaji 2019) as well as in the mean evolution of its invariants (Das &
Girimaji 2020, 2022), that are insensitive to the variation of Taylor Reynolds number (Reλ)
across different turbulent flows. Therefore, bij evolution modelled using DNS data of a
turbulent flow at a given Reynolds number may be considered universal (up to a modelling
approximation) and can be applied to reproduce the bij-dynamics of different turbulent
flows at different Reynolds numbers.

The magnitude A, on the other hand, exhibits a strong dependence on the Reynolds
number of the flow. The mean and variance of its logarithm (θ = ln A), plotted in figure 2,
clearly increase with increasing Reλ. Preliminary results suggest that 〈θ〉 and σθ follow
approximate scaling laws with Reλ, as indicated in the figures. The scaling law obtained
for σ 2

θ is in close agreement with the Reλ-scaling of the logarithm of pseudodissipation
rate reported by Yeung & Pope (1989). In the variation of 〈θ〉, one of the Reλ shows
deviation from monotonic increase and has been excluded from the fit. Further advanced
simulations and analyses are required to develop universal scaling laws for 〈θ〉 and σ 2

θ ,
and the scaling laws shown here are simply for representation. In fact, these two quantities
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4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0
1 2 5 10 20 50 100 200 5001000

〈θ〉 = –0.39 + 0.67 In Reλ

〈θ〉
σθ

2 = –0.074 + 0.07 In Reλ
σθ

2

(a) (b)

Figure 2. Statistics of θ from DNS data sets of forced isotropic turbulent flows at different Reλ: (a) global
mean 〈θ〉 as a function of Reλ (in natural log scale); dashed line represents a linear least-squares fit of the data
(〈θ〉 = −0.39 + 0.67 ln Reλ); and (b) variance σ 2

θ = 〈θ2 − 〈θ〉2〉 as a function of Reλ (in natural log scale);
dashed line represents a linear least-squares fit of the data (σ 2

θ = −0.074 + 0.07 ln Reλ).

are input parameters in our model for VG magnitude (§ 3.4), constituting the characteristic
Reynolds number dependence of VGs.

The evident advantage of this modelling framework is that the nine-component tensorial
variable bij is nearly universal, and one can develop a potentially generalisable bij-model
applicable to different types of turbulent flows at wide-ranging Reλ. Only the scalar
θ -model includes Reλ-dependent parameters, which can be represented by scaling laws
that are likely generalisable across different types of turbulent flows.

3.2. Modelling strategy
The model consists of the following parts.

(i) bij-model: The bij dynamics in a local timescale (2.4) is a function of bij and other
normalised non-local tensors, and it does not explicitly depend on magnitude A.
Therefore, we formulate a stochastic model for the Lagrangian evolution of bij in the
local timescale (t′) without any explicit dependence on θ∗.

(ii) Closure of non-local processes: As previously inferred from DNS data (Das &
Girimaji 2020, 2022), the conditional statistics of the normalised non-local tensors
can be reasonably approximated as exclusive functions of bij. Thus, we develop DNS
data-driven closure models (generalisable at high Reλ) for capturing the conditional
mean non-local effects of normalised pressure and viscous processes within the
four-dimensional bounded state-space of b̃ij. The fluctuations of these nonlocal
effects as well as the effect of large-scale forcing, are modelled in the stochastic
diffusion term using moment constraints.

(iii) θ∗-model: We model the evolution of VG magnitude in global timescale (t∗) within
the framework of the OU process (Pope & Chen 1990) in three different ways. The
first model is a simple OU model for θ∗ decoupled from bij dynamics. The second
and third models are modified OU models with bij-dependence incorporated into the
θ∗ evolution using a DNS data-based diffusion process.

(iv) Timescale: In addition, an ordinary differential equation provides the relation
between the local and the global timescales.
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Finally, the bij and θ∗ models are combined to form an integrated system of model
equations representing the Lagrangian evolution of Aij in global time.

3.3. Model for normalised VG tensor
The Lagrangian dynamics of normalised VG tensor, bij, is modelled here as a diffusion
process (Karlin & Taylor 1981), a continuous-time Markov process, represented by a
stochastic differential equation (SDE). The SDE for Aij commonly used in previously
developed models (Girimaji & Pope 1990; Chevillard & Meneveau 2006; Chevillard et al.
2008; Johnson & Meneveau 2016a) is of the form

dAij = Mij dt + Kijkl dWkl, (3.1)

where Wij is a tensor-valued isotropic Wiener process such that

〈dWij〉 = 0 and 〈dWij dWkl〉 = δikδjl dt. (3.2)

The Mij tensor represents the drift coefficient tensor and Kijkl constitutes the diffusion
coefficient tensor of the model. Taking the trace of (3.1), one can show that Mii = Kiikl = 0
satisfies the incompressibility condition Aii = 0. Starting from the Aij-SDE (3.1) and using
the properties of an Itô process (Kloeden & Platen 1992), one can derive the following SDE
for bij in local timescale t′ (see Appendix B for derivation):

dbij = (μij + γij) dt′ + Dijkl dW ′
kl, (3.3)

where

μij = Mij

A2 − bijbkl
Mkl

A2 , Dijkl = Kijkl

A3/2 − bijbpq
Kpqkl

A3/2 ,

γij = −1
2

bij
Kpqkl

A3/2
Kpqkl

A3/2 − bpq
Kpqkl

A3/2
Kijkl

A3/2 + 3
2

bijbpq
Kpqkl

A3/2 bmn
Kmnkl

A3/2 ,

dt′ = A dt, dW ′
ij = A1/2 dWij,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(3.4)

and the Wiener process satisfies

〈dW ′
ij〉 = 0 and 〈dW ′

ij dW ′
kl〉 = δikδjl dt′. (3.5a,b)

It is important to note that all the drift and diffusion coefficient tensors of this system
of SDEs are dimensionless. The drift tensor of the bij equation has two parts due to
the normalisation: (i) μij is obtained from the drift tensor of the Aij equation, Mij; and
(ii) γij is obtained from the diffusion tensor of the Aij equation, Kijkl. The diffusion tensor
of the bij equation, Dijkl, is also obtained from Kijkl. The tensor γij relates the drift and
diffusion processes in the dynamics such that despite the random stochastic forcing term,
bij remains mathematically bounded. It can be proved that any system of SDEs for bij, that
complies with the above forms of drift and diffusion terms ((3.3) and (3.4)), satisfies the
incompressibility constraint:

dbii = 0. (3.6)

Equations (3.3) and (3.4) further satisfy the mathematical constraint of normalisation:

d(bijbij) = 0, (3.7)

which ensures that the Frobenius norm of the tensor b is equal to unity at all times. The
proofs are presented in Appendices C and D.
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Equation (3.3) leads to a Fokker Planck equation (Pope 1985) for the joint p.d.f. F̂(b) of
the tensor bij:

dF̂

dt′
= − ∂

∂bij
[F̂(μij + γij)] + 1

2
∂2

∂bij∂bpq
(F̂DijklDpqkl). (3.8)

Now, the exact differential equation for the joint p.d.f. of bij, F(b), in a turbulent flow can
be derived from the bij governing equation (2.4) as

dF

dt′
= − ∂

∂bij
[F(−bikbkj + 1

3 bkmbmkδij + bijbmkbknbmn + 〈hij − bijbklhkl | b〉

+ 〈τij − bijbklτkl | b〉 + 〈gij − bijbklgkl | b〉)]. (3.9)

The drift and diffusion coefficient tensors need to be modelled in a way that F̂(b) ≈ F(b).
In data-driven modelling, F(b) and its moments are taken from high-fidelity DNS data.
However, requiring the p.d.f.s to be identical is very challenging. In this work, we constrain
the equations of bij-moments up to third order to obtain the parameters of diffusion
coefficient tensor along the lines of Girimaji & Pope (1990). This modelled diffusion
process is, therefore, consistent up to order three, although the numerical results of the
model show a reasonable agreement of moments of order even higher than three.

3.3.1. Drift coefficient tensor
Comparing the terms of (3.8) and (3.9), the inertial and isotropic pressure Hessian terms
are exact, and considering that the role of Dijkl is to model the large-scale forcing effect
and that of γij is to maintain the unit Frobenius norm of bij, the drift coefficient tensor μij
takes the form:

μij = −bikbkj + 1
3 bkmbmkδij + bijbmkbknbmn + 〈hij − bijbklhkl | b〉 + 〈τij − bijbklτkl | b〉.

(3.10)

The term μij represents the dynamics due to inertial and isotropic pressure Hessian
contributions as well as the conditional mean contributions of the anisotropic pressure
Hessian and viscous effects.

The conditional mean normalised anisotropic pressure Hessian and viscous Laplacian
tensors, 〈hij | b〉 and 〈τij | b〉, require closure modelling. As discussed in § 2.1, the tensor b̃
in the principal reference frame of the strain-rate tensor can be expressed as a function of
only four bounded variables. Therefore, in order to take advantage of this four-dimensional
bounded state space of b̃, the conditional averaging of the normalised pressure Hessian and
viscous Laplacian tensors is performed in the sij principal reference frame. For a rotation
tensor, Q, with columns constituted by the right eigenvectors of s, the required tensors in
the principal reference frame are

b̃ij = QkibklQlj, h̃ij = QkihklQlj, τ̃ij = QkiτklQlj. (3.11a–c)

Then, the conditional mean pressure Hessian and viscous Laplacian tensors in the flow
reference frame can be recovered as follows:

〈hij | b〉 = 〈Qikh̃klQjl | b〉 = Qik〈h̃kl | b̃〉Qjl

〈τij | b〉 = 〈Qikτ̃klQjl | b〉 = Qik〈τ̃kl | b̃〉Qjl

}
, (3.12)

since Q is a function of b. Therefore, the conditional mean pressure Hessian and viscous
Laplacian tensors in the flow reference frame can be obtained if the conditional means of
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Data-driven model for Lagrangian evolution

pressure Hessian and viscous Laplacian tensors in the principal frame are known and the
local strain-rate eigenvectors are known.

As shown in § 2.1, in the principal reference frame, b̃ij can be uniquely defined by a set
of only four bounded variables: q, r, a2 and ω̃2. Therefore, the conditional mean pressure
Hessian and viscous Laplacian tensors in the principal frame can be modelled as a function
of only four bounded variables, as follows:

〈h̃ij | b̃〉 = 〈h̃ij | q, r, a2, ω̃2〉, 〈τ̃ij | b̃〉 = 〈τ̃ij | q, r, a2, ω̃2〉. (3.13a,b)

The goal is to develop a data-driven model for the above tensors in terms of a
four-dimensional input. Recent studies (Parashar, Srinivasan & Sinha 2020; Tian et al.
2021; Buaria & Sreenivasan 2023) have used tensor-basis neural network to model the
unnormalised pressure Hessian (Hij) and viscous Laplacian (Tij) tensors in the Aij-equation
as a function of Aij. Since Aij constitutes an unbounded space and the behaviour of the
tensors Hij and Tij is not necessarily invariant across turbulent flows of different Reynolds
numbers, network-based modelling becomes essential. However, in our case (q, r, a2, ω̃2)

form a bounded state space and the conditional mean dynamics of h̃ij and τ̃ij in the bounded
b̃ij space is nearly unaltered with Reynolds number variation for a broad range of Reλ (Das
& Girimaji 2020, 2022). Therefore, the simpler and more accurate data-driven approach
of direct tabulation based on DNS data is used in this work, which can be summarised as
follows.

(i) The finite space of q, r, a2 and ω̃2, as given in (2.10a,b), is discretised into
(60, 60, 30, 30) uniform bins. This discretisation strikes the appropriate balance
between sampling accuracy in the bins and the desired details of nonlocal flow
physics to be captured. Other discretisations are tested to show convergence to this
combination for the most accurate results.

(ii) The conditional expectations of the tensors, 〈h̃ij | q, r, a2, ω̃2〉 and 〈τ̃ij | q, r, a2, ω̃2〉,
are computed in this discrete phase-space, using DNS data set of forced isotropic
turbulence (see Appendix G for details of the data set). Note that lookup tables for
only one Reλ is required to model the mean non-local dynamics for turbulent flows
of different Reλ. Further, this data-driven closure is rotationally invariant since the
input and output variables do not depend on the flow reference frame.

(iii) This lookup table can then be accessed by an inexpensive array-indexing operation,
to determine the conditional mean pressure and viscous dynamics in the principal
frame for a given (q, r, a2, ω̃2) at any point in the flow field or following a fluid
particle. This is then transformed into the flow reference frame (3.12) based on the
local eigen-directions of strain-rate tensor, to be used in μij for computations.

This completes the modelling of the mean drift tensor μij as a function of the local
bij. It is straightforward to show that our data-driven model for μij is Galilean invariant
(Appendix E).

Our previous work has shown the universality of bij statistics and associated nonlocal
processes across different types of turbulent flows (Das & Girimaji 2022). Therefore,
here we restrict ourselves to forced isotropic turbulence. We use DNS data of isotropic
turbulence at different Reynolds numbers (Appendix G) to illustrate the universality of
different modelling components. The bij model closures (lookup tables) developed using
the Reλ = 427 data are used at all Reynolds numbers.
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3.3.2. Diffusion coefficient tensor
As discussed at the beginning of this section, the interrelationship between the tensors
Dijkl and γij is important in guaranteeing that the mathematical and physical constraints
of bij are satisfied. This relationship holds if we use their functional forms, as given in
(3.4), in terms of Kijkl of the Aij SDE. Given the small-scale universality of turbulence
at high Reynolds numbers Reλ > 200 (Das & Girimaji 2019, 2022), here we model
the velocity-gradient dynamics for isotropically forced high-Reynolds-number turbulence.
Therefore, we assume a general isotropic form of the fourth-order diffusion coefficient
tensor, Kijkl, of the Aij SDE following previous models (Girimaji & Pope 1990; Chevillard
et al. 2008; Johnson & Meneveau 2016a):

Kijkl = A3/2(c1δijδkl + c2δikδjl + c3δilδjk), (3.14)

where c1, c2, c3 are constant dimensionless diffusion coefficients of the model. Only two
of these three coefficients are independent subject to the incompressibility condition:

Kiikl = A3/2(c1δiiδkl + c2δikδil + c3δilδik) = (3c1 + c2 + c3)δkl = 0

=⇒ c1 = −c2 + c3

3

⎫⎬⎭ . (3.15)

From (3.4), (3.14) and (3.15), the diffusion coefficient tensor of the bij equation is

Dijkl = c2(−1
3δijδkl + δikδjl − bijbkl) + c3(−1

3δijδkl + δilδjk − bijblk), (3.16)

and
γij = −(7

2 (c2
2 + c2

3) + (2 + 6q)c2c3)bij − 2c2c3bji. (3.17)

To determine the constant coefficients, c2 and c3, we use a moments constraint method
similar to Girimaji & Pope (1990). In this method, the equations of second- and third-order
moments of bij are constrained to the values obtained from DNS. First, the SDEs for the
second (q) and third (r) invariants, as defined in (2.7a,b), are derived from the bij-SDE
(3.3) using Itô’s lemma (A3):

dq = −(bijμji + bijγji + 1
2 DijklDjikl) dt′ − bijDjimn dW ′

mn

dr = −(bikbkjμji + bikbkjγji + bijDjkmnDkimn) dt′ − bijbjkDkimn dW ′
mn

}
. (3.18)

Taking the mean of the above equations and substituting the expressions for Dijkl and γij
from (3.16) and (3.17), yields the following differential equations of the moments 〈q〉 and
〈r〉:

d〈q〉
dt′

= −〈bijμji〉 − 〈bijγji〉 − 1
2
〈DijklDjikl〉

= −〈bijμji〉 − (c2
2 + c2

3)(8〈q〉 + 1) − c2c3(16〈q2〉 + 4〈q〉 + 4), (3.19)

d〈r〉
dt′

= −〈bikbkjμji〉 − 〈bikbkjγji〉 − 〈bijDjkmnDkimn〉

= −〈bikbkjμji〉 − (c2
2 + c2

3)

(
27
2

〈r〉
)

− c2c3(6〈r〉 + 30〈qr〉 − 6〈bijbjkbik〉). (3.20)

To model a statistically stationary solution of the VGs, the rate-of-change of moments
must be driven to zero while ensuring that the moment values converge to that of DNS.
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Data-driven model for Lagrangian evolution

For this, we equate the right-hand side to the negative of the error term:

d〈q〉
dt′

= −〈bijμji〉 − (c2
2 + c2

3)(8〈q〉 + 1) − c2c3(16〈q2〉 + 4〈q〉 + 4) = −R(〈q〉 − q̄),

(3.21)

d〈r〉
dt′

= −〈bikbkjμji〉 − (c2
2 + c2

3)

(
27
2

〈r〉
)

− c2c3(6〈r〉 + 30〈qr〉 − 6〈bijbjkbik〉) = −R(〈r〉 − r̄),

(3.22)

where q̄, r̄ are the global mean of q, r obtained from DNS data. Here, R represents the rate
of convergence of these moments and is set to unity. An a priori simulation of the bij model
equations is run in the normalised timescale t′, with an ensemble of 40 000 particles. At
each time step, the above system of nonlinear equations is solved using Newton’s method
to determine the values of the coefficients c2, c3. In this a priori run, as the model’s
moments, 〈q〉 and 〈r〉, converge very close to the DNS values of q̄ and r̄, the coefficients
converge to the following values:

c2 = 0.009877, c2 = −0.06402. (3.23a,b)

These optimised diffusion coefficient values are used in the stochastic model for bij and
are insensitive to Reynolds number variation at high enough Reλ.

3.4. Model for VG magnitude
The Lagrangian evolution of the scalar θ∗ (2.12) is modelled using a modified
lognormal approach. The magnitude A has a nearly lognormal probability distribution
and exponential decay of autocorrelation in time (Kolmogorov 1962; Oboukhov 1962;
Yeung & Pope 1989). The exponentiated OU process is a statistically stationary process
that satisfies both these properties (Uhlenbeck & Ornstein 1930; Pope & Chen 1990) and is
therefore ideal for modelling θ∗. Although it has been pointed out that pseudodissipation
rate (∼ A2) cannot be precisely lognormal in the context of multifractal formalism
(Mandelbrot 1974; Meneveau & Sreenivasan 1991), the OU process models the overall
dynamics of A quite accurately (Girimaji & Pope 1990; Pope & Chen 1990). In fact, a
recent analysis of Lagrangian trajectories in high-Reynolds-number turbulence (Huang
& Schmitt 2014) has shown evidence that the autocorrelation function of A is consistent
with both the exponential decay prescribed by the OU process as well as the logarithmic
decay suggested by the multifractal framework, and the two are nearly indistinguishable
at such high Reynolds numbers (Pereira et al. 2018). Since the focus of this work is to
accurately reproduce the overall Lagrangian dynamics of the VGs in turbulence, we model
the VG magnitude as a Reynolds-number-dependent modified lognormal process, without
explicitly accounting for multifractal behaviour.

The OU process is a stationary continuous Gaussian Markov process that is often used
in modelling systems of finance, mathematics and physical and biological sciences (Pope
& Chen 1990; Klebaner 2012). It further shows the property of mean reversion. The SDE
for a general OU process θ∗ evolving in time t∗ is given by (Girimaji & Pope 1990)

dθ∗ = −α(θ∗ − 〈θ∗〉) dt∗ + β dW∗, (3.24)

where α, β > 0 are parameters of the model, t∗ = 〈A〉t is the non-dimensional global
timescale and dW∗ is the increment of a Wiener process or a Gaussian random variable
with zero mean and variance dt∗. The parameter α represents the rate of mean reversion,
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and without loss of generality it is set to unity since the model propagates in normalised
timescale t∗. The expected value 〈θ∗〉 = 0, by construction, in DNS data. Therefore, the
general form of θ∗-SDE used in this work is

dθ∗ = −θ∗ dt∗ + β dW∗. (3.25)

The diffusion coefficient, β, is modelled in three different ways as described in the
following subsections.

3.4.1. Model 1: simple OU process
Here, we disregard the dependence of θ∗ on bij and consider the simple OU dynamics that
satisfies the global mean and global variance of θ∗. In this case, the diffusion coefficient β

is taken to be a constant value, which is calculated as follows. The equation for the global
mean is obtained from (3.25),

d〈θ∗〉
dt∗

= −〈θ∗〉. (3.26)

Thus, the model maintains a stationary mean value of θ∗, i.e. d〈θ∗〉/dt∗ = 0, once the
solution is driven to zero mean (〈θ∗〉 = 0) by the mean-reversion property. Next, the
equation for the global variance is obtained from (3.25) using Itô’s product rule,

d〈θ∗2〉
dt∗

= −2〈θ∗2〉 + β2. (3.27)

For a statistically stationary solution, we must have

d〈θ∗2〉
dt∗

= 0 =⇒ β =
√

2〈θ∗2〉. (3.28)

Therefore, the final form of the θ∗-SDE for Model 1 is given by

dθ∗ = −θ∗ dt∗ +
√

2〈θ∗2〉 dW∗. (3.29)

Here, the value of the variance 〈θ∗2〉 = 1 by definition.

3.4.2. Model 2: modified OU process
Next, we want to ensure that the value of the variance of θ∗ conditioned on the local
streamline geometry (q, r) is satisfied. This conditional variance, 〈(θ∗ − 〈θ∗ | q, r〉)2 |
q, r〉, is plotted in figure 3 for DNS data of forced isotropic turbulence at different Reynolds
numbers. It is evident that the conditional variance of θ∗ shows a clear dependence on
q and r, and is nearly invariant with changing Reλ. Therefore, we modify the diffusion
coefficient as

β = β(q, r), (3.30)

to account for the correct conditional variance of θ∗ for a given q–r value. The equation
for the conditional variance can be derived from (3.25) as

d
dt∗

〈(θ∗ − 〈θ∗ | q, r〉)2 | q, r〉 = −2〈θ∗2 | q, r〉 + 〈θ∗ | q, r〉2 + (β(q, r))2. (3.31)

The conditional variance remains stationary only if
d

dt∗
〈(θ∗ − 〈θ∗ | q, r〉)2 | q, r〉 = 0 =⇒ β(q, r) =

√
2(〈θ∗2 | q, r〉 − 〈θ∗ | q, r〉2).

(3.32)
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Figure 3. Conditional variance of θ∗ conditioned on q–r, i.e. 〈(θ∗ − 〈θ∗ | q, r〉)2 | q, r〉, for isotropic
turbulent flows of Taylor Reynolds numbers: (a) Reλ = 225; (b) Reλ = 385; (c) Reλ = 427; and
(d) Reλ = 588 .

Therefore, the final SDE of θ∗ for Model 2 is given by

dθ∗ = −θ∗ dt∗ +
√

2(〈θ∗2 | q, r〉 − 〈θ∗ | q, r〉2) dW∗. (3.33)

Here, the conditional variance values are obtained from DNS data of one Reλ by
discretising the q, r space into 30 × 30 bins. The same conditional variance table is
applicable when modelling turbulent flows of different Reynolds numbers, as evident from
figure 3. This θ∗-model is weakly coupled with the bij dynamics since it depends on q, r.

3.4.3. Model 3: consistent modified OU process
Model 1 ensures that the constant diffusion coefficient captures the accurate global
variance of θ∗, whereas Model 2 enforces the accurate modelling of conditional variance
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of θ∗ for a given q, r. Finally, in Model 3 we propose an adjustment to Model 2 such that
both the conditional and global variances are satisfied. For this, we propose to shift the
conditional-variance-based diffusion coefficient of Model 2 by a constant value, β0, as
follows:

dθ∗ = −θ∗ dt∗ + (

√
2(〈θ∗2 | q, r〉 − 〈θ∗ | q, r〉2) + β0) dW∗. (3.34)

Here, the value of β0 is calculated based on the solutions of Models 1 and 2. Model 3 also
depends upon bij through its invariants (q, r).

3.5. Model summary
The resulting model for the Lagrangian evolution of the complete VG tensor in a turbulent
flow is described by a system of SDEs for the normalised VG tensor, bij, and a separate
SDE for the standardised VG magnitude, θ∗.

The final system of equations for evolution of bij in local timescale (t′) is given by

dbij = (μij + γij) dt′ + Dijkl dW ′
kl, (3.35)

μij = −bikbkj + 1
3 bkmbmkδij + bijbmkbknbmn + 〈hij | b〉 − bijbkl〈hkl | b〉

+ 〈τij | b〉 − bijbkl〈τkl | b〉, (3.36)

γij = −(7
2 (c2

2 + c2
3) + (2 + 6q)c2c3)bij − 2c2c3bji, (3.37)

Dijkl = c2(−1
3δijδkl + δikδjl − bijbkl) + c3(−1

3δijδkl + δilδjk − bijblk). (3.38)

Here, the diffusion coefficient values are

c2 = 0.009877, c3 = −0.06402. (3.39a,b)

The conditional mean normalised pressure Hessian and viscous Laplacian tensors are
obtained from the data-driven closure in the strain-rate (s) eigen-reference frame as a
function of the current (q, r, a2, ω̃2), followed by a rotation to the flow reference frame
using the local eigenvectors of s:

〈hij | b〉 = Qik〈h̃kl | q, r, a2, ω̃2〉Qjl and 〈τij | b〉 = Qik〈τ̃kl | q, r, a2, ω̃2〉Qjl.

(3.40a,b)

The above coefficient values and the data-driven closure can be applied to model VG
dynamics of incompressible turbulent flows irrespective of the Taylor Reynolds number.

The final SDE for θ∗ in global timescale (t∗ = 〈A〉t) is as follows.

• Model 1:

dθ∗ = −θ∗ dt∗ +
√

2〈θ∗2〉 dW∗. (3.41)

• Model 2:

dθ∗ = −θ∗ dt∗ +
√

2(〈θ∗2 | q, r〉 − 〈θ∗ | q, r〉2) dW∗. (3.42)

• Model 3:

dθ∗ = −θ∗ dt∗ + (

√
2(〈θ∗2 | q, r〉 − 〈θ∗ | q, r〉2) + β0) dW∗. (3.43)

984 A39-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

23
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.235


Data-driven model for Lagrangian evolution

Data-based component Discretisation of state space Reλ dependence

〈h̃ | q, r, a2, ω̃2〉 (60,60,30,30) Reλ-independent
〈τ̃ | q, r, a2, ω̃2〉 (60,60,30,30) Reλ-independent
〈(θ∗ − 〈θ∗ | q, r〉)2 | q, r〉 (30,30) Reλ-independent
〈θ〉 , σθ , 〈A〉 1 Reλ-dependent

Table 1. Components of model based on DNS data.

The diffusion coefficients of Models 2 and 3 are obtained from the tabulated conditional
variance of θ∗ invariant with Reλ (figure 3). From data, the shift factor β0 is found to be
about 0.1 independent of the Reynolds number. The VG magnitude and the VG tensor are
then given by

A = eθ∗σθ+〈θ〉, Aij = Abij. (3.44a,b)

The parameters in the above equation are Reynolds number dependent as shown in figure 2.
For the case of Reλ = 427, the parameter values as determined from the DNS data are

〈θ〉 = 2.7493, σθ = 0.589655, 〈A〉 = 18.64173. (3.45a,b)

One could potentially use scaling laws to determine these parameter values at different
Reynolds numbers. However, developing highly accurate scaling laws requires numerous
expensive DNS simulations, which is outside the scope of this work. Here, we have
directly used the DNS values of these parameters for the different Reynolds number cases
considered, except in the Reλ = 1100 case for which the parameters are determined by
extrapolating the approximate scaling laws (figure 2).

To reconcile between the two different timescales, t′ used for bij evolution and t∗ used
for θ∗ evolution, a simple, closed ordinary differential equation,

dt∗

dt′
= 〈A〉

A
, (3.46)

is solved to determine t∗ for a given t′. No closure is required for this equation. Finally,
the Lagrangian evolution of the VG tensor, Aij, is obtained by multiplying A and bij at
different global time t∗. Overall, the VG model presented here consists of three types of
data-based components that are listed in table 1. The four-dimensional lookup tables for
normalised pressure Hessian and viscous Laplacian tensors and the two-dimensional table
for conditional variance of θ∗ can be used in modelling VG dynamics independent of
Reynolds numbers; only the three scalar parameters of the model which are statistics of
the VG magnitude are Reynolds number dependent and potentially generalisable in the
future with accurate universal scaling laws.

4. Numerical procedure

The numerical solution of the model equations involves numerically propagating the VG
tensor, in terms of the variables bij and θ∗, of an ensemble of 40 000 particles. As the
initial conditions for the simulations, the particles are picked at random from a randomly
generated incompressible isotropic velocity field. The trajectories are advanced for a total
time period of approximately 1200τη following these steps at each update.

984 A39-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

23
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.235


R. Das and S.S. Girimaji

(i) The bij SDEs (3.35) are numerically propagated in the normalised local timescale
t′, using a second-order weak predictor–corrector scheme (see Appendix F) with a
constant time increment dt′. At each step, the conditional mean non-local pressure
and viscous contributions are calculated based on the current (q, r, a2, ω̃2) values,
using the (60, 60, 30, 30) sized lookup tables.

(ii) The θ∗ SDE ((3.41), (3.42) or (3.43)) is advanced using the second-order weak
predictor–corrector numerical scheme (Appendix B) in the global timescale t∗, using
a first-order approximation of the increment dt∗ = 〈A〉 dt′/A for a fixed value of dt′.

(iii) To reconcile between the timescales, the value of the global timescale t∗ is obtained
for every particle at each t′ by numerically solving the ordinary differential equation
(3.46) using the implicit second-order trapezium rule method.

In this manner, the model simulation propagates all particles at a uniform local time
increment of dt′ = 0.01, but the global timescale t∗ varies from one particle to the other
depending upon its current VG magnitude. A particle with a smaller magnitude requires
fewer steps in t′ to reach a certain t∗, than a particle with a larger magnitude. The VG
magnitude θ∗ evolves in global time t∗, which approximately scales with Kolmogorov
timescale. On the other hand, bij evolves in local timescale t′ which varies depending on
the current local value of A. Issues may arise when A < 〈A〉, i.e. when bij evolves faster
than θ∗, and appropriate measures should be taken to ensure that dt′ is suitable to propagate
the bij equations. However, particles with such low A values do not contribute significantly
toward the overall VG statistics. Convergence of the model’s results for dt′ = 0.05, 0.01
and 0.002 suggest that dt′ = 0.01 is sufficient here for accurate statistical modelling.

The incompressibility and normalisation constraints are automatically upheld by the
model, but are only valid up to the order of numerical error. Therefore, to avoid the
accretion of numerical errors over large periods of time, hard constraints of bii = 0 and
‖b‖F = 1 are enforced after every update. The computation time is approximately 1.5–2
hours on a single processor for the model’s simulations to achieve statistically stationary
solutions. The results of the model’s simulations for the three different θ∗-models are
illustrated in the next section as Model 1 if (3.41) is used, Model 2 if (3.42) is used and
Model 3 if (3.43) is used, each along with the bij (3.35). The convergence of all the major
results have been tested for these models by performing the simulations with 40 000 and
100 000 particles.

5. Results and comparison with DNS data

This section presents a statistical analysis of the solutions of the three models and a
comparison with the statistics of the corresponding DNS data and some previous models.
Detailed model results are exhibited for one Reynolds number (Reλ = 427) and compared
with the corresponding DNS data. Specifically, results of VG magnitude are presented in
§ 5.1, of normalised VG tensor in § 5.2 and of the full VG tensor in § 5.3. Then, to exhibit
the broader applicability of the model, the performance is evaluated at other high Reynolds
numbers by comparison with the corresponding DNS data in § 5.4. The time evolution of
the model’s statistics are illustrated as a function of the global normalised time t∗. The
time-converged statistical results are plotted by averaging over multiple time realisations
of the model’s solution, separated by at least 5τη, well after statistical stationarity has been
achieved.
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5.1. VG magnitude
The time evolution of the mean and standard deviation of θ∗ are plotted for all the three
θ∗-model equations in figure 4. Note that the time axes are plotted in logscale to display
the transients clearly. The numerical simulation starts from an initially random field, which
is inconsistent with the DNS values of 〈θ〉 and σθ , and therefore the initial values of 〈θ∗〉
and σ ∗

θ are different from zero and unity, respectively. Over time, the model’s solution
evolves toward the DNS value achieving a statistically stationary state at about t ≈ 7τη

(t∗ ≈ 6), where t is the real time. As expected, the mean is captured equally well by
all three models due to the mean-reversion property of the OU process. The standard
deviation is reproduced accurately by both Models 1 and 3 but not as well by Model 2.
This indicates that imposing θ∗ to satisfy the variance conditioned on local streamline
geometry (q, r) in Model 2 does not necessarily guarantee that the global variance of θ∗ is
automatically satisfied. This justifies the need for the third model to satisfy both the global
and conditional standard deviation values.

The converged p.d.f. of the standardised VG magnitude, θ∗, for all the models and DNS
data are plotted in figure 5. Models 1 and 3 are able to reproduce the θ∗ p.d.f. very well,
whereas Model 2 shows deviation from the desired DNS distribution. The plot in the
log–linear scale confirms that the converged p.d.f.s of Models 1 and 3 agree well with
that of DNS even near the extreme tails of the p.d.f.s. The p.d.f. of VG magnitude (A/〈A〉:
figure 6) is captured equally well by all models near the peak, whereas the high-magnitude
tails are reproduced more accurately by Models 1 and 3 compared with Model 2. In fact,
a closer inspection suggests that Model 3 provides an improved approximation of the tails
over Model 1.

5.2. Normalised VG tensor
The conditional mean trajectories (CMTs) in the phase plane of normalised VG invariants
(q, r) are examined as an a priori test of the data-driven closure used to capture the
conditional mean non-local effects of pressure and viscosity (§ 3.3.1) on the bij-dynamics.
The q–r CMTs are obtained by integrating the vector field of conditional mean velocity
(ṽ) in the q–r plane:

ṽ =
(

ṽq
ṽr

)
=

〈(
dq/dt′
dr/dt′

)∣∣∣∣ q, r
〉

=
〈( −3r + 2qbijbikbkj − hij(bji + 2qbij) − τij(bji + 2qbij)

2
3 q2 + 3rbijbikbkj − hij(bjkbki + 3rbij) − τij(bjkbki + 3rbij)

)∣∣∣∣ q, r
〉
, (5.1)

due to the inertial, pressure and viscous processes in the turbulent flow. Note that the
effect of the large-scale forcing is not included here because it is not accounted for
in the data-driven closure but rather in the stochastic forcing (diffusion) term in the
bij-SDE, which cannot be tested a priori. The q–r CMTs obtained directly from DNS
data are plotted in figure 7(a). As discussed in Das & Girimaji (2022), trajectories
closer to the origin converge towards the attractor near the origin (represents pure-shear
streamlines) whereas trajectories that are outside the separatrix loop are attracted towards
the bottom line attractor (represents pure-strain streamlines). This behaviour is almost
exactly replicated in the q–r CMTs computed using the model’s data-driven closure for the
conditional mean pressure Hessian and viscous Laplacian tensors (figure 7b). The close
resemblance between the two is somewhat expected given the very nature of the lookup
table approach for closure.
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Figure 4. Evolution of θ∗ statistics: (a) mean, 〈θ∗〉 and (b) standard deviation, σθ∗ , of the three models for
Reλ = 427. The DNS statistics are marked by dashed lines. The time axis is in logscale.
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Figure 5. P.d.f. of standardised VG magnitude θ∗ in: (a) linear–linear scale and (b) linear–log scale, for
Reλ = 427. The black solid lines with symbols represent the θ∗-p.d.f. from DNS data.
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Figure 6. P.d.f. of VG magnitude, A/〈A〉, for Reλ = 427. The black solid line with symbols represents the
p.d.f. from DNS data.
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Figure 7. CMTs in the q–r plane due to the inertial, pressure and viscous effects obtained using (a) DNS data
and (b) bij data-driven model. Background contours represent the speed of the trajectory at each point, given
by the magnitude of the conditional mean velocity vector, |ṽ|.

Now, we compare the a posteriori results of the normalised VG tensor of the model
with that of DNS. First, we study the moments of the second (q) and third (r) invariants
of the tensor, which are important quantities that determine the geometric shape of the
local flow streamlines. The evolution of up to fourth-order moments of q and r are plotted
for each model in figure 8. It is first evident that the three models with the same bij-SDE
but different θ∗-SDEs produce nearly identical q, r moments. Thus, it appears that the
variation in the θ∗ model does not have a discernible impact on the bij statistics of the
models. Starting from a randomly generated set of initial conditions, the bij-SDE drives
the solution towards convergence to a statistically stationary state at t ≈ 72τη (t∗ ≈ 60).
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Figure 8. Evolution of q and r statistics in global normalised time t∗. Means: (a) 〈q〉 and (b) 〈r〉. Second-order
moments: (c) 〈q2〉 and (d) 〈r2〉. Third-order moments: (e) 〈q3〉 and ( f ) 〈r3〉. Fourth-order moments: (g) 〈q4〉
and (h) 〈r4〉 for the three models. The dashed lines represent the DNS statistics. The time axis is in log-scale.

Therefore, to converge in bij statistics, our model takes approximately 10 times as long as
it takes to reach statistical stationarity in θ∗. Up to at least fourth-order moments of q and r
produced by the model are reasonably close to the DNS values. Further, the time evolution
of moments of correlation between q and r, i.e. 〈qr〉, and 〈q2r2〉, are plotted in figure 9.
These moments show a slightly larger deviation from the DNS values as compared with
all other moments.

The evolution of q–r joint p.d.f. is plotted at different times (t∗) with ensembles of
only 40 000 particles propagated by Model 3 in figure 10. The solutions of the other two
models show similar trends and are, therefore, not presented separately. The joint p.d.f. of
the initial field (t∗ = 0) is symmetric in r, as expected from a joint Gaussian distribution.
As time progresses, the modelled dynamics cause the p.d.f. to skew towards the right
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Figure 9. Evolution of the q and r moments, (a) 〈qr〉, and (b) 〈q2r2〉, in global normalised time t∗. The
dashed lines represent the DNS statistics. The time axis is in log-scale.

zero-discriminant line. The p.d.f. contours shrink in size and steepen in magnitude as more
and more particles accumulate along the right zero-discriminant line. This finally results
in the characteristic teardrop-like shape, which becomes nearly invariant beyond t∗ ≈ 60.
In this manner, our model reproduces the teardrop-shaped q–r joint p.d.f., one of the key
signatures of small-scale turbulence (Soria et al. 1994; Chong et al. 1998; Wallace 2009;
Das & Girimaji 2020).

The converged q–r joint p.d.f., averaged over multiple time realisations in the stationary
state of the models’ solutions, are plotted in figure 11(a–c) for the three models. It is
clear that all three models produce nearly identical q–r joint p.d.f.s showing excellent
resemblance to that obtained from DNS data (figure 11d). An extremely close comparison
shows that the model results in slightly thinner p.d.f. contours in the strain-dominated
bottom half of the teardrop and is slightly wider in the rotation-dominated top half than
DNS. Overall, the model is able to reproduce the joint p.d.f. of q–r, one of the key features
of VG geometry in turbulence with reasonable accuracy and without any discernible
distortion such as those commonly observed in previously proposed VG models (Johnson
& Meneveau 2016a; Pereira, Garban & Chevillard 2016).

The alignment of vorticity with strain-rate eigen-directions is another key feature of
small-scale turbulence (Tsinober 2009; Wallace 2009). From (2.6) in the eigen-reference
frame of the strain-rate tensor, one can show that the cosine of the angles of alignment
between the vorticity vector and the three strain-rate eigenvectors are given by

cos φi = ω̃i

|ω̃| for i = 1, 2, 3. (5.2)

The angles φ1, φ2 and φ3 represent the angles of alignment of vorticity with the most
expansive, intermediate and most compressive strain-rate eigenvectors, respectively. In
figure 12, the converged p.d.f.s of the absolute values of the cosine of alignment angles
are plotted for Model 3 in comparison with that of DNS. Similar to other bij statistics, the
alignment p.d.f.s produced by the other two models are nearly identical to that of Model
3 and are therefore not displayed separately. It is evident that the model is able to capture
these p.d.f.s with reasonable accuracy. It reproduces the preferential alignment of vorticity
with the intermediate strain-rate eigen-direction (Ashurst et al. 1987; Lüthi, Tsinober
& Kinzelbach 2005; Buaria, Bodenschatz & Pumir 2020) reasonably well. It slightly
over-predicts the tendency of the vorticity vector to be perpendicular to the compressive
strain-rate eigenvector. The alignment with the most expansive strain-rate eigenvector is
also captured well by the model.
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Figure 10. Evolution of the q–r joint p.d.f. during numerical propagation of Model 3 at different global
normalised time: (a) t∗ = 0.0, (b) t∗ = 0.1, (c) t∗ = 0.3, (d) t∗ = 1.0, (e) t∗ = 2.0, ( f ) t∗ = 5.0,
(g) t∗ = 10.0, (h) t∗ = 50.0 and (i) t∗ = 500.0. The dashed lines represent the lines of zero discriminant
(d = q3 + (27/4)r2) = 0.

So far, we have established that in terms of the θ∗ statistics, Model 3 performs the
best showing a slight advantage over Model 1, whereas Model 2 shows the highest
deviation from the DNS statistics. Further, the bij model performs remarkably well in
reproducing the bij statistics accurately, which does not vary with the θ∗ model. This
is somewhat surprising since even though the bij-SDE in local time t′ does not have an
explicit dependence on θ∗, the real-time evolution of bij indirectly depends on the local
VG magnitude A (∼eθ∗

). Yet, the bij statistics of the model appear to be unchanged with
the variation of the θ∗ model equation.

5.3. Full VG tensor
After examining the statistical results of bij and A individually, we now test the models’
performance in capturing the overall VG (Aij) statistics. First, the p.d.f.s of the longitudinal
(A11) and transverse (A12) VGs, normalised by their global root-mean-square values, are
examined for all the three models in figure 13. For comparison, we have also plotted the
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Figure 11. Joint p.d.f.s of q–r obtained from the solutions of (a) Model 1, (b) Model 2, (c) Model 3 and
(d) DNS data at Reλ = 427. The dashed lines represent the zero-discriminant lines.

corresponding p.d.f.s obtained from the DNS data and two of the recent VG models
that have shown improved results compared with the other models in the literature:
(i) recent deformation of Gaussian fields (RDGF) model by Johnson & Meneveau (2016a)
and (ii) physics-informed machine learning (PIML) model by Tian et al. (2021). Our
models are able to reproduce the skewed A11-p.d.f. and the symmetric A12-p.d.f., as
observed in DNS, with reasonable accuracy. They show significant improvement in
capturing both A11 and A12 p.d.f.s compared with the RDGF and PIML models. On
closer observation, it is evident that whereas the p.d.f.s are captured nearly perfectly in
the densely populated part by all three of our models, there are smaller differences near
the tails. Models 1 and 3 predict a slightly heavier-tailed distribution of A11 than DNS,
whereas Model 2 produces a more accurate A11-p.d.f. On the other hand, Model 3 appears
to capture the A12-p.d.f. tails slightly more accurately than the others.

In order to determine the finer differences in the p.d.f.s, we examine the higher-order
moments of the VG magnitude, A, as well as VG components, A11 and A12. These moment
values are compared with that of DNS data and RDGF model of Johnson & Meneveau
(2016a) in table 2. For each moment, the model-produced value closest to DNS is marked
in bold. It is evident that the moments of magnitude A are best captured by Model 3.
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Figure 12. P.d.f.s of absolute values of cosine of angles between vorticity vector and strain-rate eigenvectors
(1, most expansive; 2, intermediate; 3, most compressive). The solid lines are the p.d.f.s obtained from DNS
data at Reλ = 427.
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Figure 13. P.d.f.s of: (a) longitudinal component of VG tensor, A11/

√
〈A2

11〉, and (b) transverse component of

VG tensor, A12/

√
〈A2

12〉, in log–linear scale obtained from the solutions of the three models for Reλ = 427.
The solid line marked with symbols represent the p.d.f.s obtained from DNS data. The dashed and dash-dotted
lines represent the p.d.f.s obtained from previous models RDGF (Johnson & Meneveau 2016a) and PIML (Tian
et al. 2021), respectively.

The skewness, kurtosis and sixth-order moment of the longitudinal component A11 are
reproduced best in Model 2, although Model 3 is not far behind and is better than Model
1. The skewness of the transverse component A12 is correctly captured as zero by all the
models, maintaining a symmetric probability distribution in each case. The kurtosis and
sixth-order moment of A12 are also captured most closely by Model 3. Overall, Model 3
provides the most accurate representation of the probability distributions and moments of
the VG tensor. It is important to note that the values of the higher-order velocity-gradient
moments of the DNS data at the resolution (kmaxη ≈ 1.4) used in the present study and in
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A A11 A12

〈A3〉
〈A2〉3/2

〈A4〉
〈A2〉2

〈A6〉
〈A2〉3

〈A3
11〉

〈A2
11〉3/2

〈A4
11〉

〈A2
11〉2

〈A6
11〉

〈A2
11〉3

〈A3
12〉

〈A2
12〉3/2

〈A4
12〉

〈A2
12〉2

〈A6
12〉

〈A2
12〉3

DNS 1.73 4.30 71.0 −0.59 7.90 259 0.0 12.14 760
Model 1 1.68 4.00 60.5 −0.58 10.2 607 0.0 10.3 511
Model 2 1.58 3.38 39.7 −0.53 8.06 298 0.0 8.89 342
Model 3 1.70 4.14 78.0 −0.55 9.65 507 0.0 11.04 707
RDGF — — — −0.45 4.7 — 0.0 6.8 —

Table 2. Third-, fourth- and sixth-order moments of VG magnitude (A = √
AijAij), longitudinal VG

component (A11), transverse VG component (A12) from DNS data, Model 1, Model 2, Model 3 and RDGF
model of Johnson & Meneveau (2016a) for Reλ = 427. For each moment, the DNS value and the model’s
value closest to DNS are written in bold.

that of Johnson & Meneveau (2016a), may change with increasing resolution, as suggested
by recent works (Yeung et al. 2018; Buaria et al. 2019; Buaria & Pumir 2022). It is
reasonable to expect that the proposed model will capture the appropriate values if trained
on the higher-resolution data sets.

The p.d.f.s of dissipation rate (νSijSij), enstrophy (νWijWij), and pseudodissipation rate
(νAijAij), normalised by their global means, computed from the converged stationary
state solutions of all three models are plotted in figure 14. The p.d.f.s obtained from
DNS data and those available from the RDGF model (Johnson & Meneveau 2016a)
are also illustrated for comparison, along with the p.d.f.s for the initial Gaussian field
used in our model’s simulations. It is interesting to note that starting from this Gaussian
field, the model develops a turbulent flow field solution closely resembling that of DNS
with the characteristic p.d.f. tails at extreme values. It is clear that all three models
reproduce the heavy-tailed probability distributions of both dissipation and enstrophy more
accurately than the RDGF model. Model 2 provides the most accurate representation of
the dissipation p.d.f. whereas Models 1 and 3 over-predict the probability of occurrence of
large dissipation rates near the tails of the p.d.f. Enstrophy, which is more intermittent in
nature than dissipation rate (Meneveau et al. 1990; He et al. 1998; Zeff et al. 2003; Yeung
et al. 2018; Buaria et al. 2019; Buaria & Pumir 2022), is captured best by Model 3. Models
1 and 2, on the other hand, under-predict the probability density of enstrophy near the tails.
Taking the sum of the dissipation rate and enstrophy results in the pseudodissipation rate,
which is reproduced quite accurately by Model 3, even near the extreme tails. Overall, the
results of Model 3 constitute the closest representation of the VG statistics in turbulent
flows.

5.4. Reynolds number dependence
Finally, we examine the model performance at different Reynolds numbers. The
normalised VG behaviour is nearly independent of Reynolds number above a certain Reλ
as shown in our previous studies (Das & Girimaji 2019, 2022). Therefore, we only examine
the p.d.f.s of pseudodissipation rate and invariants (Q, R) of the VG tensor.

Figure 15 shows the p.d.f.s of pseudodissipation rate (A2 = AijAij) obtained at different
Reλ using Model 3. It is evident that the model captures the expected trend of increasing
probability of high pseudodissipation rate values with increasing Reynolds number. In
addition, the p.d.f.s of the model’s pseudodissipation rate at each of these Reynolds
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Figure 14. P.d.f.s of: (a) dissipation rate, SijSij/〈SijSij〉, (b) enstrophy, WijWij/〈WijWij〉, and
(c) pseudodissipation rate, AijAij/〈AijAij〉, obtained from the three models for Reλ = 427. Black solid
lines with symbols represent the p.d.f.s obtained from DNS data; black dash-dotted lines mark the p.d.f.s for
the initial field used in the model’s simulations; magenta dashed lines represent the p.d.f.s from the RDGF
model of Johnson & Meneveau (2016a).

numbers also compare reasonably well with that of the corresponding DNS data, as shown
in figure 16. The model reproduces the p.d.f. accurately up to a large extent at the tails. It
is evident that the model generalises reasonably well to higher Reynolds numbers.

Model predictions also capture the monotonic increase of the VG moments with Reλ, as
indicated by table 3. Comparison with the corresponding moments from DNS data (when
available) shows that Model 3 is able to reproduce the moments of VG magnitude as well
as longitudinal/transverse VG components at different Reynolds numbers reasonably well.
The error in model prediction is more in higher-order moments (flatness) as expected.
The use of more advanced multifractal models for VG magnitude in place of the modified
lognormal model will likely improve these statistics.

The joint p.d.f.s of the second and third invariants (Q, R) of the VG tensor (Aij),
averaged over multiple time realisations, are plotted in figure 17(a,c) for Reλ = 427 and
588, respectively. For comparison, the corresponding Q–R joint p.d.f.s from DNS data are
illustrated in figure 17(b,d). It is evident that the model is able to capture the characteristic
teardrop shape of the p.d.f. with a high density of points along the right discriminant line
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Figure 15. P.d.f. of pseudodissipation rate, AijAij/〈AmnAmn〉, obtained from different Reynolds number

solutions of Model 3. Reynolds numbers illustrated: Reλ = {225, 385, 427, 588, 1100}.
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Figure 16. P.d.f. of pseudodissipation rate, AijAij/〈AijAij〉 for different Reynolds number cases using Model
3: (a) Reλ = 225, (b) Reλ = 385, (c) Reλ = 427, (d) Reλ = 588 and (e) Reλ = 1100. Black solid lines with
squares represent p.d.f.s from DNS data. P.d.f. for Reλ = 1100 case is obtained from Elsinga, Ishihara & Hunt
(2023).

(Soria et al. 1994; Chong et al. 1998; Ooi et al. 1999; Wallace 2009). The present model
shows improvement over the RDGF (Johnson & Meneveau 2016a) and PIML (Tian et al.
2021) models in capturing the features of the Q–R p.d.f. However, a close comparison with
DNS shows slight differences in the shapes of the outer low-probability contours of Q–R
joint p.d.f., unlike the near-perfect match achieved in the case of the normalised q–r joint
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Reλ –> 225 385 427 588 1100

Variance A: 〈A2〉
〈A〉2 DNS 1.39 1.43 1.43 1.48 —

Model 1.37 1.41 1.42 1.47 1.52
Flatness A: 〈A4〉

〈A2〉2 DNS 4.08 4.23 4.30 5.05 —
Model 3.58 3.96 4.10 4.72 5.45

Skewness A11: 〈A3
11〉

〈A2
11〉3/2 DNS −0.50 −0.60 −0.59 −0.61 —

Model −0.54 −0.56 −0.55 −0.58 −0.64

Flatness A11: 〈A4
11〉

〈A2
11〉2 DNS 7.18 7.80 7.90 9.23 —

Model 8.54 9.33 9.73 11.13 13.30

Flatness A12: 〈A4
12〉

〈A2
12〉2 DNS 11.21 11.75 12.14 14.45 —

Model 9.57 10.51 10.90 12.49 14.24

Table 3. Moments of VGs for different Reynolds numbers. Variance and flatness of VG magnitude (A =√
AijAij), skewness and flatness of longitudinal A11, and flatness of transverse A12 from DNS data and Model

3. Skewness of A12 is correctly predicted as zero by the model for all cases.

p.d.f. (figure 11). Extending this method to satisfy higher-order conditional moments of
VG magnitude will likely improve the results.

6. Conclusion

A stochastic model for the Lagrangian evolution of VG tensor in an incompressible
turbulent flow has been presented. The bounded and well-behaved dynamics of the
normalised VG tensor (bij) has been modelled separately from the intermittent VG
magnitude (A). The main non-local flow physics of pressure and viscous processes are
easily amenable to generalisation in the compact and bounded framework of bij. The
closure modelling of important nonlocal effects has been performed using a simple but
effective lookup table approach within the four-dimensional compact state space of bij.
On the other hand, the intermittent magnitude of the VG tensor has been modelled as
a modified OU process. The Reynolds-number-dependent conditional variance of the
magnitude has been incorporated into the model to better capture intermittency effects.

Numerical simulation of the Lagrangian model takes an initially random field and drives
it towards a statistically stationary solution closely resembling DNS small-scale behaviour.
The model performs quite well in capturing the Eulerian p.d.f.s and higher-order moments
of bij. Further, it is able to reproduce the characteristic teardrop shape of the joint
probability distribution of the bij invariants (q, r) without any discernible distortion
observed in many previous models. The vorticity–strain-rate alignment angles are also
captured with reasonable accuracy. The model also reproduces up to sixth-order moments
of VGs and the heavy-tailed p.d.f.s of VG magnitude, enstrophy and dissipation rate.
Overall, the present model not only reproduces the small-scale geometric features of
turbulence but also captures the intermittent nature of magnitude better than the previous
models. Most importantly, the model is generalisable to different Reynolds number
turbulent flows, facilitated by the modelling of the bounded and nearly universal VG
shape separately from the Reynolds-number-dependent VG magnitude. In future work,
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Figure 17. Joint p.d.f. of Q–R normalised by the mean VG magnitude (〈AijAij〉): for Reλ = 427 (a) Model 3 and
(b) DNS data, and for Reλ = 588 (c) Model 3 and (d) DNS data. The dashed lines represent zero-discriminant
lines.

the magnitude will be modelled as a multifractal process to fully capture the extreme tails
of the p.d.f.s and the higher-order moments with even greater accuracy.
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Appendix A. Relevant properties of Itô process

A.1. Itô’s lemma for scalar variables
For a SDE of a scalar (x) of the form

dx = f (x) dt + g(x) dW, (A1)
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the SDE for a function of the variable, ϕ = ϕ(x), is given by

d(ϕ(x)) =
(

∂ϕ

∂t
+ f (x)

∂ϕ

∂x
+ 1

2
g2(x)

∂2ϕ

∂x2

)
dt + g(x)

∂ϕ

∂x
dW. (A2)

A.2. Itô’s lemma for tensorial variables
For a system of SDEs of a tensor, Xij, of the form

dXij = Fij(X ) dt + Gijkl(X ) dWkl, (A3)

the SDE for a function of the tensor, φ = φ(X ), is given by

dφ =
(

∂φ

∂t
+ Fij

∂φ

∂Xij
+ 1

2
GijklGpqkl

∂2φ

∂XijXpq

)
dt + Gijkl

∂φ

∂Xij
dWkl. (A4)

A.3. Itô’s product rule
For SDEs of two scalar variables, x1 and x2, given by

dx1 = f1(x1) dt + g1(x1) dW, (A5)

dx2 = f2(x2) dt + g2(x2) dW, (A6)

the SDE of the product of the two variables is

d(x1x2) = x1 d(x2) + d(x1)x2 + d(x1) d(x2). (A7)

Appendix B. Derivation of bij SDE from Aij SDE

The system of SDEs for the VG tensor Aij is given by

dAij = Mij dt + Kijkl dWkl

where, 〈dWij〉 = 0 and 〈dWij dWkl〉 = δikδjl dt

}
. (B1)

Applying Itô’s lemma we can obtain the SDE of the Frobenius norm of the tensor, φ =
A2 = AijAij, as

d(φ) = (2AijMij + KijklKijkl) dt + 2AijKijkl dWkl, (B2)

neglecting terms of the order of O(dtn) ∀ n > 1. Then, the SDE of the VG magnitude,
A =

√
A2 = √

φ, is obtained using Itô’s lemma:

d(A) =
(

AijMij

A
+ KijklKijkl

2A
− AijKijklAmnKmnkl

2A3

)
dt + AijKijkl

A
dWkl. (B3)

Next, the SDE of its reciprocal s obtained using Itô’s lemma

d
(

1
A

)
= − 1

A2

[(
AijMij

A
+ KijklKijkl

2A
− 3

2
AijKijklAmnKmnkl

A3

)
dt + AijKijkl

A
dWkl

]
. (B4)

Finally, applying Itô’s product rule to determine the SDE for the normalised VG tensor,
bij ≡ Aij/A,

dbij = d
(

1
A

Aij

)
= 1

A
dAij + Aij d

(
1
A

)
+ dAij d

(
1
A

)
, (B5)
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and using (B1) and (B4), we obtain

dbij =
(

Mij

A
− bijbklMkl

A
− bijKpqklKpqkl

2A2 − bpqKpqklKijkl

A2

+ 3
2

bijbpqKpqklbmnKmnkl

A2

)
dt +

(
Kijkl

A
− bijbpqKpqkl

A

)
dWkl. (B6)

Rearranging, we can write the final form of the bij-SDE as follows

dbij =
(

Mij

A2 − bijbkl
Mkl

A2 − 1
2

bij
Kpqkl

A3/2
Kpqkl

A3/2 − bpq
Kpqkl

A3/2
Kijkl

A3/2

+ 3
2

bijbpq
Kpqkl

A3/2 bmn
Kmnkl

A3/2

)
dt′ +

(
Kijkl

A3/2 − bijbpq
Kpqkl

A3/2

)
dW ′

kl, (B7)

where dt′ = A dt and dW ′
ij = A1/2 dWij. Note that all the terms on the right-hand side of

the bij SDE are non-dimensional, including dt′, dW ′
kl, Mij/A2 and Kijkl/A3/2. This equation

can also be written as

dbij = (μij + γij) dt′ + Dijkl dW ′
kl where

μij = Mij

A2 − bijbkl
Mkl

A2 , Dijkl = Kijkl

A3/2 − bijbpq
Kpqkl

A3/2 ,

γij = −1
2

bij
Kpqkl

A3/2
Kpqkl

A3/2 − bpq
Kpqkl

A3/2
Kijkl

A3/2 + 3
2

bijbpq
Kpqkl

A3/2 bmn
Kmnkl

A3/2 ,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(B8)

where μij is the mean drift coefficient tensory, γij is the additional drift coefficient tensor
and Dijkl is the diffusion coefficient tensor.

Appendix C. Incompressibility constraint

To prove that the system of SDEs of bij in (3.4) satisfies the incompressibility constraint,
we take the trace on both sides of the bij-SDE:

dbii = (μii + γii) dt′ + Diikl dW ′
kl. (C1)

Now, since bii = 0 and Mii = 0 by construction, we have

μii = Mii

A2 − biibkl
Mkl

A2 = 0. (C2)

Further, since Kiikl = 0 by construction, it can be easily shown that

γii = −1
2

bii
Kpqkl

A3/2
Kpqkl

A3/2 − bpq
Kpqkl

A3/2
Kiikl

A3/2 + 3
2

biibpq
Kpqkl

A3/2 bmn
Kmnkl

A3/2 = 0

Diikl = Kiikl

A3/2 − biibpq
Kpqkl

A3/2 = 0

⎫⎪⎪⎬⎪⎪⎭ . (C3)

Therefore, from ((C1)–(C3)), we have

dbii = 0. (C4)
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Appendix D. Normalisation constraint

Next, we prove that the bij SDE maintains the Frobenius norm of unity. For this, we first
derive the SDE for the Frobenius norm of bij, using Itô’s product rule:

d(bijbij) = (2bijμij + 2bijγij + DijklDijkl) dt′ + 2bijDijkl dW ′
kl. (D1)

Now, the first term is zero by construction since

2bijμij = 2bij

(
Mij

A2 − bijbkl
Mkl

A2

)
= 2

bklMkl

A2 − 2bijbij
bklMkl

A2 = 0, (D2)

provided bijbij = 1. The second term can be expanded as follows:

2bijγij = 2bij

(
−1

2
bij

Kpqkl

A3/2
Kpqkl

A3/2 − bpq
Kpqkl

A3/2
Kijkl

A3/2 + 3
2

bijbpq
Kpqkl

A3/2 bmn
Kmnkl

A3/2

)
= −bijbij

Kpqkl

A3/2
Kpqkl

A3/2 − 2bij
Kijkl

A3/2 bpq
Kpqkl

A3/2 + 3bijbijbpq
Kpqkl

A3/2 bmn
Kmnkl

A3/2

= −
(

Kpqkl

A3/2
Kpqkl

A3/2 − bij
Kijkl

A3/2 bpq
Kpqkl

A3/2

)
, (D3)

since bijbij = 1. The third term can be expanded as

DijklDijkl =
(

Kijkl

A3/2 − bijbpq
Kpqkl

A3/2

)(
Kijkl

A3/2 − bijbpq
Kpqkl

A3/2

)
= Kijkl

A3/2
Kijkl

A3/2 − bij
Kijkl

A3/2 bpq
Kpqkl

A3/2 . (D4)

Therefore, the second and third terms cancel each other out. Finally, the diffusion term is
also zero due to the form of the diffusion coefficient as

2bijDijkl = 2bij

(
Kijkl

A3/2 − bijbpq
Kpqkl

A3/2

)
= 2bij

Kijkl

A3/2 − 2bijbijbpq
Kpqkl

A3/2 = 0. (D5)

Thus, it is proved that for the given form of μij, γij and Dijkl, the (D1) simplifies to

d(bijbij) = 0. (D6)

In other words, the form of the bij-SDE (B8) automatically ensures that bijbij remains unity
at all times provided it is initially unity.

Appendix E. Galilean invariance

Now we demonstrate that the approach of closure modelling of the normalised anisotropic
pressure Hessian (h) and viscous Laplacian (τ ) tensors satisfies Galilean invariance. The
tensor h is modelled as

h = Qh̃QT , (E1)

where h̃ is the pressure Hessian tensor in the principal frame of strain-rate tensor (s). This
h̃ is obtained from data-driven closure as a function of b̃, also in principal reference frame.
Thus,

Q = [E1E2 E3], (E2)

where Ei are the right eigenvectors of s corresponding to its eigenvalues ai and Ei
constitute the columns of the rotation matrix Q. Let us rotate the coordinate frame of
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the observer by certain angles, using a rotation matrix R. Let the tensors and vectors in
new reference frame be marked by ′. Then the tensor s becomes

s′ = RsRT , (E3)

and its eigenvectors also rotate by the same angles since

sEi = aiEi =⇒ RTs′REi = aiEi

=⇒ s′REi = aiREi =⇒ s′E′
i = aiE′

i where E′
i = REi

}
. (E4)

Since E′
i constitute the columns of the rotated tensor Q′, we can say

Q′ = RQ. (E5)

Therefore, using (E1) and (E5), the pressure Hessian tensor in the new reference frame
becomes

h′ = Q′h̃Q′T = RQh̃QTRT = RhRT . (E6)

Note that h̃ = h̃(q, r, a2, ω̃2), all four of which are either frame invariant or specifically
defined in the principal reference frame and therefore h̃ is unaltered by frame rotation. It
is evident from (E6) that the new tensor h′ also rotates by the same angles with respect to
the old h as the new frame rotates with respect to the old frame. This proves that the model
for pressure Hessian tensor h is Galilean invariant. The same proof applies to the viscous
Laplacian tensor τ .

Aside from the mean pressure and viscous terms discussed above, all the other terms
in the bij SDE are functions of bij itself and it can be shown that they are also Galilean
invariant by construction.

Appendix F. Numerical schemes for SDEs

In this work, the numerical scheme used to propagate the bij-SDE in computational time
t′ is a second-order weak predictor–corrector scheme given by

b′
ij = b(n)

ij + μij(b(n))�t′ + γij(b(n))�t′ + Dijkl(b(n))ξkl
√

�t′, (F1)

b(n+1)
ij = b(n)

ij + 1
2 [μij(b(n)) + μij(b′)]�t′ + 1

2 [γij(b(n)) + γij(b′)]�t′

+ 1
2 [Dijkl(b(n)) + Dijkl(b′)]ξkl

√
�t′, (F2)

where each component of ξij is an independent standardised Gaussian random variable.
The θ∗-SDE can be written in the computational timescale t′ as follows:

dθ∗ = −θ∗dt∗ + β(q, r) dW∗

= −θ∗ 〈A〉
A

dt′ + β(q, r)

√
〈A〉
A

dW ′, (F3)

where β(q, r) represents the different diffusion coefficients discussed in § 3.4. The
θ∗-SDE is also propagated using the second-order weak predictor–corrector scheme:

θ∗′ = θ∗(n) − θ∗(n) 〈A〉
A

�t′ + β(q(n), r(n))ξ

√
〈A〉
A

√
�t′, (F4)
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Reλ Grid points kmaxη Source

1 2563 105.6 Yakhot & Donzis (2017)
6 2563 34.8 Yakhot & Donzis (2017)
9 2563 26.6 Yakhot & Donzis (2017)
14 2563 19.87 Yakhot & Donzis (2017)
18 2563 15.59 Yakhot & Donzis (2017)
25 2563 11.51 Yakhot & Donzis (2017)
35 643 1.45 Yakhot & Donzis (2017)
86 2563 2.83 Donzis et al. (2008)
225 5123 1.34 Donzis et al. (2008)
385 10243 1.41 Donzis et al. (2008)
427 10243 1.32 Li et al. (2008)
588 20483 1.39 Donzis et al. (2008)

Table 4. Details of forced isotropic incompressible turbulence data.

θ∗(n+1) = θ∗(n) − 1
2

[θ∗(n) + θ∗′]
〈A〉
A

�t′ + 1
2

[β(q(n), r(n)) + β(q′, r′)]ξ
√

〈A〉
A

√
�t′,

(F5)

where q(n), r(n) represent the second and third invariants of the b(n) tensor and q′, r′
represent the second and third invariants of the b′ tensor. Here, the VG magnitude
A = e(σθ θ∗+〈θ〉), for constant values of 〈θ〉, σθ from DNS.

Appendix G. DNS data

In this work, DNS data of forced isotropic turbulent flows of Taylor Reynolds number,
Reλ = u′λ/ν, ranging from 1 to 588 have been used. Here, u′ is the root-mean-square
velocity and λ is the Taylor microscale of the flow, and ν is the kinematic viscosity of
the fluid. The simulations are spatially well-resolved with kmaxη > 1.3, where kmax is
the highest resolved wavenumber and η is the Kolmogorov length scale. These data sets
are obtained from the following two sources: (1) Johns Hopkins Turbulence Database
(Perlman et al. 2007; Li et al. 2008): the data has been widely used in the literature
for investigating VG statistics (Johnson & Meneveau 2016b; Elsinga et al. 2017; Danish
& Meneveau 2018) as well as its Lagrangian dynamics (Yu & Meneveau 2010a,b) in
turbulence; and (2) Donzis research group at Texas A&M University: these data sets have
been used to study small-scale dynamics, intermittency and anomalous scaling in several
previous works (Donzis et al. 2008; Donzis & Sreenivasan 2010; Yakhot & Donzis 2017).
Further details about the DNS data are provided in table 4.
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