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In follow-up studies, different types of response variables are collected for each
individual. They are longitudinal outcomes which are measured on each subject
repeatedly and the time when the subject meets an event of particular interest. There
are many research questions focusing on the association between longitudinal data and
survival time in clinical, epidemiological and educational studies. In many clinical
studies, the researchers want to evaluate the impact of biomarkers for their prognostic
capabilities on survival time outcomes. Tsiatis et al. [15] investigated the association
between the number of CD4 lymphocytes and the time to death in an acquired
immune deficiency syndrome (AIDS) study. The link between serum bilirubin level
and survival time was investigated in liver cirrhosis studies [6, 10]. In addition, there
has been interest in the interrelation between these two types of data in other fields.
For instance, environmental factors or seasonal patterns may be associated with the
occurrence of some types of diseases such as asthma or depression [9, 11].

Joint models aim to measure the association between survival time and longitudinal
responses. These models can be used to better estimate the survival and longitudinal
processes as well as evaluating their association. There are different types of
longitudinal covariates for modelling survival time and trajectory for each individual.
Flexible joint models are introduced to suit each type of longitudinal covariate
and parametrise individual curves [1–3, 11, 14]. In addition, different approaches
and techniques need to be considered to estimate parameters for joint models
[4, 7, 8, 10, 13].

Cox [2, 3] introduced joint models using proportional hazard models. The Cox
model has been, and remains, a very popular joint model to deal with time-independent
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covariates using a partial likelihood approach. However, the Cox model contains many
disadvantages for handling time-dependent covariates [2]. Time-dependent covariates
are also divided into two types, which are external and internal covariates. Cox [3]
extended his method to handle the external longitudinal covariates. These models are
known as the extended Cox models and also use the partial likelihood approach for
estimation [1, 3–5].

Another category of time-dependent covariates is internal longitudinal outcomes,
found in many clinical studies. The extended Cox model using a partial likelihood
approach can cause large biases and poor coverage properties for handling internal
covariates [12, 14]. Rizopoulos [11] proposed standard joint models postulating
from the proportional hazard model. He used the full likelihood approach to
estimate the parameters in the joint models. This approach performs acceptably for
handling internal covariates and better than the Cox model and the extended Cox
model [7, 11].

In the full likelihood approach, the whole history of biomarkers influences the
survival function. Thus, it is important to obtain good models for longitudinal data in
order to estimate the survival time accurately. Moreover, in practice, subject-specific
trajectories may show nonlinear curves for a long period of measurement. Estimating
parameters for standard joint models is often quick and easy. However, they may not fit
nonlinear longitudinal data and cannot handle smoothing. This potential problem can
be addressed by proposing an appropriate longitudinal submodel to handle nonlinear
longitudinal data [7, 14]. In this thesis, we mainly focus on modelling the association
between the internal nonlinear longitudinal outcomes and event-time outcomes as well
as parameter estimation using different approaches.

This thesis introduces penalised spline joint models to handle nonlinear longitudinal
outcomes in Chapter 3. These models are not only a good fit for nonlinear longitudinal
data, but can also control the roughness of fit for the individual curves. To estimate
the parameters in these models, the full likelihood approach is applied. In particular,
parameter estimation is obtained by using the expectation conditional maximisation
(ECM) algorithm. These models can improve the biases and the goodness of fit
compared to the standard linear joint models. However, the penalised spline joint
models can become complicated quickly when the number of knots in the longitudinal
submodel increases. The full likelihood approach can lead to a computational problem
for which the algorithm takes a long time to converge.

To deal with this computational problem, a modified two-stage approach is
proposed in Chapter 4. We introduce an algorithm to estimate the parameters for the
penalised spline joint models. This approach allows the allocation of as many knots
as possible to the penalised spline joint models. In addition, this approach not only
reduces the time for convergence, but also has biases comparable to the full likelihood
approach.

Finally, to avoid the approximation from calculating multiple integrals in the
frequentist approach and to quantify uncertainty using a probability density function
for the penalised spline joint models, a fully Bayesian approach is applied to the
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penalised spline joint models in Chapter 5. In this approach, based on the likelihood
function, we formulate the joint posterior distribution. The main algorithm using the
Metropolis–Hastings (MH) and Gibbs sampler (GS) algorithms is proposed to sample
the parameters for the penalised spline joint models. In addition, prior sensitivity
analysis is performed to confirm the results of the inferences based on different prior
distributions of some important parameters in joint models.

The thesis is organised into six chapters as follows: Chapter 1 is this introductory
chapter. The background for longitudinal analysis, survival analysis and joint
modelling is introduced in Chapter 2. The frequentist and Bayesian approaches for
joint models are also reviewed in this chapter. Penalised spline models are proposed
in Chapter 3. In this chapter, we also introduce the ECM algorithm and a set of
R code written to estimate the parameters in the proposed joint models. The modified
two-stage approach is introduced in Chapter 4. In this chapter, a proposed two-stage
algorithm is also presented and a set of R code is provided. Intensive simulation
studies are conducted to compare with the full likelihood approach. Chapter 5 uses
a fully Bayesian approach to estimate parameters in the penalised joint models. The
Markov chain Monte Carlo (MCMC) method is applied to sample parameters. Finally,
conclusions about the main results obtained in this thesis, remaining problems and
future research for joint models are discussed in Chapter 6.
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