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Surgery on SL x E"-Manifolds

J. A. Hillman and S. K. Roushon

Abstract. 'We show that closed SL x E"-manifolds are topologically rigid if n > 2, and are rigid up to
s-cobordism, if n = 1.

The “Borel Conjecture” asserts that aspherical closed manifolds are topologically
rigid, i.e., are determined up to homeomorphism by their fundamental groups. Far-
rell and Jones have proven this for infrasolvmanifolds (of dimensions > 4) [5] and
for smooth manifolds (of dimensions > 5) with Riemannian metrics of nonpositive
curvature [4], while Nicas and Stark have shown it to hold for manifolds (of dimen-
sions > 5) admitting an effective codimension-2 toral action of hyperbolic type [8].
The work of Farrell and Jones was used in [10] to establish topological rigidity for
M x D* for all orientable closed irreducible 3-manifolds M with 5;(M) > 0 and
all k > 3. In our main result (Theorem 4) we shall adapt the approach of [10] to
show that manifolds with finite covering spaces admitting such toral actions are also
topologically rigid. (These are the natural higher dimensional analogues of geomet-
ric Seifert fibred spaces.) In particular, all closed SL x E"-manifolds with n > 2
are topologically rigid, although such manifolds do not admit metrics of nonpositive
curvature [2], and may not admit codimension-2 toral actions. (See Corollary A.)

The most immediate applications of our work are to low dimensions. In Corol-
lary B we complete the characterization of aspherical geometric 4-manifolds up to
s-cobordism, in terms of fundamental group and Euler characteristic. (This was es-
tablished for all other 4-dimensional geometries of aspherical type in Theorem 9.11
of [6].) In passing we also show (in Theorem 2) that noncompact complete SIL-
manifolds of finite volume are homeomorphic to complete H? x E'-manifolds of
finite volume. (This was stated without proofin [11].)

If G is a group let G’, (G and /G denote the commutator subgroup, centre and
Hirsch—Plotkin radical of G, respectively. (In the cases considered below /G is al-
ways abelian, and thus is the unique maximal abelian normal subgroup.) If H is a
subgroup of G let C;(H) denote the centralizer of H in G. (Thus (G = Cg(G).) Let
E(n) = Isom(E") = R" x O(n).

The following lemma is based on Lemma 9.5 of [6]. We give it here for the conve-
nience of the reader.

Lemma 1 Let 7 be a finitely generated group with normal subgroups A < N such
that A is free abelian of rank r, [ : N] < oo and N =2 A x N/A. Then there is a
homomorphism f: m — E(r) with image a discrete cocompact subgroup and such that
fla is injective.
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Proof LetG=7m/Nand M = N = A @ (N/AN'). Then M is a finitely generated
Z[G]-module and the image of A in M is a Z[G]-submodule. Extending coefficients
to the rationals ) gives a natural inclusion QA < QM, since A is a direct summand
of M (as an abelian group), and QA is a Q[G]-submodule of QM. Since G is finite
Q[G] is semisimple, and so QA is a Q [G]-direct summand of QM. Let K be the ker-
nel of the homomorphism from M to QA determined by a splitting homomorphism
from QM to QA, and let K be the preimage of K in 7. Then K is a Z[G]-submodule
of M and M/K = Z', since it is finitely generated and torsion free of rank r. More-
over K is a normal subgroup of w and AN K = 1. Hence H = 7/K is an extension
of G by M/K and A maps injectively onto a subgroup of finite index in H. Let T
be the maximal finite normal subgroup of H. Then H/T is isomorphic to a discrete
cocompact subgroup of E(r), and the projection of m onto H/T is clearly injective
on A. [ ]

Theorem 2 Let M be a 3-manifold which is Seifert fibred over a complete open H?-
orbifold B of finite area. Then M is homeomorphic to a complete open H?* x E' -manifold.

Proof Letm = m(M) and let A = Z be the image in 7 of the fundamental group
of the general fibre. Let p: 7 — 7/A = 7%™(B) be the epimorphism given by
the Seifert fibration, and let 1/: 7(B) — Isom(H?) be a monomorphism onto a
discrete subgroup of finite coarea which determines the hyperbolic structure of B.
Since B is complete and has finite area 79™°(B) is finitely generated and since B is
open 79" (B) has a free normal subgroup F of finite index. Then 7 is finitely gener-
ated. Let N = p~1(F) N C,(A). Then A < Nand N = A x (N/A), since A is central
in N and N/A is free. Hence there is a homomorphism f: 7 — E(1) which is injec-
tive on A, by the lemma. Let @ = (¢p, f): m — Isom(H? x E!). Then @ is injective,
and 0(r) is a discrete subgroup of finite covolume. Since 6(7) is torsion free it acts
freely and so P = H? x R/0(r) is a complete open H? x IE!-manifold of finite volume.
Projection from H 2 % R onto the first factor induces a Seifert fibration of P over B,
and since 1 (P) = 7 = 7 (M) it follows that M and P are homeomorphic. [ |

In particular, if M is a compact 3-manifold with a nontrivial JS] decomposition
then every geometric piece of type SIL also admits the geometry H? x [E!'. (This is
part of Theorem 4.7.10 of [11]. However no proof is given there.) A more geometric
proof of Theorem Rlis given in [7].

A similar argument shows that if M is an open (1 + 2)-manifold which is the total
space of an orbifold bundle with base a complete open hyperbolic 2-orbifold B of fi-
nite area, general fibre a flat m-manifold F and monodromy group a finite subgroup
of Out(m (F)) then there is an H? x E™-manifold M, which is an orbifold bundle
with base B and general fibre F and a homotopy equivalence f: M — M,; which
preserves the conjugacy classes of the subgroups corresponding to the cusps. Since
the cusps are flat (m + 1)-manifolds we may assume that f is a homeomorphism off
a compact set, and a relative version of the Farrell-Jones curvature argument then
shows that f is homotopic to a homeomorphism, if m > 3. Is there a direct, ele-
mentary argument to show that M and M; must be fibrewise diffeomorphic (for any
m>1)?
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If an (m + 2)-manifold M admits an effective action of the m-torus T" = R™ /Z"™
the image in 71 (M) of the fundamental group of the principal orbit is central and the
orbit space Q is a 2-orbifold [1]. In [8] it is shown that if M is an aspherical (m + 2)-
manifold with an effective T™ action of hyperbolic type the higher Whitehead groups
Whi(m(M)) are trivial for all i > 0 and |Stop(M x D, 9)| = 1, whenever m+k > 4
(orm+k > 3,if OM = @). Their argument for the Whitehead groups extends
immediately to the following situation.

Lemma 3 Let  be a torsion-free group with a virtually poly-Z normal subgroup N
such that /N =2 79" (B), where B is a compact 2-orbifold. Then Wh(r) = 0.

Proof If Bisa closed E2-orbifold then 7 is virtually poly-Z and the result is proven in
[3]. If Bis a closed H2-orbifold the argument of [8] using hyperelementary induction
applies with little change. If w/N is virtually free it is the fundamental group of a
graph of groups with all vertex groups finite or 2-ended and all edge groups finite, and
so 7 is the fundamental group of a graph of groups with all vertex groups torsion free
and virtually poly-Z. Thus the result follows from [3] and the Waldhausen Mayer—
Vietoris sequence [12]. (Note that c.d.m < oo since 7 is torsion free, c.d.N < oo and
v.c.d.m/N < 2 in all cases.) [ ]

The argument of [8] determining the surgery structure sets for (mm + 2)-manifolds
admitting an effective 7" action of hyperbolic type appears to use the hypothesis of a
toral action in an essential way, to establish an induction on m. We shall rely instead
on the curvature argument of [4].

Theorem 4 Let M be the total space of an orbifold bundle p: M — Q with base Q
a closed H?-orbifold and general fibre a flat m-manifold F of dimension > 3, and such
that A = /m(F) = Z™ is centralized by a subgroup of finite index in m = m(M).
If f: Mi — M is a homotopy equivalence with My a closed m-manifold then f is
homotopic to a homeomorphism.

Proof Suppose first that there is an epimorphism q: 79*(Q) — Z. Let Q and M
be the induced covering spaces and p: M — Q be the corresponding fiber bundle
projection. Then Qis noncompact, and is the increasing union 0= Uis; Qx of
compact suborbifolds with nontrivial boundary. We may assume that for each k >
0 the boundary of Qi does not contain any corner points, Gy = ﬂj’rb(Qk) is not
virtually abelian, and Gy maps injectively to G = 79™(Q). Let DQy be the closed
orbifold obtained by doubling Q; along its boundary. Since 7™ (DQy) is not virtually
abelian there is a monomorphism : wi’rb(DQk) — Isom(H?) with image a discrete,
cocompact subgroup. (See [13, p. 248].)

Let My = p~1(Qx). Then My, is a compact bounded m-manifold and p: My — Qg
is an orbifold fibration with general fibre F. Doubling M gives a closed m-manifold
DM, with an orbifold fibration over DQy, and w(k) = m(DMy) is an extension
of wi’rb(DQk) by m(F). As wfrb(Qk) acts on A through a finite subgroup the cen-
tralizer of A in w(k) again has finite index. Let N be a characteristic subgroup of
finite index in (k) which centralizes A and such that N/A is a PDj-group, and let
e € H*(N/A; A) be the cohomology class of the extension0 — A — N — N/A — 1.
The reflection which interchanges the copies of My leaves the boundary pointwise
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fixed, and projects to the corresponding reflection of DQy. Thus it induces an auto-
morphism of N which is the identity on A and reverses the orientation of N/A. It
follows that e = —e and so the extension splits: N 22 A x N/A. Therefore there is a
homomorphism f: 7(k) — E(m) which is injective on A, by Lemma 1. The homo-
morphism (¢ p|xck), f): (k) — Isom(H? x E™) has finite kernel, and so is injective,
since 7 is torsion free. The quotient P, = H*> x R™/r(k) is closed and nonpositively
curved, and is Seifert fibred over DQy. Moreover DM} ~ P since each is aspherical,
and so M is a homotopy retract of Py.

Now the structure set of Py is trivial, by the Topological Rigidity theorem of Far-
rell and Jones [4]. Since My is a homotopy retract of Py, the structure set of M is
also trivial. Equivalently, the assembly maps H;(M;Ly) — L; (m (My), w) are iso-
morphisms for j large, where w = w;(M). (Note that no decorations are needed on
the surgery obstruction groups as Wh(m) = 0, by Lemma 3.) Since homology and
L-theory commute with direct limits we conclude that H j(M ;LY) — L ( m (M), W)
is an isomorphism for j large. Using the Wang sequence for homology, naturality
of the assembly maps and Ranicki’s algebraic version of Cappell’s Mayer—Vietoris se-
quence for square root closed HNN extensions it follows that the same is true for M.
(See [10] for more details.)

If 5 (Wff"(Q)) = 0 we may use hyperelementary induction, as in [8], to reduce
to the case already treated. ]

A similar curvature argument could be used to show that Wh(7) = 0, for 7 =
71(M) as in the theorem.

Corollary (A) Let M bea closed gﬂ\lExIE”—mam'fold, wheren > 2, andlet f: M} — M
be a homotopy equivalence, with M a closed (n + 3)-manifold. Then f is homotopic to
a homeomorphism.

Proof The composite of projection from the model space SLx R" onto the first factor
with the fibration of SL over H? induces an orbifold bundle fibration p:M — Q,
with base Q a closed H?-orbifold and general fibre F a flat (n + 1)-manifold. In
Theorem 9.3 of [6] it is shown that when n = 1 the fundamental group of a closed
SL x [E"-manifold has a subgroup of finite index which is a direct product, and the
argument extends immediately to the general case. It follows that v/, (F) = Z"*! is
centralized by a subgroup of finite index in 7, and so we may apply the theorem. MW

We may adapt this result to obtain a somewhat weaker result for the case n = 1 by
taking products with S'.

Corollary (B) Let N be a closed SL x IE'-manifold, and let Ny be a closed 4-manifold
with T (N1) 2 7 = m(N) and x(N1) = x(N). Then N is s-cobordant to N.

Proof The manifold N; is aspherical, by Corollary 3.5.1 of [6], and so there is a
homotopy equivalence g: Ny — N. Let M = N x S}, M; = N} x S}, and f =
gxidg. Then Misa S x F2-manifold. Hence f is homotopic to a homeomorphism
h: M; = M, by the theorem. Since h ~ g X idg it lifts to a homeomorphism
N; X R 2 N x R. The submanifold of N x R bounded by N x {0} and a disjoint
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copy of Ny is an h-cobordism. It is in fact an s-cobordism, since Wh(7r1 (N )) =0,
by Lemma 3. ]

This result complements Theorem 9.11 of [6], where a similar result is proven for
all 4-manifolds admitting a nonpositively curved geometry.

Is there a corresponding result for manifolds with a proper geometric decompo-
sition? The argument for Theorem 3.3 of [9] extends readily to show that if M is
a n-manifold with a finite collection of disjoint flat hypersurfaces 8 such that the
components of M — US all have complete finite volume geometries of type H" or
H"~! x E!, and if there is at least one piece of type H" then M admits a Riemannian
metric of nonpositive sectional curvature (see [2]). Such manifolds are topologically
rigid if n > 5, by [4], and we again deduce rigidity up to s-cobordism when n = 4, as
in the above corollary.
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