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Abstract

n-3 Fatty acids are associated with better cardiovascular and cognitive health. However, the concentration of EPA, DPA and DHA in different
plasma lipid pools differs and factors influencing this heterogeneity are poorly understood. Our aim was to evaluate the association of oily fish
intake, sex, age, BMI and APOE genotype with concentrations of EPA, DPA and DHA in plasma phosphatidylcholine (PC), NEFA, cholesteryl
esters (CE) and TAG. Healthy adults (148 male, 158 female, age 20-71 years) were recruited according to APOE genotype, sex and age. The
fatty acid composition was determined by GC. Oily fish intake was positively associated with EPA in PC, CE and TAG, DPA in TAG, and DHA
in all fractions (P <0-008). There was a positive association between age and EPA in PC, CE and TAG, DPA in NEFA and CE, and DHA in PC
and CE (P<0-034). DPA was higher in TAG in males than females (< 0-001). There was a positive association between BMI and DPA and
DHA in TAG (P<0-006 and 0-02, respectively). APOE genotype X sex interactions were observed: the APOFE4 allele associated with higher EPA
in males (P=0-002), and there was also evidence for higher DPA and DHA (£ <0-032). In conclusion, EPA, DPA and DHA in plasma lipids are
associated with oily fish intake, sex, age, BMI and APOE genotype. Such insights may be used to better understand the link between plasma
fatty acid profiles and dietary exposure and may influence intake recommendations across population subgroups.
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There is convincing evidence that higher intakes of the marine
long-chain #-3 PUFA (LC n-3 PUFA) EPA and DHA, are bene-
ficial to cardiovascular and cognitive health, acting through a
number of biological mechanisms, and that the concentration of
EPA and DHA present in blood and tissue lipids is correlated
positively with these effects”’ ™. Oily fish are a good source of
EPA and DHA; therefore, national and international authorities
recommend regular consumption of oily fish such as salmon,
mackerel, kippers, sardines, herring, trout and fresh tuna, in
order to provide approximately 500 mg EPA+DHA per d‘®,
with higher intakes of LC n-3 PUFA recommended for those
with diagnosed CVD™. However, the associations between
intake and blood and tissue status, and therefore physiological
benefits, are highly variable®, and the factors influencing this
heterogeneity are not well understood. Greater knowledge of
determinants of LC 7n-3 PUFA status could lead to the

development of more robust, and perhaps subgroup specific,
recommendations for EPA and DHA intake.

In addition to intake of the specific LC 7-3 PUFA and their
precursors, the heterogeneity in habitual EPA, DPA and DHA
concentrations may be influenced by differences in fatty acid
metabolism between sexes; females are reported to synthesise
EPA, DPA and DHA from shorter chain 7-3 fatty acids more
readily than males®™?. Lipid metabolism alters with age and
becomes dysregulated in obesity, and EPA and DHA con-
centrations have been reported to be affected by increasing
BMI?2! a5 well as with age™'*™?. APOE genotype is associated
with altered lipid metabolism and transport, with differential
responses in APOF4 carriers relative to non-carrier groups“z’”).
Recent reports highlight the importance of APOE genotype in the
response of EPA and DHA to supplementation and have indi-
cated interactions between genotype and BMI“?. In addition,

Abbreviations: CE, cholesteryl esters; LC 7-3 PUFA, long-chain 7-3 PUFA; PC, phosphatidylcholine; TC, total cholesterol.
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the concentrations of LC n-3 PUFA in individual lipid pools
within the blood (and in other tissues) differs™. However,
despite these insights from the published literature, the influence
of oily fish intake, along with sex, age, BMI and APOE genotype
on EPA, DPA and DHA concentrations in different plasma pools
has not been examined systematically. Using samples from the
FINGEN studyw), where participants were prospectively recrui-
ted based on a number of these variables (sex, age and APOE
genotype), we have conducted such an analysis in a large
number of participants to evaluate the independent and inter-
active impact of a number of potential determinants (oily fish
intake, sex, age, BMI and APOE genotype) on EPA, DPA and
DHA concentrations in the main plasma lipid fractions.

Methods

The FINGEN study was a multi-centre trial conducted at the
Universities of Glasgow, Newcastle, Reading and Southampton
in the UK. In all, 312 participants were recruited prospectively
on the basis of APOE genotype (eighty-seven were APOE2
homozygotes or APOE2/APOE3, 111 were homozygous for
APOE3, and 114 were APOE4/APOE3 or APOE4 homozygotes),
sex (149 male and 163 female) and age (20-71 years, with
approximately equal numbers in each of the five decades)®.
Data from 306 participants were included in the present ana-
lysis, with the numbers in each subgroup detailed in the online
Supplementary Tables S1 and S2. Exclusion criteria included:
diagnosed endocrine dysfunction including diabetes or fasting
glucose concentration >6-5 mmol/l, myocardial infarction in the
previous 2 years, the use of medication that may interfere with
lipid metabolism, fasting total cholesterol (TC) of >8-0 mmol/l
or TAG of >3-0mmol/l, a BMI of <18-5 or >36-Okg/m2, or
currently following a weight loss diet. Individuals taking 7-3
fatty acid supplements were also excluded. The study was
approved by the research ethics committee at each of the par-
ticipating centres and written informed consent was obtained
from all subjects before participation.

Study design

The FINGEN study was a randomised double-blind, placebo-
controlled, cross-over study testing two doses of fish oil com-
pared with placebo™. Here we evaluate the association of oily
fish intake, sex, age, BMI and APOE genotype with fasting
concentrations of EPA, DPA and DHA in plasma phosphati-
dylcholine (PC), NEFA, cholesteryl esters (CE) and TAG at
baseline, before intervention. Habitual oily fish intake was
estimated by FFQ, using self-reported portions completed at
baseline. Oily fish was defined as salmon, herring, mackerel,
fresh tuna, sardines, kippers and trout.

Fatty acid analysis

The fatty acid composition of the plasma fractions was deter-
mined by GC. Dipentadecanoyl PC, heneicosanoic acid, cho-
lesteryl heptadecanoate and tripentadecanoin internal
standards were added to the plasma. Total plasma lipid was
extracted using chloroform—methanol (2:1, v/v) containing

butylated hydroxytoluene (50mg/) as described by Folch
et al.(l6), and PC, NEFA, CE and TAG fractions were separated
and isolated by solid-phase extraction on aminopropyl silica
cartridges. CE and TAG were eluted in a combined fraction with
the addition of chloroform. PC was then eluted from the
cartridge with the addition of chloroform—methanol (60:40, v/v).
NEFA were eluted from the cartridge with the addition of
chloroform-methanol-glacial acetic acid (100:2:2, by vol.). CE
and TAG were separated on hexane primed aminopropyl silica
cartridge with the addition of hexane to elute CE, and the
addition of hexane-methanol-ethyl acetate (100:5:5, by vol.) to
elute TAG. The fatty acids within the resulting lipid fractions
were methylated by the addition of methanol in 2% (v/v)
sulphuric acid at 50°C for 2 h to produce fatty acid methyl esters
(FAME)(”). FAME were extracted into hexane and separated in
a BPX-70 fused silica capillary column (30 m X 0-25 mm X 25 pm;
SGE Analytical Science) using an Agilent 6890 series gas
chromatograph equipped with flame ionisation detection
(Agilent Technologies). The FAME were identified by compar-
ison with retention times of thirty-seven FAME and menhaden
oil standards run alongside the samples and quantified with the
use of the internal standards using ChemStation software
(Agilent Technologies) and Microsoft Excel (Microsoft
Corporation). Fatty acid composition data are expressed as
absolute concentrations (ug/ml plasma) and as relative con-
centrations (g/100 g total fatty acids (%)).

Statistics

Here we report baseline data obtained as part of the previous
FINGEN trial’. Characteristics of participants included in the
baseline analysis are detailed in the online Supplementary
Tables S1 and S2.

Results for the relative (%) and absolute concentrations
(ug/mD of fatty acids are reported for 303-306 and 292-306
participants in the four plasma lipid fractions. Data were
checked for normality by plotting distributions of residuals
obtained from general linear model (GLM) analysis of the data
and were analysed appropriately with a univariate GLM
following log;o transformation. All variables were included in
the univariate model with individual associations analysed
using ‘main effects’ and interaction between age and BMI, age
and fish intake, and sex and APOE analysed using ‘interaction’
analysis options within the model. P values were corrected for
multiple analyses using Bonferroni post hoc analysis resulting
in a significance value of P=0-006 for whole group analysis
and P=0-008 for analyses where males and females were
analysed separately. All statistical analyses were conducted
using SPSS software (version 21; SPSS Inc.). Results are
expressed as means with their standard errors or medians
and 25th, 75th percentiles.

Results

The group (7 306) mean age and BMI were 45-1 (sem 0-7) years
and 25-2 (sem 0-2) kg/m?, respectively.

Male and female participants were well matched for age, but
males had a significantly higher average BMI (P< 0-001, online
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Table 1. EPA, DPA and DHA in the plasma lipid fractions and statistical significance (P) of the association of oily fish intake, sex, age and BMI on absolute

and relative concentrations of these LC n-3 PUFA*
(Medians and 25th, 75th percentiles)

P
PC (%)  NEFA(%)  CE (%) TAG (%) PC (ug/ml)  NEFA (ug/m)  CE (ug/ml)  TAG (ug/ml)
EPA
Median 1.01 043 077 042 15-14 085 14.2 298
25th, 75th percentle  0-65, 157 026,066 046,110 027,065 8742323 048, 1-47 845, 2345 183,472
Oily fish intaket 0055 - 0004 <0001 0018 - 0058 <0-001
Sex - - 0055 - - - - -
Aget 0063 - - - 0-021 - 0019 0034
BMI§ - - - 0041 - - - -
DPA
Median 078 031 007 033 11.87 062 1.34 232
25th, 75th percentle 055,098 022,044 005,012 023,047  7-90, 1567 042, 086 0-84, 251 1.31, 351
Oily fish intaket 0022 - - 0006 0044 - - 0016
Sex 0026 - - 0043 0054 - - <0001
Aget - 0-031 - - - - 0007 -
BMI§ - - - 0006 - - - -
DHA
Median 286 11 046 061 4413 207 901 4.28
25th, 75th percentile  2.08,393 080, 154 032,061 039,098  29.94, 57-68 143,318 588, 1259 238, 7-19
Oily fish intaket <0001 <0001 0001 <0001 <0-001 0002 0045 <0-001
Sex - - - - - - - -
Aget 0037 - - - 0043 - 0039 0050
BMI§ - - - 002 - - - -

PC, phosphatidylcholine; CE, cholesteryl esters.

* P values obtained using logyo data in the univariate general linear model analysis. Individual associations were investigated for by the addition of all other variables as covariates,
controlling for any associations between confounding variables that may influence the dependent variable. The resulting P values are therefore reflective of the sole association

between the variable of interest and the dependant variable.

1 Oily fish intake: 0 portions/week, 0-1-0-99/week, 1-0-1-99/week and 2+ /week. QOily fish defined as: salmon, herring, mackerel, fresh tuna, sardines, kippers and trout.

1 Age: 20-29, 30-39, 4049, 50-59 and 60+ years.

§ BMI: normal weight = 18-25 kg/m?, overweight =25.1-30 kg/m? and obese = 30-1-46 kg/m?.

Supplementary Tables S1 and S2). There were no sex differ-
ences in the proportion of total dietary energy consumed from
fat, SFA, MUFA or PUFA (data not shown). The average oily fish
intake was 1-0 portion/week with no association of sex with the
oily fish intake.

For all three LC n-3 PUFA, the greatest concentrations were
evident in the PC fraction, with median absolute concentrations
(ug/mD of 15-1, 119 and 44-1 for EPA, DPA and DHA,
respectively. The median values for EPA, DPA and DHA for the
whole group and P values for the association of oily fish intake,
sex, age, BMI and APOE with the plasma concentrations of
these fatty acids in the four lipid fractions are presented in
Table 1. The data according to oily fish intake are shown in the
online Supplementary Fig. S1-S4, whereas data according to
age and BMI are shown in Table 2 and online Supplementary
Tables S3-S5, and those according to APOE genotype X sex in
Fig. 1-3.

Plasma EPA, DPA and DHA in the group as a whole

EPA. The concentration of EPA in plasma CE and TAG was
positively associated with oily fish intake (P<0-004), with evi-
dence for positive association in plasma PC also (P=0-018)
(Table 1). There was evidence for a positive association
between EPA and age in plasma PC, CE’s and TAG (P=0-021,
0-019 and 0-034, respectively) and for the concentration of EPA
in CE to differ by sex (P=0-055), (Table 2). A higher
concentration of EPA in CE was observed in males (Table 2),

and the concentration of EPA in TAG was associated with an
APOE X sex interaction (P=0-044, data not shown).

DPA. The concentration of DPA was positively associated with
oily fish intake in plasma TAG (P=0-006), with evidence for
positive association in plasma PC also (P=0-022) (Table D).
DPA in TAG was positively associated with BMI (P=0-006)
(Table 1), and there was evidence for the positive association of
DPA in NEFA and CE with age (7=0-031 and 0-007, respec-
tively, Table 1). The concentration of DPA significantly differed
by sex with a higher concentration of DPA observed in
plasma TAG in males (P<0-001), with a trend in PC also
(P 0-031D) (Table 1). There was also a significant APOE X sex
interaction for the concentration of DPA in CE (P<0-005, data
not shown).

DHA. The concentration of DHA in all plasma lipid fractions
was positively associated with oily fish intake (£ <0-001). There
was evidence for a positive association of DHA in TAG with
BMI (P=0-020) (Table 1) and with age in PC, CE and TAG
(P=0-037, 0-039 and 0-050, respectively, Table 1).

Overall in PC, NEFA, CE, and TAG, the highest oily fish con-
sumers (2+ portions of oily fish per week) had 55, 42, 52 and
119% higher EPA+DHA, respectively, compared with those
reporting no oily fish intake (online Supplementary Fig. S4).

Due to the significant evidence for the association of sex and
APOE X sex interactions, subgroup analysis was performed in
males and females separately.
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Table 2. Statistical significance (P) of the associations between oily fish intake, sex, age, BMI and long-chain (LC) n-3 PUFA in males and females*

p*
PC (%) NEFA (%) CE (%) TAG (%) PC (ug/ml) NEFA (ug/ml) CE (ug/ml) TAG (ug/ml)
Males
EPA
Qily fish intaket - - - 0-062 0-061 - 0-008
Aget - - - - - 0-058 0-019
BMI§ - - - - - - -
DPA
Oily fish intaket - - NS 0-066 0-026 - -
Aget - - 0-068 - - 0.012 -
BMI§ - - - - - - -
DHA
Qily fish intaket 0-003 0-023 0-016 0-002 0-014 - -
Aget - - 0-011 - 0-024 0-005 -
BMI§ - - - - - - -
Females
EPA
Qily fish intaket 0-004 - 0-009 <0-001 0-003 - - <0-001
Aget 0-04 - - 0-039 - - 0-006
BMI§ - - - - 0-052 - 0-006
DPA
Qily fish intaket - - - - - - 0-067
Aget - - - - - - -
BMI§ - - - - - - -
DHA
Oily fish intaket 0-001 0-001 0-003 <0-001 <0-001 0-048 - 0-001
Aget 0-035 - - 0-047 - - 0-032
BMI§ - - - - 0-010 - -

PC, phosphatidylcholine; CE, cholesteryl esters.

* P values obtained using logyo data in the univariate general linear model analysis. Individual associations were investigated for by the addition of all other variables as covariates,
controlling for any associations between confounding variables that may influence the dependent variable. The resulting P values are therefore reflective of the sole association

between the variable of interest and the dependent variable.

1 Oily fish intake: O portions/week, 0-1-0-99/week, 1-0-1-99/week, and 2+ /week. Oily fish defined as: salmon, herring, mackerel, fresh tuna, sardines, kippers and trout.

1 Age: 20-29, 30-39, 40-49, 50-59 and 60+ years.

§ BMI: normal weight = 18-25 kg/m?, overweight =25.1-30 kg/m? and obese = 30-1-46 kg/m?.

Subgroup analysis of plasma EPA, DPA and DHA
according to sex

Significance data (P) are reported for EPA, DPA and DHA in
Table 2 and median data are reported for EPA, DPA and DHA in
the online Supplementary Tables S3-S5, respectively.

EPA (Table 2, online Supplementary Table S3). The con-
centration of EPA in plasma TAG was positively associated with
oily fish intake in both males and females (P <0-008), whereas
the concentration of EPA in PC was positively associated with
oily fish intake in females only (£ < 0-004). EPA concentration in
TAG was positively associated with age and BMI in females
(P=0-006), whereas EPA in TAG differed by APOE genotype in
males (P=0-002), with evidence for this in CE also (P=0-019),
(Fig. 1. A greater concentration of EPA in TAG was observed in
male APOF4 carriers (P=0-002) with evidence for this in PC
and CE also (P=0-019 and 0-053, respectively), (Fig. 1).

DPA (Table 2, online Supplementary Table S4). The con-
centration of DPA in plasma TAG was positively associated with
oily fish intake in females (P=0-008). There was evidence for
DPA concentration in PC and CE to differ with APOE genotype
in males (P<0-053 and 0-030, respectively; Fig. 2) with further
analysis revealing evidence for higher concentrations of DPA in
PC in APOE4 allele carriers (P=0-032, Fig. 2).

DHA (Table 2, online Supplementary Table S5). The con-
centration of DHA was positively associated with oily fish intake
in plasma PC, NEFA, and TAG in females (P<0-002) and
plasma PC in males (P <0-003), (Table 2). There was evidence
for DHA in plasma NEFA to be associated with BMI in females
(P=0-010, Table 2), and for DHA in CE to differ by APOE
genotype in males. Further analysis revealed evidence for a
higher concentration of DHA in CE in APOE4 carriers
(P=0-021, Fig. 3).

Discussion

EPA and DHA have been widely reported for their beneficial
effects on cardiovascular and cognitive health"'® but a high
level of variation in associations between intake and blood and
tissue status has been observed®. The present analysis aimed
to identify factors associated with concentrations of EPA, DPA
and DHA in major lipid fractions in plasma from individuals
consuming their usual diet in order to identify sources of var-
iation in these concentrations. Identification of the contribution
that oily fish intake, sex, age, BMI and APOE genotype make to
EPA, DPA and DHA status is important for two reasons. First it
will highlight the sources of the heterogeneity in the status of
these fatty acids, contributing to a better understanding of the
use of fatty acid profiles as a measure of dietary intake amongst
different population subgroups. Second, it may allow the
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Fig. 1. Absolute concentrations (ug/ml) of EPA in phosphatidylcholine (PC), NEFA, cholesteryl esters (CE) and TAG lipid fractions in male and female subjects
according to APOE genotype. Distribution of participants in each APOE allele group are as follows; PC: males: E2/E2 =1, E2/E3 =32, E3/E3 =40, E3/E4 =51 and E4/
E4=2, total: 126. PC: females: E2/E2 =3, E2/E3 =39, E3/E3 =44, E3/E4=43 and E4/E4=10, total: 139. NEFA: males: E2/E2=2, E2/E3=29, E3/E3=45, E3/
E4 =50 and E4/E4 =2, total: 128. NEFA: females: E2/E2 =3, E2/E3 =42, E3/E3 =44, E3/E4 =45 and E4/E4 =10, total: 144. CE: males: E2/E2 =2, E2/E3 =33, E3/
E3=50, E3/E4=52 and E4/E4 =2, total: 139. CE: females: E2/E2=3, E2/E3 =44, E3/E3=48, E3/E4=49 and E4/E4 =10, total: 154. TAG: males: E2/E2 =2, E2/
E3=32, E3/E3=50, E3/E4=53 and E4/E4=2, total: 139. TAG: females: E2/E2=3, E2/E3 =45, E3/E3=49, E3/E4=48 and E4/E4=10, total: 155. ll, APOE2;

I, APOES;

, APOE4. * P<0:050. T+ P=0-053. P values were obtained using logi, data in univariate general linear model (GLM) analysis controlling for covariates

(age, BMI and oily fish intake). Where there was a significant association with APOE genotype, significance between specific APOE alleles was assessed using

parameter estimates obtained from the GLM results.

development of subgroup-specific recommendations for LC 7-3
PUFA intake.

The present study reports associations for multiple con-
founding variables with the relative and absolute concentrations
of EPA, DPA and DHA in different plasma lipids. The relative
concentration allows investigation of LC n-3 PUFA concentra-
tions in relation to all other fatty acids within the plasma pool
(% unit changes), whereas the absolute concentration allows
investigation of pg/ml unit changes in LC #n-3 PUFA indepen-
dently of any other fatty acid within the plasma pool. Both ways
of expressing the data are useful and informative and both are
used in the literature in the field. The absolute concentration of
a fatty acid within any plasma lipid fraction will be influenced
by the total concentration of that fraction. The absolute con-
centration of a particular fatty acid may differ between indivi-
duals or between subgroups while the relative concentration of
that fatty acid may not be different between those individuals or
subgroups. Conversely, the relative concentration could be
different, but the absolute concentration may not be. Plasma
lipids are involved in the transport of fatty acids between tissues
where they have different actions depending upon their

structure. Hence, the absolute concentration of a fatty acid in a
plasma lipid reflects the exposure of tissues to that fatty acid
and hence is likely to be a meaningful way of reporting the fatty
acid. Conversely, fatty acids often compete with one another for
metabolism or for function and hence the relative concentration
of each fatty acid (i.e. %) is also likely to be meaningful.
Quantitatively, PC is the main plasma LC 7-3 PUFA pool and
the present study reports a greater relative concentration of
EPA+DHA in plasma PC (online Supplementary Fig. S4) in
individuals consuming 2+ portions of oily fish a week com-
pared with those who reported not consuming oily fish, as well
as positive associations between EPA, DPA and DHA in other
plasma lipid fractions and oily fish intake. Positive associations
for oily fish intake and EPA and DHA are reported for plasma
phospholipids"'®2" which are confirmed by data from the
present analysis which shows 55 % higher EPA + DHA in plasma
PC in those consuming two portions of oily fish (each 150 g) per
week compared with those reporting no oily fish consumption.
Two portions of oily fish supply about 4-5 g of EPA + DHA per
week, equivalent to 600-700 mg/d?**¥. Previous studies
report comparable increases of 81% in plasma phospholipid
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Fig. 2. Absolute concentrations (ug/ml) of DPA in phosphatidylcholine (PC), NEFA, cholesteryl esters (CE) and TAG lipid fractions in male and female subjects
according to APOE genotype. Distribution of participants in each APOE allele group are as follows; PC: males: E2/E2 =1, E2/E3 =32, E3/E3 =40, E3/E4 =51 and E4/
E4=2, total: 126. PC: females: E2/E2=3, E2/E3=39, E3/E3 =44, E3/E4=43 and E4/E4 =10, total: 139. NEFA: males: E2/E2=2, E2/E3=29, E3/E3 =45, E3/
E4 =50 and E4/E4 =2, total: 128. NEFA: females: E2/E2 =3, E2/E3 =42, E3/E3 =44, E3/E4 =45 and E4/E4 =10, total: 144. CE: males: E2/E2 =2, E2/E3 =33, E3/
E3 =50, E3/E4 =52 and E4/E4 =2, total: 139. CE: females: E2/E2 =3, E2/E3 =44, E3/E3 =48, E3/E4 =49 and E4/E4 =10, total: 154. TAG: males: E2/E2=2, E2/
E3=232, E3/E3=50, E3/E4=53 and E4/E4 =2, total: 139. TAG: females: E2/E2=3, E2/E3=45, E3/E3 =49, E3/E4=48 and E4/E4 =10, total: 155. ll, APOE2;

M, APOES;

, APOE4. * P<0:050. + P=0-053. P values were obtained using log1, data in univariate general linear model (GLM) analysis controlling for covariates

(age, BMI and oily fish intake). Where there was a significant association with APOE genotype, significance between specific APOE alleles was assessed using

parameter estimates obtained from the GLM results.

EPA+DHA, and 88 and 8-5ug/ml in total plasma EPA and
DHA, respectively, following 16-week consumption of oily fish
providing 485 mg EPA + DHA per d®” and 6-week consump-
tion of oily fish providing 927 mg EPA+DHA per d, respec-
tively®Y. Overall, the findings of the present analysis support
existing reports that oily fish intake is associated with, and at a
population level is the main determinant of, LC 7-3 PUFA in all
major blood lipid pools, which may, therefore, be used as
biomarkers of oily fish intake“**2%%> Our analysis does not
clearly indicate which plasma lipid fraction would best reflect
dietary intake of EPA and DHA, as, in general all four plasma
lipid fractions showed dose-dependent increases in EPA and
DHA concentration (both absolute and relative) with increasing
frequency of oily fish consumption.

There is some evidence that age influences the concentration
of EPA and DHA in various plasma fatty acid fractions"'?’, which
has been attributed in part to the higher habitual fish intake with
increasing age. Oily fish intake was controlled for in the present
statistical analysis, allowing clearer attribution of any observed
associations of age with EPA, DPA and DHA concentrations to
altered metabolism and not to dietary differences in intakes of

oily fish. Any influence of APOE group distribution was also
ruled out as, despite a greater number of individuals aged
50-59 years being included in the present analysis, there was no
significant difference in the distribution of APOE2, E3 and FE4
genotypes between age groups (data not shown). A 28-d stable
isotope tracer study in young (mean age 27years) v. older
(mean age 77years) adults reported a 1- to 2-fold greater
enrichment of **C-DHA in plasma phospholipids and CE in the
older age group, suggesting a medium-term age-related differ-
ence in DHA homoeostasis associated with accumulation of
DHA in the circulation in older people(%)i The findings of the
present analysis support reports of increased plasma DHA with
increasing age"'?”* and we further also report positive
associations between age and EPA and DPA, suggesting LC 7-3
PUFA accumulate in plasma pools during aging. However, this
may in part be due to an increase in circulating cholesterol and
CE with age (Table 3). Evidence of positive associations of
plasma TC with age dates back to the late 19705(29), and these
have been reported in both males and females®®. Increased
circulating LDL (Table 3) may be reflected in higher absolute
total PC and CE concentrations with age (Z=0-008 and 0-018,
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Fig. 3. Absolute concentrations (ug/ml) of DHA in phosphatidylcholine (PC), NEFA, cholesteryl esters (CE) and TAG lipid fractions in male and female subjects
according to APOE genotype. Distribution of participants in each APOE allele group are as follows; PC: males: E2/E2 =1, E2/E3 =32, E3/E3 =40, E3/E4 =51 and E4/
E4=2, total: 126. PC: females: E2/E2=3, E2/E3 =39, E3/E3 =44, E3/E4=43 and E4/E4=10, total: 139. NEFA: males: E2/E2=2, E2/E3=29, E3/E3=45, E3/
E4 =50 and E4/E4 =2, total: 128. NEFA: females: E2/E2 =3, E2/E3 =42, E3/E3 =44, E3/E4 =45 and E4/E4 =10, total: 144. CE: males: E2/E2=2, E2/E3 =33, E3/
E3 =50, E3/E4 =52 and E4/E4 =2, total: 139. CE: females: E2/E2 =3, E2/E3 =44, E3/E3 =48, E3/E4 =49 and E4/E4 =10, total: 154. TAG: males: E2/E2=2, E2/
E3=32, E3/E3=50, E3/E4=53 and E4/E4=2, total: 139. TAG: females: E2/E2=3, E2/E3 =45, E3/E3 =49, E3/E4=48 and E4/E4=10, total: 155. ll, APOE2;

|, APOES;

, APOE4. * P=0-021. P values were obtained using logs, data in univariate general linear model (GLM) analysis controlling for covariates (age, BMI and

oily fish intake). Where there was a significant association with APOE genotype, significance between specific APOE alleles was assessed using parameter estimates

obtained from the GLM results.

age 20-29 v. 60+ years for PC and CE, respectively, data not
shown) and we observed that TC and LDL-cholesterol con-
centrations were significantly positively correlated with LC 7-3
PUFA concentrations in PC (TC, P= <0-001, 0-003, 0-027;
LDL-cholesterol P= <0-001, <0-001, 0-003, absolute EPA, DPA
and DHA, respectively, data not shown), and that TC,
LDL-cholesterol and HDL-cholesterol concentrations were
positively correlated with LC 7-3 PUFA in CE (TC, P= <0-001,
0-002 absolute EPA and DHA, respectively, LDL, P= <0-001,
0-046, 0-055 absolute EPA, relative DPA and DHA, respectively,
HDL-cholesterol, P=0-046 relative DPA, data not shown).
These data suggest CE levels may play a significant role in the
association of age with LC n-3 PUFA reported in this analysis.

Insulin has a role in the regulation of genes involved in whole
body lipid homoeostasis including in the removal of lipids from
the circulation®; in cases of insulin resistance, such removal
can be compromised. The occurrence of insulin resistance is
reported to rise with increasing age and BMI and despite indi-
viduals with diabetes or a fasting glucose concentration
>6-5mmol/l being excluded from the present analysis, differ-
ences in fasting glucose were still evident between age and BMI
groups (glucose positively correlated with age and BMI;
P<0-001 both, data not shown). Thus, insulin resistance may
contribute to the higher EPA and DPA concentrations in plasma
lipid pools observed with increasing age and BMI.

Increasing body fatness and obesity influence many aspects
of fatty acid and lipid metabolism and contribute to disease
states such as hypertriglyceridemia, diabetes, and fatty liver
disease'?3%; loss of insulin sensitivity with increasing adiposity
results in adipose tissue lipolysis and associated higher plasma
NEFA concentrations®>%. In the present analysis, there was
no correlation between total NEFA concentrations and BMI
(data not shown); however, significant, but complex, associa-
tions between BMI and LC 7-3 PUFA were evident in plasma
TAG, with an overall trend towards lower relative concentra-
tions of EPA and DHA with increasing BMI, which is consistent
with previous observations®**>. Increased p-oxidation of DHA
associated with increased BMI may in part explain lower pro-
portions of LC 7-3 PUFA in TAG®® although altered TAG
synthesis and/or selective tissue uptake and partitioning in
obesity may also be involved. We observed no association of
BMI with absolute plasma concentrations of LC 7-3 PUFA and
suggest the lower relative concentrations (i.e. %) of EPA and
DHA are likely to be offset by increases in total TAG con-
centrations with increasing BMI.

The proteins encoded by the APOE gene play a major role in
the transport and metabolism of lipids via interaction with LDL
receptors (LDLR). Two common polymorphisms (rs7412 and
15429358) of the APOE gene in humans result in three protein
isoforms, APOE2, E3 and E4. APOE2 and APOE3 are found in
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Table 3. Blood cholesterol (mmol/l) concentration according to sex, age, BMI, APOE genotype and oily fish intake

(Mean values with their standard errors)

TC HDL-cholesterol LDL-cholesterol
Mean SEM Mean SEM Mean SEM

Male 516 0-08 1.26 0-02 334 0-07

Female 516 0-08 1-61 0-03 317 0-07

P* NS <0-001 NS

Age group (years)
20-29 4.39 014 1-46 0-05 2:56 013
30-39 4.68 01 1.34 0-04 2.93 0-1
40-49 5-34 0-11 1.47 0-04 341 0-09
50-59 5-57 01 1-45 0-05 3-62 0-09
60+ 5.59 013 1-49 0-06 3.52 0-1
Pt <0-001 NS <0-001

BMI group (kg/m3)t
Normal weight 4.91 0-08 1.57 0-03 2.98 0-07
Overweight 5-33 0-08 1-34 0-03 343 0-07
Obese 5-63 018 1-20 0-05 377 017
Pt <0-001 <0-001 <0-001

APOE v. genotype§
E2 4.71 0-09 1-54 0-04 276 0-08
E3 519 01 1-43 0-04 331 0-08
E4 5-46 0-08 1-37 0-03 3-57 0-07
P* <0-001 0-006 <0-001

Qily fish intakell
0/week 4.9 012 1-41 0-04 311 0-1
0-1-0-99/week 5.21 0-09 1-44 0-03 325 0-07
1-1-99/week 53 012 1-48 0-05 3-38 0-1
2+ /week 516 015 1-41 0-07 328 015
Pt NS NS NS

TC, total cholesterol.
* P values obtained from one-way ANOVA model.
1 P values obtained from Pearson’s correlation model.

+ BMI: normal weight = 18-25 kg/m?, overweight =25.1-30 kg/m? and obese = 30-1-46 kg/m?.
§ APOE genotype: E2 (E2/E2 and E2/E3), E3 (E3/E3) and E4 (E3/E4 and E4/E4).
Il Oily fish defined as: salmon, herring, mackerel, fresh tuna, sardines, kippers and trout.

the circulation mainly on HDL whereas APOE4 is found
preferentially on VLDL with lower concentrations residing on
HDL®”. The APOE4 allele has been associated with reduced
longevity®® and enhanced the risk of CVD®” and Alzheimer’s
disease™®. Although centrally involved in fatty acid transport
and handling in plasma and tissues (and in particular within the
brain where APOE is almost the only apo present), the impact
of APOE genotype on these processes, and the contribution
of dysregulated EPA and DHA metabolism to disease risk
is unknown. However, '>C-DHA labelling studies provide
evidence that DHA metabolism is disturbed in those who are
APOE4 carriers™?.

In the present analysis, APOE4 carriers had significantly
higher concentrations of TC and HDLC, and lower concentra-
tions of LDL-cholesterol (Table 3); however, sexXAPOE
genotype interactions were evident and in male APOE4 carriers
we observed significantly higher concentrations of LDL-
cholesterol as well as of total CE (data not shown). One
advantage of investigating associations in individual plasma
lipid classes as opposed to total lipid is that possible effects of
APOE and lipoprotein transport and metabolism may be more
easily identified. If the associations between APOE and LC n-3
PUFA are seen to occur in lipid pools which are predominantly
related to LDL and VLDL patticles, they may reflect the dysre-
gulation in lipoprotein handling in people with the F4 allele.

However, if the associations between LC 7-3 PUFA and APOE
genotype are seen to occur across all lipid pools, they may be
indicative of alternative mechanisms. Further subgroup analysis
indicated higher EPA, DPA and DHA concentrations in CE, EPA
and DPA in PC, and EPA in TAG in male APOE4 carriers relative
to the non-carrier groups. The higher EPA and DHA may reflect
higher overall CE and PC concentrations; however, the lack of
association between APOE genotype and fatty acid concentra-
tions in females is suggestive of a sex-specific association
independent of CE and PC metabolism.

Interestingly, we have previously reported APOE genotype
mediated differences in the response of plasma EPA and DHA
to a fish oil supplement given over 8 weeks in males, with lower
enrichment in total lipid and phospholipid EPA and DHA in
APOE4 carriers relative to the wild-type APOE3/E3 genotype,
but only in overweight participants(m. The aetiology of these
associations with LC n-3 PUFA metabolism is currently
unknown. As with the association with age, higher plasma LC
1n-3 PUFA in APOE4 carriers may reflect reduced tissue uptake
and DHA accumulating in the circulation. Although lower
overall concentrations of APOE were observed in APOE4
carriers (data not shown) no difference in plasma APOE
concentrations were evident between sexes, which potentially
could have contributed to the differential associations of APOE
genotype with EPA, DPA and DHA concentrations. The
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preferential binding of VLDL by APOE4 and possible associa-
tions of APOE genotype with PC and CE synthesis and cellular
uptake of EPA and DHA via the LDLR family, LDLR
concentrations and specific LC PUFA transporters such as the
MFSD2A transporter in the brain®? may be involved, and are
worthy of future investigations. Associations between sex and
the activity of these transporters and receptors would also be of
interest, along with sex and APOE associations with FADS and
ELOVL genes which encode desaturation and elongation
enzymes required for the synthesis of LC 7-3 PUFA. Differential
synthesis of EPA and DHA has been reported between sexes;
Pawlosky et al. report greater ability of females to convert ALA
to DHA through increased conversion of DPA to DHA
compared with males when consuming a beef-based diet.
These results were not observed when consuming a fish based
diet in which the capacity to convert DPA to DHA was
equal between males and females. These findings suggest
LC n-3 PUFA metabolism in females may be more sensitive to
dietary alterations or may be affected by hormonal regula-
tion*”. Indeed there is evidence for up-regulation of the
desaturase—elongase pathway via oestrogenic actions resulting

A(19,44,45) and

in the increased conversion of ALA to EP
DHA! 11340 indicating significant effects of female sex hor-
mones on the metabolism of LC n-3 PUFA. Consistent with
these observations, there is evidence for an increase in DHA in
relation to EPA and DPA at baseline and response to EPA + DHA
intake in females compared with males”*® The present
analysis further reports lower concentrations of both DPA
(=36% lower absolute concentration in TAG) and EPA (20%
lower absolute concentration in TAG) in females but does not
report higher concentrations of DHA in females or find a sig-
nificant effect of sex on the ratio of DPA: DHA (P> 0-50, data
not shown). However, these results are also in contrast to other
reports describing increased concentrations of EPA and DHA in
females'9*% These data from the present analysis suggest
investigation into associations between sex, APOE, and fatty
acid synthesis enzymes and transporters would be of worth-
while to understand further the mechanisms by which these
associations occur.

In conclusion, we report concentrations of EPA; DPA and
DHA to vary across APOE genotype and that sex is an important
factor to consider when evaluating LC #-3 PUFA concentrations
in these genotypic subgroups. Our results also confirm that
concentrations of EPA, DPA and DHA in plasma pools are
suitable population markers of oily fish consumption and show
that age and sex are important contributors to the variation in
EPA, DPA and DHA concentrations in plasma lipids indepen-
dent of APOE genotype. These variables should be considered
when interpreting LC 7-3 PUFA concentrations as a marker of
dietary intake and when suggesting dietary LC 7n-3 PUFA
recommendations to ensure benefits are achieved across
population subgroups. The investigation into the handling of
supplemental EPA and DHA in these subgroups is to be
addressed in a further publication and could provide the basis
for more detailed advice. However, the aetiology and physio-
logical significance of the interaction between sex and APOE
genotype and its association with EPA, DPA and DHA status still
requires further investigation.
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