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Introduction. Let G be a finitely generated (f.g.) torsion-free nilpotent group. Then
the group algebra fc[G] of G over a field fc is a Noetherian domain and hence has a
classical division ring of fractions, denoted by fc(G). Recently, the division algebras
fc(G) and, somewhat more generally, division algebras generated by f.g. nilpotent groups
have been studied in [3] and [5]. These papers are concerned with the question to what
extent the division algebra determines the group under consideration. Here we continue
the study of the division algebras fc(G) and investigate their Gelfand-Kirillov (GK-)
transcendence degree.

Recall that the GK-transcendence degree of an associative fc-algebra A is defined by

Tdegk(A) = sup inf dk(k[bV]),
V b

where the supremum is taken over the finite-dimensional fc-subspaces V of A, the
infimum is taken over the regular elements be A, and dk(.) denotes GK-dimension over
fc. For a detailed discussion of the invariants Tdegk(.) and dk{.), in particular the latter,
we refer to [2].

In Section 1, we show that, for G f.g. torsion-free nilpotent, one has Tdegfc(fc(G)) =
Tdegfc(fc[G]). Here, the inequality Tdegfc(fc(G))<Tdegfc(fc[G]) is clear from the definition
of Tdeg (take b to be a common denominator for V); so the interest lies in the reverse
inequality. We further define a purely group theoretical invariant, t(G), and show that
Tdegfc(fc(G)) = t(G), thereby reducing the problem of explicitly calculating Tdegfc(fc(G))
to group theory. Our main technical tool is the so-called Hilbert-Neumann construction
which has been extensively used in [3] and [5]. The results in this section are of a fairly
general nature. All that is needed here is the fact that G is an ordered group and that
(twisted) group algebras of G have classical rings of fractions.

In Section 2, we show that, for G nilpotent of class at most two, the invariant t(G)
equals the usual growth degree d(G) of G (see [1]). In particular, since d(G) = dk(k[G]),
we obtain that Tdegfc(fc(G)) = Tdegk(fc[G]) = dk(k[G]) for G f.g. torsion-free nilpotent of
class at most two. Presumably, the equality t(G) = d(G) holds for all f.g. nilpotent groups,
but we have been unable to confirm this. We also include some related results on t(.) and
on the GK-dimension of skew polynomial rings.

1. Filtrations and graduations. Throughout this section, D will denote a division
algebra over a field fc, G will be any ordered group, and S = D * ((G)) will be a (crossed)
Hilbert-Neumann algebra of G over D. Thus each element s e S can be uniquely written
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as a formal sum

x e G

with sxeD and with Supp s = {x e G \ sx j= 0} a well-ordered subset of G. Addition of such
elements is defined componentwise and the multiplication of S is given by

xeC yeG zeG

Here, 7 : G x G —» D* = D\{0} and a:G —» Autfc.̂ gCD) are maps which, of course, have
to satisfy certain relations in order to make this multiplication associative (see [4, 1.1]).
Without loss of generality, we will assume that 1 is the identity of S and we will identify
each deD with dleS, thus viewing D as a subalgebra of S. By the Malcev-Neumann
theorem, S is a division algebra (see [7, Theorem 13.2.11]). We let

v:S->GU{°°} with v(0) = oo and v(s) = min Supp s (s^O)

denote the lowest term valuation of S.

Now let R be a k-subalgebra of S with D s R For each xeG, set

Rx={reR\v(r)>x}, and Rx+ = {reR \ v(r)>x}= U Ry-
y>x

These are D-subspaces of R with Ry c Rx for x ̂  y and RxRy £ Rxy, and similarly for Rx+

and Ry+. Also, U R ^ R a n d f] Rx ={0}. The system {Rx \xeG} will be called the
XGG XGG

G-filtration of R. As usual, we define the associated G-graded algebra of R by

g r J ? = © RXIRX+.
xeG

Multiplication in gr R is given by

(r + Rx+)(t + Ry+) = rt + Rxy+e RxyIRxy+

for reRx, t ei?y. Now set

Then GR is a subsemigroup of G and, clearly, RJRX+ is nonzero if and only if x e GR.
More precisely, we have the following result.

LEMMA 1.1. With the above notation, we have gr R = D * GR, a crossed product of GR

over D obtained by restricting the defining data (y and a) of S = D*((G)) from G to GR.

Proof. Let x e GR. Then there exists r = rxx + r+ e R, where rxeD, rx f 0 and v(r+) > x.
Since D e i ? we can assume that rx = 1. Therefore, if s + Rx+eRJRx+ is arbitrary, say
s = sxx + s+ with v(s+)>x then s = sxr (modi?x+). This shows that RJRX+ is one-
dimensional over D, generated by x = x + Rx+, and each element of gr R can be uniquely
written as a finite sum X dji, with d^eD. One easily verifies the relations x • y =

xeGR
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y(x, y)xy and dx = xdaM for x, y e GR and deD = Ri/Rl+, where 7 and a are the
denning data of S. This proves the lemma.

Our next lemma compares the GK-transcendence degrees of R and of gr R over fc.
For reR with v(r) = xeG, we set f = r + Rx+eRJRx+. Note that in grR we have

LEMMA 1.2. With the above notation, Tdegfc(J?)>Tdegfc(gr R).

Proof. Let Wcgr i? be a finite-dimensional k-subspace and choose a finite-
dimensional k-subspace V c R such that gr V contains W, where

grV = <f|rEV\{O})k.spacecgri?.

Let seR\{0} be arbitrary and let s = s + Rx+ with x = v(s) be its "leading term" in grR.
Then we have s • W s s - g r V = gr(sV) and hence, for all positive integers n,

(s • W O ^

where (sV)(rt) denotes the k-subspace of R generated by the products of length at most n
with factors taken from sV, and similarly for the other expressions. Therefore,

dimk(s • W)(n)<dimfc gr (sV)(n) = dimk(sV)(n).

To see the latter equality, just note that for any subspace U^R we have gr[ / =
© UnRJUr\Rx+. Since seR\{0} was arbitrary, we obtain that

x e G

inf nrnlogndimk(sV)(n)> inf Hm logn dimfc (tW)(t°
seR\(O( n-»°o legr(R)\{0} n-«*>

and since W was arbitrary, we finally get the desired inequality Tdegk(.R) >Tdegk(gr R).

We remark that in general the above inequality will be strict. For example, let
i? = k((X)) = k[Xlx so that G is infinite cyclic and D = k. Then gr R = k[X, X"1] but
T d ( J ? ) '

Our next goal is to give a (semi-) group theoretical expression for the GK-
transcendence degree of gr R = D * GR in the case where D = k and the automorphisms
a(x) (xeGR) are trivial. Thus we will consider twisted semigroup algebras ky[H] of
ordered cancellation semigroups H.

Let H be a cancellation semigroup. For any finite subset E s H , we let EM, neH,
denote the set of elements of H that can be written as products of length at most n with
factors taken from E. Set dE(n) = cardE(n) and

t(H) = sup inf lim lognd^in),

where E runs over the finite subsets of H and xE = {xe | e e E}. Note the formal similarity
of this expression with the one defining the GK-transcendence degree of an algebra.
Indeed, we have the following result.
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LEMMA 1.3. Let H be an ordered cancellation semigroup and let ky[H] be a twisted
semigroup algebra of H over k (with y:HxH—>k' a 2-cocycle). Then Tdegk(fc

7[H]) =
t(H).

Proof. Fix a finite subset E^H and let Vg ky[H~\ be the fc-subspace generated by
E = {x\xeE}^ky[H]. Let re kT[H]\{0} be arbitrary and let x = v(r). For a fixed n>0 ,
set t = dxE(n) and let yu y2,..., y, be the elements of (xE)(l°, ordered so that yx<y2<
. . . < y,. Each yf is of the form yt = xenxei2 •.. xeim with eu e E and m<n. We associate
with yf the element T); = reiXrei2 ... reim e ky[H~\. Note that TJ; e (rV)(tl) and that the lowest
terms v(j)i) = yf are all distinct. Hence the elements r]l, TJ2, . . . , TJ, are linearly indepen-
dent over k and we conclude that dimk(rV)(n)> t = dxE(n). Since r was arbitrary, we
further deduce that

inf Iim logn dimfc(rV)<n)> inf fim logn
[ ] { «» xi=H n-K*>

and since Eo^H was arbitrary, we obtain the estimate Tdegk(k
y[H])>t(H).

To establish the reverse inequality, let V£lcY[H] be a fixed finite-dimensional
fc-subspace and set E = \J Supp r, a finite subset of H. Now let x e H be arbitrary and

rsV\{0>

consider (xV)(n)£ ky[H]. Every nonzero element of (xV)(rt) has its support in (xE)(n) and
we immediately deduce that dimfcCx^^^d^C")- As above, this implies that t(H)>
Tdegk(k

y[HJ), and the lemma is proved.

Note that the proof of Tdegk(fc
T[H])<t(H) did not use the ordering of H. The

following is the main result of this section.

PROPOSITION 1.4. Let G be an ordered group and let ky[G] be a twisted group algebra
of G over k (y.GxG^k' a 2-cocycle). Assume that ky[G] is Ore and let ky(G) denote
the classical division ring of fractions of ky[G]. Then

Tdegfc (k
y(G)) = Tdegfc (k

y[G]) = t(G).

Proof. The embedding of fc^tG] into the (twisted) Hilbert-Neumann division algebra
fcv((G)) of G over k extends to an embedding of ky(G) into /^((G)). Hence we may
apply Lemmas 1.1 and 1.2 with R = ky(G). Clearly, GR = G, as R contains ky[G]. Thus
we have gr R = ky[G], and Lemma 1.2 yields the estimate Tdegk(k

T(G)) >Tdegfc(k
Y[G]).

Since the reverse inequality holds quite generally, we do in fact have equality here. The
proposition now follows from Lemma 1.3.

2. Nilpotent groups of class 2, related results. In this section, we show that, for G a
f .g. nilpotent group of class at most two, the invariant t(G) defined in the previous section
equals the usual growth degree d(G) of G. By [1], d(G) can be computed, for any f.g.
nilpotent group G, in terms of the descending central series G = Gi 2 G2 2 . . . 2 Gc+l =

(1), where Gi+l = [G, G,]. Namely, d(G)= £ id,, where d, =rank (GJGi+l).
i = l

LEMMA 2.1. Let G be a f.g. nilpotent group of class at most two. Then t(G) = d(G).

https://doi.org/10.1017/S0017089500005589 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500005589


GROUP ALGEBRAS OF NILPOTENT GROUPS 171

Proof. For any group G, d{G) can be expressed as follows

d(G) = sup lim logn dE(n),

where E runs over the finite subsets of G and dE(n) is defined as in the previous section.
Thus we always have t(G)^d(G). To establish the reverse inequality it suffices to prove
the following assertion.

(*) If E is a finite subset of G which generates G as a group then

Urn" log,, dB(n) = d(G).

Indeed, suppose (*) is true. Choose a finite subset E^G which contains 1 and
generates G as a group. Then, for any xeG, the set xE also generates G as a group and
we conclude from (*) that lim logn d^in) = d(G). Therefore, t(G)^d(G). Thus it suffices

to prove (*) for G f.g. nilpotent of class at most 2. Set d1 = rank(G/[G, G]), d2 =
rank([G, G]). If E generates G as a group then there exist elements elt e2,... ,edieE
whose images in GI[G, G] are 2-independent. Moreover, [E, E] generates [G, G] as a
group and so we can find /-independent commutators zt = [Xj, yj (i = 1, 2 , . . . , d2) with
Xj, Vj e E. Fix an integer n ̂  0. It is easy to check that, for all k = 0 , 1 , . . . , n2, the element
fJ-i.k =*"y?zrk can be written as a product, in some order, with n factors x, and n factors
yf. For any d2-tuple k = (ku k2,..., kd2) with 0 < kf < n2, set (xk = (Xi,fcl(X2.k2 • • • M-d2,kkd26
£(2d2ll), and, for any dt-tuple I = (lu l2,... ,ld) with O^l^n, set TJ, = e['e'2*... efte.
E(d,n) -j^gjj e a c h ^ ^ beiongS t o £W")) where d = d! + 2d2 = d(G). Moreover, TJ,^ =
rip/x, implies J = p and fc = q and so we conclude that dE(dn)>(n + l)a '(n2+l)d 2>nd.
Therefore,

lim logn de(n) > lim logdn dE(dn)> d,
n—*oo n—*oo

which proves our assertion (*), and hence the lemma.

Proposition 1.4 now gives the following corollary.

COROLLARY 2.2. Let G be a f.g. torsion-free nilpotent group of class at most 2, let
ky[G] be a twisted group algebra of G over a field k, and let ky(G) denote its division ring
of fractions. Then Tdegk(k

y(G)) = Tdegk(k
y[G]) = dk(k

y[G]) =

For general groups G the invariant t(G) seems to be difficult to handle. In the
following lemma we collect a few of its properties. Part (a) is quite easy, and part (b) can
be proved by adapting the argument in [1, Lemma 2].

LEMMA 2.3. Let G be any group.
(a) If H is a homomorphic image of G or a subgroup of finite index in G then

(b) Let A be a f.g. torsion-free abelian group and let (z) be an infinite cyclic group
acting rationally irreducibly on A. Set G = A x(z), the semidirect product. If t(G)<co then
some power of z acts trivially on A.
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By Proposition 1.4, we have Tdegk(k(G)) = Tdeg|c(fc[G]) for any f.g. torsion-free
nilpotent group G. However, the GK-dimension of k(G) remains mysterious, possibly it is
even infinite for G non-abelian. In order to confirm this, it would be enough to prove that
dk(k(G)) is infinite for the discrete Heisenberg group G = (x, y | z = [x, y] is central in G),
since any non-abelian torsion-free nilpotent group contains a copy of G. We close with a
result which allows one to control the behavior of GK-dimension under a special, fairly
mild sort of localization.

LEMMA 2.4. Let R be a k-algebra and let ̂  be a multiplicatively closed central subset
of R consisting of regular elements. Let a be a k-algebra automorphism of R which maps %
to itself and form the skew Laurent polynomial rings S = .Rfx*1; a] c T = .Rgfx*1; a] . Then

Proof. Let V s T be a finite-dimensional fc-subspace. Then Vc(W,x,x 1)(0 for
some finite-dimensional k-subspace W s R and some positive integer /. Choose c e ̂  with
U = cW^R and set V1 = (\¥, x, x"1)^ and Ux = <c, U, x, x~x)fc. Then L^ is a finite-
dimensional fc-subspace of S, and v ( " ) £ V j l " ) for all n. Now Vin> is generated by
monomials of the form

/x = X ' O C~ 1 U 1 X ' I C~ 1 M 2 • • • c " 1 ^ 1 '

with Uj e t/, r > 0, i, e Z and ( £ |i, 11 + r < n. By shifting all factors c"1 to the right, we can
rewrite a as follows l=0

where
r

jij = x^Ujx'1... upc'' e L/i") and /s = Z '; (s = 1 , . . . , r).
J=s

Now let

Pn=tlC\
!=-n

Then fi/3" = my, where

and

ft.(cB V = (xncx~n)... (x-(^1)cxI--1)(3C-^+1)cx^+1)... (x-"cxn)

= x V x " ^ . . . x~1cx~2cx"1... ex" e U\6n).

Similarly, ft, e U<?"+1) and so ye u«nrH6n+l)in-r)) ^ U<fn2+n) and npn
n = my e [/i6n2+2n).

Since multiplication with j3n is injective, we conclude that dimkV
(
1

n)<dimk[/$
6"2+2"). The

assertion of the lemma now follows easily.
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The following example shows that, in the situation of Lemma 2.4, dk(T) will in
general be strictly larger than dk(S).

EXAMPLE 2.5. Let S = fc[G] be the group algebra of the group G = <x, y | z =[x, y]
central). Then S can be written as a skew Laurent polynomial ring, S = i?[y=fcl; a] with
R = k[x*\ z*1] = k[Z © Z] and x" = xz, z" = z. By Bass' formula, we know that dk(S) = 4.
Let <% = {l-xzm | meZ} be the set of all a-conjugates of 1-x and form T = Rg[y;a].
We claim that dk(T)>5. Indeed, consider the subspace V of T generated by x, y and
(1-x)"1. For a fixed n, form products in these elements consisting of n factors x, n factors
y, and r factors (1-x)"1 (r<n). One obtains the following elements

y"xnzI(l-xzm0~1(l-xzm*)-1... (l-xzm')-\

with 0 £ I < n2, 0 < mf :£ n, r < n. In particular, we have the following products

»l,m.r=ynxnzl(l-xzmr1

with 0 £ I < n2, 0 < m ^ n, 1 < r < n. It is easily checked that these elements are linearly
independent over k. Hence the elements yVi_m>r (Osa<n, O^Isn 2 , 0 ^ m < n , l < r <
n) are also linearly independent over k, and they belong to V(4n). Therefore, dimk

V(4n)>n5 which shows that dk(T)s:5, as we have claimed.

Addendum (28 March, 1983). I have just received a copy of [6]. Although Makar-
Limanov only considers the Weyl algebra A1 and its field of fractions, his arguments can
be conveniently adapted to the group algebra situation to yield the following theorem.

THEOREM. Let G be a torsion-free nilpotent group and assume that G is non-abelian.
Then, for any commutative field k, the field of fractions k(G) of k[G] contains a free
k-subalgebra.

In particular, fc(G) has infinite GK-dimension over k. This answers a question raised
in Section 2.

As we have remarked above (in Section 2), it suffices to prove the theorem for the
group

G = (x, y | z = [x, y] is central in G).

We consider a slightly more general situation. Namely, let K be any commutative field
containing an element X.eK' of infinite order and set BK = K[x±1, y±1]/(xy-Ayx). Then
BK is a central-simple Noetherian K-algebra which is a domain. Clearly, taking K = k(z)
and A. = z, we get fc(G) = Q(Bx) and so the theorem is a consequence of the following
lemma.

LEMMA. The K-subalgebra of Q(Bk) generated by a = ( l - x ) - 1 and ab =
( l - x ^ d - y ) " 1 is free.

This can be proved by embedding Q{BK) into the skew Laurent power series ring
Fk = K(x) * ((y)), where K(x) denotes the field of rational functions over K and with
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multiplication based on the rule f(x)y = yf(\x). Using the identity b = l + y + y2 + ... in
Fk, one shows that the monomials a^ba^b... foa''*1 with io,...,ir>0, i,+1>0 are linearly
independent over K. For this, one can closely follow Makar-Limanov, with a few fairly
obvious adjustments to the present situation.

Note added in proof (16 March 1984). L. Makar-Limanov has written a note giving
a proof of the theorem in the Addendum. For further results on division algebras
generated by f.g. nilpotent groups, see the author's article "Group rings and division
rings", to appear in the Proceedings of the Antwerp Ring Theory Conference, 1983.
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