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Abstract. This paper concerns perturbations of the geometric model of the Lorenz
equations and their associated one-dimensional Poincaré maps. R. Williams has
shown that if a map of the interval of the type arising from the Lorenz equations
satisfies f'(x) > 2! everywhere except at the discontinuity then f is locally eventually
onto (l.e.0.) and so topologically transitive [14]. We show roughly that if A* are
the end points of the interval, and their iterates f/(A*) stay on the same side of the
point of discontinuity for 0<j=<k, and f'(x)>2"%**" everywhere, then f is l.e.o.
Secondly, we show that the one-dimensional Poincaré map of any C" perturbation
of the geometric model (for large enough r) has an ergodic measure which is
equivalent to Lebesgue measure. This result follows by showing it is C'** and
satisfies a theorem of Keller, Wong, Lasota, Li & Yorke.

1. Statement of results
The Lorenz equations are

X=-ox+oy
(1.1) y=px—y+xz

z=—Bz+xy.
When the parameter values are o =10, 8 =8/3, and p = 28, numerical integration
indicates these equations have a strange attractor. Since the analytic estimates have
not been made to prove the strange attractor exists, a geometric model was introduced
which has a strange attractor of the type indicated by the numerical integrations.
See [4], [5], or [13] for a description of this geometric model.

The important aspect of the model for this paper is the form of the Poincaré
return map for the flow ¢ from a transversal contained in {z =1} to itself; it is
assumed to be of the form

Plp(X, y)= (f.p(x), gw(xa ¥))
where g,(x, ) is a contraction and f=f,: I=[A™, A"]-> I satisfies the following
conditions:
(12} (@) f has a single discontinuity at some x=C,
(b) the limit of f from the left side of C is A", f(C —0)= A", and the limit
from the right side of C is A™, f(C+0)=A", and f(A")<C <f(A");
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(¢) f is non-uniformly continuously differentiable on [A~, A*]—{C} and
there is a A > 1 such that f'(x)> A for all x# C;
(d) the limit of f'(x) is infinity as x approaches C from either side.

FIGURE 1

For our theorems we need two more conditions for which we need some more
definitions. Assume f satisfies 1.2(a) and let B™ be such that f(B*)=C with
A <B <C<B"<A". Let M(f)(x) be the mean value of f’ from C to x (with
either x< C or x> C):

M(f')(x)————J £ di =

As usual, a function g is said to be C™™ with 0<a =1 if it is C" and the rth
derivative, D"g(p), satisfies a Holder condition with exponent . The last two
conditions on f:I=[A", A*]> I are as follows:

(e) let k be such that

(1.2) ff(A)=C for0<j=<k

f(x) f(C)'

F(AY=C for0=j=k,
M(f)(x)=A for B"=x=B" where f(B*)=C, fi(x)=A>1 for all x# C, and
AAE>2:

(f) the inverse of f extends to a C'** function for some a >0 on both
Ji=[f(A7),A"] and L=[A",f(A")]; g:/i»,c[A",A"] and g:),>L<
[A~, A*] are C'*=
Below we discuss how condition 1.2(f) implies that £, has an invariant measure for
any perturbation ¢. First, we discuss the connection of 1.2(e) with the topological
transitivity of f,. A map f:[A7, A"]>[A", A™] is said to be topologically transitive
if there is a point A”<x =< A" with the w-limit set of x equal to the whole interval
[A7,A"], w(x)=[A", A"]. The map f is said to be locally eventually onto (l.e.0.) if
every open interval J in [A~, A*] has some iterate k such that f*(J)=[A~, A*]. By
a theorem of Birkhofl if f is l.e.o. then a residual set of points have w(x)=[A~, A"]
and so f is certainly topologically transitive.
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R. Williams showed that if f satisfies 1.2(a)-(c) and f'(x)> 2} for all x # C, then
fis lL.e.o. [14]. The difficulty is that computer integration of the Lorenz equations
(1.1) indicate that f'(x) is near 1 for x near the end points so the assumption does
not hold. The next theorem gives the same result with weaker hypotheses which
seem verifiable.

THEOREM A. Let f:[A™, A*]>[A", A*] be a map which satisfies 1.2(a)-(¢) and
1.2(e) with k=2. Then fis l.e.o.

The proof of this theorem is contained in § 2 and uses some ideas from the proof
of R. Williams. It should be remarked that C. Sparrow found examples of maps
satisfying 1.2(a)-(c) which are not lL.e.o. [13]. R. Williams showed me the following
example. Let the subintervals I} be as in figure 2 and let their images be as follows:

fan=1I1;, fy)=I1;ul3, f(I;)=1I;,
fan=1Iy, fUNH=13, fU;)=1;ul;.

Clearly ITu I U Iy u I3 U3 U I is invariant so f is not l.e.o. In terms of 1.2(e),
k=2. The third iterate of I, f7(Iy)=I;y ulI{ so AA*<2 but there is no strict

C
P— p——— p——— Rt}
Iy I I; Iy 7 IT
FIGURE 2

inequality. On these sub-intervals, in some sense AA?=2so it is the first place where
the hypothesis of theorem A does not apply.

R. Williams (results amended by C. Sparrow) has given conditions on the kneading
sequences (i.e. the sequences of sides on which /(A7) and f/(A™) lie) which they
claim imply f is l.e.0. See [13]. The disadvantage with using kneading invariants to
show a specific example is l.e.0. is that in general the whole infinite sequences of
iterates of the end points must be determined. The above theorem uses a finite
amount of the kneading invariant together with an assumption on the derivative.

Turning to the existence of an invariant measure, there is the following result.

THEOREM B. Assume the geometric model of the Lorenz equations has eigenvalues at
the fixed point (and thus the Liapunov exponents on the strange attractor) a, —b, and
—cwhere0<c<a<b,b—c—(1+a)a>0 forsomea>0,and a/c> 1+ a. Moreover
assume the eigenvalues at the fixed point satisfy non-resonance conditions of order r
where r is large enough to C? linearize near the origin. ( For the eigenvalues of (1.1)
with the values of the parameters given above, r = 20 is needed.) Then there is an open
set N in C” flows which are C? near the model equations such that for  in N the
associated Poincaré map of the interval, f,:[A,, Ay] ©, has an invariant measure
hdm where m is Lebesgue measure and h is an L' density function. Further,

(1) there is a finite union of closed intervals L such that support h=L;

(ii) hdm is equivalent to Lebesgue on L(h(x)>0 a.e.); and

(iii) f, is ergodic with respect to hdm.

https://doi.org/10.1017/50143385700002674 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700002674

608 C. Robinson

If the geometric model also satisfies the assumption of theorem A (or if ¢ is lLe.o.),
then support h=[A", A™].

The eigenvalue assumption implies there is an open set of flows satisfying condition
(1.2) as discussed in § 3. The existence of an invariant measure hdm follows from
a result of G. Keller [7] and S. Wong [16] which shows the existence of an absolutely
continuous measure for a class of functions possessing discontinuities which include
functions satisfying 1.2(a)-(d), (f). S. Wong uses an extra condition not needed by
G. Keller to prove the result. We indicate a slight change in his proof which eliminates
this extra condition in § 4. The support of the measure follows from a theorem of
T. Li & J. Yorke [9] as discussed in [15]. Moreover h(x)> 0 for almost all x in the
support L so hdm is equivalent to Lebesgue measure on L. If f is l.e.o. and has a
single discontinuity, then a consequence of their result is that the support of h is
the whole interval [A~, A*] as stated in the theorem, L=[A", A*].

A related result was proved by L. A. Bunimovich & Y. G. Sinai, [3] and [12].
They studied the two-dimensional Poincaré map P(x, y) and showed that if it
satisfied hyperbolicity conditions then it possesses a Bowen-Ruelle-Sinai invariant
measure, [3] and [12]. The quotient of this measure by projection along the stable
foliation induces a measure on the interval but it is not clear that it has the properties
given above. In any case, the proof here uses a different approach from theirs. Also,
W. Parry studied piecewise linear maps which are topologically conjugate to the
maps of the interval arising from the Lorenz equations and showed that they have
an absolutely continuous measure [10]. The topological conjugacy does not carry
over this measure without some smoothness, so our result does not follow directly
from his.

2. Proof of theorem A

Let L(J) be the length of any subinterval J. Let I =[A~, A*] and B* be such that
f(B*)=C. Take any interval J(0)< I. We need to show there is an n such that
S7(J(0)) = I Assume J(i) is defined. Let J'(i) be the longer component of J(i) —{C}.
In particular if C is not in J(i) then J'(i)=J(i). Let J(i+1)=f(J'(i)). If C is not
in J(i) then L(J(i+1))= AL(J(i)). Since I is finite, there is a subsequence i; such
that C is in J(i;~1). Thus J(i;) =[A7, x;] or [x;, A"}]. The idea of the proof is that
J(i;+p) does not contain C for O0=p=k—1 unless J(i) contains [B~, C] or
[C, B*] for some i;<i<i;+k. See lemma 2 below. Thus except in the latter case
LJ(i+ k)= AL(J (i;)) and cannot get cut until at least the k+ 1st iterate. It follows
that

L(J(ij+1)) = 3AN LT (i),
and the length of the intervals J(i;) grows until J(i) contains [B~, C]or [C, B"] for

some i;=<i<i;,,. Lemma 1 shows that f>(J(i))>[A~, A*]. We proceed with the
details.

LEMMA 1. If J(i)2[B~, C] or [C, B*] then f3(J(i))>[A™, A*]=1 so the (i+3)rd
iterate of J(0) covers I.
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Proof. Assume the first case. The other is similar. Then f(J(i))>[C, A*],
AU =2[A7, CJu[C, B*] since k=2, so

U@ >,[A7, CHuf(C B >[C ATJU[A7, Cl=1 O

LEMMA 2. For the subsequence J(i;)=[A", x;] or [x;, A*] either
LI (i ))Z3AN LI G))  or fPU(D) =1
Jor some ;=< i<iy,.
Proof. Take the case J(i;))=[A", x;]. If fP(x;)=C for some 0=p=k—1 then
J(i;+p)>[B~, Clsince fP(A”)=< B™.Bylemma I, f*(J(i;+ p)) = I and we are done.
Thus for 0=p=k—1, we can assume f?(x;)<C, and so J'(i;+p)=J(i;+p) and
LUJ(i;+k))= A*L(J(i})). Also i+ — 1= i;+ k. There are no cuts from §;+k to i, — 1
)
LU (1~ 1)) = LU+ k) = A*LU(0).
If J'(i;4, — 1) contains [B~, C] or [C, B"] then we are done by lemma 1 again. Thus
we can assume J'(i;,, —1)<=[B7, C] or [C, B*] so
L(J(jj+1)) = AL(J (i = 1)) 2 3AL(J (i — 1)) = 3AA LU (i))).

This completes the proof. O

By repeated application of lemma 2, L(J(i))=(AA k12YL(J (i) until f2(J@G) =1
for some i;=<i<i,,. Because the lengths are growing geometrically and L(I) is
finite, eventually some iterate covers I This completes the proof of theorem A.

3. Openness of condition 1.2

It was proved in [11] that there is an open set in the C? flows which satisfies
conditions 1.2(a)-(c). The openness of condition 1.2(d) in C? flows is also proved
in [11], but an easier proof is obtained by a C' linearization of the flow near the
fixed point as pointed out to me by C. Tresser. This C' linearization can be done
if the flow is C?, [2]. A straightforward argument (using 1.2(d)) shows there is an
open set of C? flows which satisfy 1.2(e) for the same k. To get the openness of
condition 1.2(f), the projection onto the branched manifold along the strong contract-
ing direction must be C'*%, c.f. [11]. If the eigenvalues satisfy the conditions of
theorem B, then there is the usual proof as discussed in [11] using the C'** version
of [6, theorem 6.1]. The only difficulty in obtaining 1.2(f) is thus in showing the
branches of the inverse extend to the closures at A* and A~ in such a manner so
that the extension is C'**. This can certainly be done by C? linearizing the flow.
For the eigenvalues of (1.1) this requires r=20. It would be good to give a proof
of this C'** extension assuming only r=2+a. A possible proof would use the
formula for the derivative of the Poincaré map of a flow of a C' vector field in two
dimensions given in [1]. This formula can certainly be used to give an alternative
proof of 1.2(d).

4. Modifications in the proof of Wong

As stated in [16, remark 4, p. 513}, the only place where the added assumptions are
used is in the estimate of A,, on page 511. (Of course this result in contained in [7,
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lemma 3.1].) Using the notation of that paper we prove the estimate on A, = A, + A,
without the added assumption. Here & ={y;}, f is the density function, ® = 7" for
some N is the transformation, ¢; are branches of the inverse, and o, =|¢|; v,(g; J)
is the p-variation of the function g on the interval J.

1/p
A2={ [Z |f o o)l o)) — ou(y;- JI] }

i=1

=

=¥ {lf ()Pl (yy) — o (v DIPY?

IA
HM:

|f° l/’i()’j)lvp(a'il -1 ¥])

b5
{v (fs I)+(1/h) L |f|dm}§ 0 (035 -1, 11)

IA
n[v]:

<

it

{vp(f; Ii)+(1/h)J Iﬂdm}v,,(fri;l.-)

= {max v,(0;; Ji)}{vp(f; I)+(1/h) I Iﬂdm}-

This estimate does not contain a factor of a bound on the iterate of the constant
function 1 or the bound on derivative of 7, i.e. no [M(N)]/9"™/% The rest of the
proof is unchanged.
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