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1. Introduction. In the theory of deformations of compact complex manifolds, 
the hypothesis of constancy of the dimension of diverse structural cohomology 
groups pertaining to a fibre plays an important role (see, for instance, [3, Proposi
tions 2.5 and 2.7, Theorems 2.2 and 2.3, and Definition 6.1]). This paper is the first 
of two devoted to the investigation of conditions under which constancy of the 
dimension of given cohomology groups is assured, and more generally, to the study 
of the variation of that dimension. 

In [2] Griffiths introduces extendible forms in a holomorphic deformation. 
We consider in this paper a differentiate family, and besides extendible, also 
co-extendible and transportable forms (see §5), and deduce from their existence con
clusions about the variation of the dimension of the corresponding structural co
homology groups. It is left to a subsequent paper(x) to give more explicit conditions 
by means of cohomology operations, and to deal with some applications. 

§2 recalls a few central facts from the theory of linear elliptic operators depending 
on a parameter, and §3 gives more specific results, needed in the sequel, concerning 
"Laplacian" operators. In §4 transportable forms are defined and regular and 
singular points of deformed cohomology groups are introduced. §5 introduces 
extendible and co-extendible forms and contains the main results of the paper. In 
§6, we introduce an example in terms of a finite chain complex, which, even 
if not a genuine counter-example, suggests that in general an extendible and co-
extendible form need not be transportable(2). 

A general reference for §§2 and 3 is [4](3). 

2. Preliminaries. Let M={teRm \ \t\ <e}, Va, compact differentiable manifold 
of dimension n (differentiable always in the sense C00) and suppose *s/ is a differen
tiable complex vector bundle of finite rank donVxM.By Lemma 1, reference [4, 
p. 49], we may suppose that <$/=AxM where A=$4 \ Vx{0} with projection 
p:A->V.Let {Ut} be a finite open covering of V by local charts xt : Ut -> Rn and 
fibre charts (for A) 

A/Ut3b^(xfa(b))9 Mb))eXi(UdxCd. 

Received by the editors August 20, 1970. 
(*) Added in proof: A second part, On the stability of the cohomology of complex structures, 

was published in Trans. Amer. Soc. 157 (1971), 87-97. 
(2) I wish to thank Professor M. Kuranishi for a suggestion that led to the example of §6. 
(3) For the general background, see also J. Morrow and K. Kodaira, Complex manifolds^ 
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An element 0 of the space L(A) of differentiable sections of A can then be repre
sented, on Ui9 by a differentiable function 

Define now, for each nonnegative integer k9 the fc-norm \\i/j\\k of I/J e L(A) by 

(2.1) 1011 = 2 2 2 f WitoFdm, 

where dm is the Lebesgue measure on Rn and Da denotes the operator 

0|a| 

l n 

fora = («J, . . . , a n ) . 

The three propositions of this section will be given without proof. 

PROPOSITION 2.1. (Sobolev's lemma, see [4, p. 50, Lemma 2].) For each pair 
(fc, I) of integers k>n/2, />0 there exist constants cktX such that for any a with 
\a\<l 

\DaW(x)\ < cktly\\k+l 
where I/J e L(A) and x e Xi(Ui). 

Consider now a family {Et\ te M} of linear strongly elliptic formally selfadjoint 
operators Et of even order m acting on L(A). 

PROPOSITION 2.2. (Inequality of Friedrichs, see [4, p. 51, Lemma 3].) Let U be a 
subdomain of M such that U is compact and U^M. For each nonnegative integer k 
we have 

IWI? + m<Cfc(MÊ+ilW) 
for ip e L(A), teU, where ck is a constant independent ofteU. 

Suppose now that there is a family gt of hermitian metrics on si depending differ-
entiably on teM. This gives a hermitian scalar product <A, k}t in the fibre At(x) 
—A{x) x{t} and the product 

(&*)*= ! <4<x),ftxy>tdVi9 </>,* in L(A) 

where Vt= Vx{t} and dVt is the volume element defined on Vt by a Riemannian 
metric Gt depending differentiably on t. 

S e t V(<f>, <f>)t= \<l>\t f ° r 0 e L(A). Then there exist constants Ku K2 such that 

for <£ e L(A), teU, where U is chosen as in Proposition 2.2. 

PROPOSITION 2.3. [4, p. 47, Theorems 1, 2]. The operator Et has a complete 
orthonormal set {with respect to the product ( , )t) of eigenfunctions eh(t) e L(AL), 
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h = 1, 2, The eigenvalues X^t) < X2(t) < • •. • < Xh(t) < • • • satisfy Xh(t) -> oo as 
h -> oo. Furthermore, Xh(t) is a continuous function of t, for each h= 1, 2, 

Finally, let us specify what is meant by dependency of class Ck on the parameter 
t. Consider a family {^ | r e M} of differentiate sections of the bundle over V 
and denote by 0f(x, 0 = OAiK** 0> • • •> $*(*> 0) the fibre coordinates on ^ on C/f. 
Then we say that fa is of class Ck in ? if and only if all the partial derivatives £>"</<?(x, f )> 
,?= 1, . . . , d, (with respect to x1 , . . . , xn) are of class Ck as a function of (x, t). 

3. Harmonic theory. Let y —> M be a differentiate family of compact complex 

manifolds over M={t e Rm | 11 \ < e] and & —> *V -^-> M a differentiable family of 
holomorphic vector bundles (see [4, p. 58, Definitions 1, 2]). Let Ut

,s be the vector 
space of differentiable sections of scalar forms of type (r, s) over Vt = 7T~1(t), and 
Lr's the space of differentiable forms on if whose restriction to Vt gives a differen
tiable form of type (r, s) on Vu for all t e M. The elements of U>s will be called 
differentiable forms along the fibres of ir

9 of type (r, s). 
If T{ © T" is the decomposition of the complexified tangent bundle of Vt into 

the direct sum of the holomorphic tangent bundle T{ and its conjugate bundle 7£ 
and &t the dual bundle of Tt', then we have the corresponding unique bundles 
r , T" and & defined on if such that T \ Vt = T'u etc. The vector space L\>* is the 
space of sections of 

^t(r,s) = (Ar^t) A (ASJ^ 

which is equal to the restriction of 

•F(r, 5) = (A'JF) A (As^) 

to Ft. Denote by Lr's(&) the vector space of differentiable sections of 3$ ® ^(r , 5) 
over f and by Lr,s(Bt) the vector space of differentiable sections of Bt ® J^(r, 5), 
where Bt = BjVt. 

We define the operators 8t : !/•
 s(Bt) ->U>S+\Bt) and 5 : Lr> s(J) -> L r 's+2(J) as 

in [4, p. 61], and denoting by Z-** and Zr-fS the respective kernels we set 

H^\Bt) = Z^(Bt) , 

^ 
_ ^d zïxm 

du-*-1 

The inclusion Bt->& induces the restriction map 

rt:Hi's(m—>H%\Bt) 

which is surjective if dim H%t
s(Bt) is independent of te M ([4, p. 66, Theorem 9]). 
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Suppose there is given a Riemannian metric on i^ whose restriction Gt to Vt is 
hermitian, for each t e M (this is called a quasi-hermitian metric). Similarly we 
suppose a hermitian metric along fibres given on Si (this amounts to a reduction of 
the structure group of 3% from GL(d, C) to U(d)). We can then introduce the 
norms |0|t for elements i/f G Lr's(Bt). Let 0t be the adjoint operator of dt defined by 

(Wu <t>t)t = (fa, déùt 
and set 

• £ = 6tdt + dt0t. 

Then {D*}ieM gives a family of strongly elliptic formally selfadjoint linear differen
tial operators acting on the spaces Z> s(Bt). Defining 0 and • by the formulas 

fori/jeLr>s(@)9 we have 
• = es+8$ 

as a map of Lus(@) into itself. 
As our investigations are local in nature, and "T -> M is differentiably locally 

trivial, we may suppose f = I x Mas a differentiable manifold. Hence 88 ® ^(r , .s) 
forms a differentiable family composed of differentiable vector bundles Bt ® ^(r, .s) 
over X, and the strongly elliptic formally selfadjoint linear differential operator •* 
acting on Lr,s(Bt) depends differentiably on t. Hence the results of §2 apply. 

Let Ht be the harmonic operator and Gt the Green's operator associated with Ut 

operating on Lr,s(Bt). We have 

GtHt = HtGt = 0 

and Gt commutes with dt and 9t. The orthogonal projections ^ = 8t6tGti TTQ% = 6tdtGt 

and Ht are mutually orthogonal; obviously 

I = rfdt + 7ret + Ht. 

Further ^t = St6tGt^t+Htiljt for ^eZ^s(j?() which gives the isomorphism 

#f;s(A) = H"'S(A) = Ker nt nU>%Bt). 

By Proposition 2.3, Hr*s(i?f) is finite dimensional. 
Let us finish this section by two fundamental results from [4, p. 65] : 

THEOREM 3.1. (Upper semi-continuity) dim H^\Bt) is an upper semi-continuous 
function of t. 

THEOREM 3.2. If dim /f£'s(2?*) is independent ofteM, then the linear operators 
Gt and Ht acting on Lr,s(Bt) depend differentiably on te M. 
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4. Transportable forms. Consider a differentiable family £8 —> "T —% M of 
holomorphic vector bundles, and suppose that each bundle Bt -> Vt is equipped 
with a hermitian metric depending differentiably on t9 and that y has a quasi-
hermitian metric. 

DEFINITION 4.1. For t0 e M let y e Hr>s(Bto)=Hks. We say that the form y is 
transportable a,tt0eM in the family J* —> "K with the given metrics, if there exists 
a neighborhood Uof f0 in -Wand a differentiable form yt eLr*s(Bt) for each te U, 
depending differentiably on t in U and such that D*tt=0 for all / in U, and that 
yto=y. The form ye depending on the parameter t is called a transportation of y. 

Evidently the set of transportable forms at t0 forms a subspace ^Tt\tQ) of the 
vector space HTtS(Bto) of all harmonic forms of type (r, 5) at t0 e M. 

PROPOSITION 4.1. The function dim HJ>s (=dim H%'(Bt)) is constant in a neighbor
hood of t0 if and only if Fr>s{tQ)=W*s{BtQ). 

Proof. Suppose all harmonic forms of type (r, s) are transportable and let 
{yl,..., yk} be a basis of H^s with transportations {yl,..., y?}, defined in a 
neighborhood of f0

 e M. To show that these transportations are linearly inde
pendent in a neighborhood of t0, suppose the contrary. Then there exist a sequence 
of points tve M such that tv -> t0 as v ->oo, and complex numbers a j , . . . , a* with 
Zf-i Kl2 = l such that2ifc-i«ly!v=0for!>=l, 2, 3 , . . . . Asa, = (a}, . . . , a*) eS2*"1 

which is compact, there is a cluster point a0 = (al,..., ag) e S2*-1 of the sequence 
{av}. By restricting to a subsequence we may suppose av -> 0O- Then 

I2«iyj,k = IKrl-l^yl \h < £ K-«(
0| KI«,-*0 

as i> ->oo. But as on the other hand 

I2«oylk->l2aor?ok^o, 

we have a contradiction. Hence dim H£'s>dim HJ*S in a neighborhood of t0 e M. 
The principle of upper semi-continuity (Theorem 3.1) gives the reverse inequality 
near t0, hence dim H£*s=constant in a neighborhood of that point. 

If, on the other hand, dim Hf*s stays constant in a neighborhood of t0, then by 
Theorem 3.2 the projection operator Hr

t
,s = Ht depends differentiably on t near t0 

and hence for any yeH[;s the form Hty gives a transportation of y in a neighborhood 
of t0. This completes the proof. 

By Proposition 2.3 the operator D* acting on Lr,s(Bt) has eigenvalues Xx(t) 
<A2(/)< • • • < Afc(/)< • • • with Xk(t) ->oo, as k ->oo, and Xk(t) depends continu
ously on t. By, for instance, [4, p. 67, Theorem 11] all eigenvalues of D* are non-
negative. Hence, if Afc+1(/) is the first positive eigenvalue at t e M, then dim H£,s=k. 

DEFINITION 4.2. Let Xk+1(t0) be the first positive eigenvalue of D*0. If Xx(t)= • • • 
= Xk(t)=0 for te U9 where Uis a neighborhood of t0 e M, then we say that t0 is 
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a regular point of Hz
d't

s(Bt). If there is no such neighborhood then t0 is a singular 

point of Hils(Bt). 

Obviously t0 is an isolated singular point if and only if there exists an integer 
h<k and a neighborhood U of t0 such that Xh(t)>0 for / e (7— {/0} and that 
A!(/)= • • • =Afc_1(0 = 0 for f e C/. 

Observe that the notions introduced in Definition 4.2 do not depend on the her-
mitian metrics chosen. 

COROLLARY 4.1. The point t0e M is a regular point ofH$t
s(Bt) if and only if all 

harmonic forms at t0 are transportable. 

Proof. Follows from Proposition 4.1. 

5. Extendible and co-extendible forms. 

DEFINITION 5.1. A enclosed form yEU's(Bto) is extendible (see [2]) at t0 e M 
if there is a neighborhood U of t0 and a family {rjt}te v of forms rjt e Lr* s(Bt) depend
ing differentiably on / and such that Btrjt = 0 and that 7jto=y. The form rjt depending 
on the parameter t is called an extension of y. The vector space of all extendible 
forms of the given type is denoted by JEJJ8. 

Notice that this definition does not make use of the introduced metrics. 

DEFINITION 5.2. A 0^-closed form y e Lr-s(Bto) is co-extendible at t0 e M if there 
is a neighborhood U of t0 and a family {<rt}teU of forms ateLr's(Bt) depending 
differentiably on t and such that 6tat = 0 and that crto = y. The vector space of all 
co-extendible forms of the given type is denoted by C^s. 

As Di«AE=0 is equivalent to the pair of equations 

ddt = 0 and 0$t = 0, 

it is clear that transportability implies extendability and co-extendability, for a 
form y G Hr

t^
s. The example in §6 suggests that the reverse implication is not true 

without further assumptions (see Theorem 5.2). 
Set st = S ® (ArJ^) A (A s ^) , At = Bt® (ArJ^) A (As^t) and Ato = A. By the 

results cited in the beginning of §2 we may suppose 

sf = AxM 

for the differentiate structure, where then A is a bundle on V0. Given a diflferen-
tiable form ipteLr's(Bt) for each t e U^M, we can then consider it as a function 
U->L(A), and in particular, apply the norms ||^||fc, £ = 0,1, 2 , . . . defined in §2. 

THEOREM 5.1. Let r)t and at be an extension and a co-extension, respectively, of a 
form yeHl*s, in a neighborhood U^M of tQ. Then the harmonic parts Htrjt and 
Htdt depend continuously on t at the point tQ. 

Proof. Suppose the neighborhood U of t0 is such that U is compact with U^M. 
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Then (§2) there exist constants Kl9 K2 such that for faeLr-s(Bt) and f e [/ we have 

(5.1) 0<Kx<M-< K2. 
\m\\o 

As irnt=iret+*dt *s a n orthogonal projection in the pre-Hilbert space Lr*s(Bt), 
we have 

(5.2) > \irBtat\t 

because ^ ^ ^ = ^ ^ = 0 and Tret
(Ttl.7Tdt'nt' Similarly 

(5.3) Wt-mlt ^ \*ëflt\f 

By (5.1) ||ort—y||o —>0 and |foi-y||0->0 imply h -y | * ->0 and h*—y|*->0, 
respectively, as f -> t0. Because 

\°t—nt\t ^ k*-y | t+bt-yu 

we get from (5.2) and (5.3) 

lw*|t->0 and |w&^|*->0 (*->/0). 

Now 

\y-Hti)t\t < ly-mlt+lTdtftlt-

Hence \y~-Htr}t\t -> 0 as f -> f0» and similarly |y—/T^ -> 0. In view of (5.1), this 
implies 

(5.4) | |y-#M||o-*0 and ||y-flia,|o-*0 (f->/0). 

Applying now the Friedrichs inequality (Proposition 2.2) to the form 

fa = y-Htrjt 

and the operator D* we get 

(5.5) ||y-iï^||2+m < c^lUtyll+b-H^lî) 

for all nonnegative integers k, m. As Dt depends differentially on t, \\ Dty\\k is a 
continuous function of t; hence the fact that Dfoy=0 and (5.4) imply that the right 
hand side of the inequality (5.5) approaches zero as t -> t0. Hence 

(5.6) |y-J5folU-*0 (/->/<>). 

Sobolev's lemma (Proposition 2.1) gives for the partial derivatives of the com
ponents of fa=y—Htr)teL(A) in some fibre coordinates 

D«fa(*ip\t)->0 

uniformly on U{<= V0 as t -> t0 and for all a, \a\ =0, 1, 2, This means, then, that 
the partial derivatives of Htrjt approach those of y as a limit uniformly in x when 
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t -> t09 in other words Htrjt depends continuously on t dit t0 (see the end of §2). 
Similarly for Htat. 

COROLLARY 5.1. Let k = dimE^s n Q0
,s. Then there is a neighborhood U of t0 

in M such that for t e U, dim HJ>s > k. 

Proof. Let yl9..., yk be a basis of the vector space ££• n Cfc'cHJ;8. As by 
Theorem 5.5 the forms Htyl9..., #*yfc depend continuously on ? at /0 (here con
tinuity in the norm || ||0 would be sufficient), we conclude as in the proof of Proposi
tion 4.1 that Htyl9..., Htyk are linearly independent in a neighborhood of t0 e M. 

THEOREM 5.2. If all harmonic forms y e Jf/£s are extendible and co-extendible, then 
dim Ht's is constant in a neighborhood of t0, and all harmonic forms are transportable 
at t0 e M. 

Proof. By Corollary 5.1, dim//t
r*s>dim Hfo8 in a neighborhood of t0. The 

principle of upper semi-continuity (Theorem 3 J ) provides the reverse inequality. 
The last conclusion follows from Proposition 4.1. 

6. An example. Let K\ i=0, 1, 2, be three complex vector spaces with inner 
products, and let {a}, {bu b2} and {c} be orthonormal bases for K°, K1 and K2, 
respectively. Let/: R -* R be such that/(0)=0 and that/has the same zeros and 
the same sign as the function sin(l//) for t^O, and with the property that the 
positive and negative par t s / + = max (0,/) and/"=min (0,/) are differentiable. 
Such a function can be constructed for instance by starting with exp( —1~2) 
sin (1/0 and smoothing at the zeros other than t = 0. Define then d\\ K{ -> Ki + 1 

for i = 0, 1 as follows: 

d?a=f~(t)b2, 

* * i = ~tf+(t)c, d}b2=f+(t)c. 

The adjoint maps (with respect to the given inner products) 6\ : Kl +1 -> Kx are given 
by 

0?b1 = 096?b2=f-(t)a, 

Olc=f+(t)b2-tf+(t}b1. 

Let [xl9..., xk] denote the vector space spanned by some given vectors xl9... xk. 
Then, setting Z| = ker d\9 0J = ker ^p1 , we get 

= (K1 for f{t) < 0 
' \[bi + tb2] for/(0 > 0 

= ([h] for/(0 < 0 
1 {K1 for f(t) > 0. 
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Hence, if H| = ker d\ n ker 6\ ~ \ then 

f [ox] for fit) < 0 

m = l[b1,b2] = K' for/(0 = 0 

l[*i + /*a] for/(0 > 0. 

Now ex G Hi is "extendible" with an extension ^=6i + rf>2,
 a nd "co-extendible" 

with a co-extension ort=6i. The vector ex is not "transportable', however, as there 
obviously is no function yt oft, differentiate (or even continuous) in a neighborhood 
U of /=0 and such that yQ=b1, yt e Hj for teU. 
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