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Stability of Biharmonic Legendrian
Submanifolds in Sasakian Space Forms

Toru Sasahara

Abstract. Biharmonic maps are defined as critical points of the bienergy. Every harmonic map is a
stable biharmonic map. In this article, the stability of nonharmonic biharmonic Legendrian subman-
ifolds in Sasakian space forms is discussed.

1 Introduction

The study of Legendrian submanifolds in contact manifolds from the Riemannian
geometric point of view was initiated in the 1970’s. In particular, the class of minimal
Legendrian submanifolds is one of the most interesting objects of study from both the
geometric and the physical points of view. It is important to introduce classes which
include such submanifolds.

A natural extension of the class of minimal submanifolds is the class of those with
parallel mean curvature vector field. During the last three decades, many geometers
have obtained interesting results on nonminimal submanifolds with parallel mean
curvature vector field.

On the other hand, it is known that there exist no Legendrian submanifolds with
parallel mean curvature vector field in Sasakian manifolds, apart from the minimal
ones [13]. Thus, when the ambient space is a Sasakian manifold, we need to con-
sider some other extensions of minimal Legendrian submanifolds. In this paper, we
consider an extension from a variational point of view.

Eells and Sampson introduced the notion of biharmonic maps, which are critical
points of bienergy functionals [8]. Harmonic maps are biharmonic maps; however
the converse is not true in general. Recently, nonharmonic biharmonic submanifolds
have been investigated intensively. In particular, nonharmonic biharmonic Legen-
drian submanifolds in Sasakian space forms of low dimension have been classified
[9,12]. The purpose of this paper is to establish the second variation formula for
nonharmonic biharmonic Legendrian submanifolds in Sasakian space forms of gen-
eral dimension and then to investigate their stability.

2 Preliminaries

A (2n + 1)-dimensional differentiable manifold N*"*! is called a contact manifold
if there exists a globally defined 1-form 7 such that n A (dn)" # 0. On a contact
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manifold there exists a unique global vector field ¢ satisfying

dn(&,X) =0, n(¢) =1,

for all X € TN?"*!. The vector field ¢ is called a Reeb vector field.
Moreover, it is well known that there exist a tensor field ¢ of type (1,1) and a
Riemannian metric g which satisfy

¢ =-T+n®¢E gdX, oY) =gX,Y) —n)n(Y),
g&.X) =nX), dnX,Y)=g(X,eY),

forall X,Y € TN?""! (see [2]).

The structure (¢,&,n,g) is called a contact metric structure, and the manifold
N2"*1 with a contact metric structure is said to be a contact metric manifold. A contact
metric manifold is said to be a Sasakian manifold if it satisfies [¢, ¢] +2dn @ € = 0
on N2 where [¢, ¢] is the Nijenhuis torsion of ¢. On Sasakian manifolds, we have

(2.1) (Vx9)Y = g(X,Y)§ —=n(Y)X, and Vxé=—¢X,

for any vector fields X and Y, where V is the Levi-Civita connection of N2**!. In
some respects, Sasakian manifolds may be viewed as odd-dimensional analogues of
Kihler manifolds.

A tangent plane in T,N*"*! which is invariant under ¢ is called a ¢-section
(see [2]). The sectional curvature of ¢-section is called a ¢-sectional curvature.
If the ¢-sectional curvature is constant on N2"*1, then N?"*! is said to be of con-
stant ¢-sectional curvature. Complete and connected Sasakian manifolds of constant
¢-sectional curvature are called Sasakian space forms. Denote Sasakian space forms
of constant ¢-sectional curvature € by N>"*!(¢). The curvature tensor R of N***1(¢)
is given by

< Z > {gV,2)X —g(Z,X)Y} + %{n(X)n(Z)Y

—n(Y)nZ2)X +g(X, Z)n(Y)€ — g(Y, Z)n(X)¢

+8(Z,6Y)6X — g(Z, 6X)0Y +2g(X, 0Y)6Z }

22)  RX,Y)Z=

Let M™ be a submanifold in a contact manifold N2"*!, If 5 restricted to M" van-
ishes, then M™ is called an integral submanifold; in particular if m = n, it is called a
Legendrian submanifold.

Let f: M™ — N?"*!(¢) be an isometric immesion. Denote the Levi-Civita con-
nection of N?**!(€) (resp. M™) by V (resp. V). Let V/ be the induced connection
by f on the bundle f*TN*"*!, which is the pull-back of V.

The formulas of Gauss and Weingarten are given respectively by

(2.3) V4df(Y) = df(VxY) +h(X,Y),

(2.4) VIV = —df(AvX) + DyV,
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where X, Y € TM™, V € T+M™, h, A and D are the second fundamental form, the
shape operator and the normal connection, respectively. We identify df(X) and X
for any vector fields X on M™. The following relation holds:

where (,) :=g(,).

The mean curvature vector H is given by H = # trace h. The length of H is called
the mean curvature. If the mean curvature vector vanishes on M" everywhere, then
M'™ is called a minimal submanifold.

In this paper, submanifolds and immersions mean isometrically immersed mani-
folds and isometric immersions, respectively.

3 Biharmonic Legendrian Submanifolds

Let M™ and N" be Riemannian manifolds and f: M" — N" a smooth map. The
tension field T(f) of f is a section of the vector bundle f*TN defined by

7(f) == tre(V/df) = Z{vgdf(ei) —df(Ve)},
i=1

where {¢;} denotes alocal orthonormal frame field of M.
A smooth map f is said to be a harmonic map if its tension field vanishes. It is well
known that f is harmonic if and only if f is a critical point of the energy

E(f) :/Q|df|2 dvg

over every compact domain €2 of M, where | - | denotes the Hilbert-Schmidt norm.
J. Eells and J. H. Sampson [8] suggested studying k-harmonic maps which are crit-
ical points of k-energy Ej:

Ex(f) = /Q (d+ d*) | dvg,

where d* is the codifferential operator.
Clearly, a 1-harmonic map is a harmonic map. In case of k = 2, we have

Ex(f) = / ()P dv,.

The functional E, is frequently called the bienergy. The Euler-Lagrange equation of
the functional E, was computed by Jiang [10] as follows:

(3.1) dr(r(f) =0,

https://doi.org/10.4153/CMB-2008-045-0 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2008-045-0

Stability of Biharmonic Legendrian Submanifolds in Sasakian Space Forms 451

where the operator J is the Jacobi operator defined by

(3.2) 3;(V) = AV —Rp(V), V eT(fTN),

(33) A= =Y (VIVL=VE )0 Rp(V) =D RY(V,df(e)df (e,
i=1

i=1

where RY is the curvature tensor of N.
In particular, if N is the Euclidean n-space E” and f = (x1,...,x,) is an immer-
sion from M into E”, then

Hf(T(f)) = (=ApApxr, -, = Ay Ayx,),

where Ay is the Laplace operator acting on C°°(M). Thus the 2-harmonicity for
an immersion into Euclidean space is equivalent to the biharmonicity in the sense of
Chen [6]. For this reason, 2-harmonic maps are frequently called biharmonic maps.
Every harmonic map is a stable biharmonic map [10]. Nonharmonic biharmonic
maps are said to be proper.

Now let f: M?> — N°(¢) be a Legendrian immersion into Sasakian space forms.
Then from (3.1), (3.2), (3.3), and (2.2) we see that f is biharmonic if and only if

A/H = (56:3>H.

In [12] the author determined the intrinsic and the extrinsic structures of Legen-
drian surfaces satisfying A (H = AH for a constant .

Theorem 1([12]) Let f: M?> — N°(¢) be a nonminimal Legendrian immersion sat-
isfying A tH = XH for a constant . Then there exists a suitable local coordinate system
{u, v} on a neighborhood of p such that the metric tensor ¢ and the second fundamental
form h take the following forms:

(i) g=du*+dV
i) h(Du, 8) = VA — 1coshgd,,
h(0y,0,) = VA — 1sinf¢0,,,

h(0y, 0,) = VA — 1sinf¢0,,
where 0,, = %, 0, = %, and 0 is a constant which satisfies

€+3

(3.4) sinf(cos @ — sinf) = m

Conversely, suppose that 0, A\( > 1) and e are constants satisfying (3.4). Let g =
du? + dv* be the metric tensor on a simply-connected domain V.C R%. Then, up to rigid
motions of N°(€), there exists a unique Legendrian immersion f of (V,g) into N°(e)
whose second fundamental form is given by (ii). Moreover such an immersion satisfies
AfH = \H.
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5¢+3
4

In case A = in Theorem 1, we get the following.

Corollary 2 ([12]) Let M? be a proper biharmonic Legendrian surfaces in N°(e).
Then € > %ﬁ and at each point p € M? there exists a suitable local coordi-
nate system {u, v} on a neighborhood of p such that the metric tensor g and the second
fundamental form h take the following forms:

(i) g=du*+dV

(if) c—1 1
MO 0) = =00, W0y, 0,) = (@ = =) 60,
W00 = (0 - 1) 60,
where
a_\/13e—9i\/w o

Conversely, suppose that ¢ is a constant satisfying e > (—11 + 32+/2)/41 and let g
be the metric tensor on a simply-connected domain V. C R?* defined by (i). Then, up to
rigid motions of N°(€), there exists a unique Legendrian immersion of (V, g) into N°(e)
whose second fundamental form is given by (ii). Moreover such an immersion is proper
biharmonic.

We consider the complex Euclidean (1 + 1)-space C"*! and identify
z=(x+iy1,... . Xp1 +iypn) € C™

with (x1,..., %041, Y1, -+ - Ynr1) € E¥'"2, Let J be its usual almost complex structure.
It is well known [2] that a Sasakian space form N2"*!(1) is isomorphic to S***1(1)
endowed with the Sasakian structure induced by J of C"*1,

We can explicitly represent proper biharmonic Legendrian immersions into S°(1)
in C? as follows:

Corollary 3 ([12]) Let f: M* — S$°(1) C C? be a proper biharmonic Legendrian
immersion. Then the position vector f = f(u,v) of M* in C? is given by

1

V2

Remark. (i) We see that (3.5) is doubly periodic. More precisely, it is periodic
with period 27 with respect to u and /27 with respect to v. Thus, it is a proper
biharmonic Legendrian embedding from the flat torus T2 = R*/A with A generated
by {(2,0), (0, v2m)}.

(ii) Let f: M — E" be an immersion. If the position vector f can be written as

(3.5) flu,v) = (€™, ie" ™" sin v2v,ie ™ cos v/ 2v).

f=h+h Auh=Mh, Aufhr=Nf,

https://doi.org/10.4153/CMB-2008-045-0 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2008-045-0

Stability of Biharmonic Legendrian Submanifolds in Sasakian Space Forms 453

for two different constants A; and )\, then f is said to be of 2-type. Compact 2-type
submanifolds are characterized by the minimal polynomial criterion which estab-
lishes an existence of a polynomial of degree 2 such that P(A f)(H ) =0 [5]. Here H
is the mean curvature vector field of f. Since (3.5) satisfies (A? — 4Af +3I)(H) =0,
where I is the identity transformation of E", we obtain that f is biharmonic by
[4, Proposition 4.1] and 2-type by [5]. In fact, we put

1 . 1 . .
filu,v) := ﬁ(e’”,0,0) and fr(u,v) = ﬁ(o,ie*’” sin v/2v, ie "™ cos V/2).

Then we have f = fi + f, Ay fi = fi and Ay f = 3 f,. Note that (3.5) is not of the
type given by [4, Theorem 3.9 or 3.13].

(iii) We put g;(u) = (cosu,sinu) and g(v) = %(1, sin v/2v, cos v2v) € $3(1).
Then f(u, v) can be written as f(u,v) = g1 ® & [7]. Note that g is a proper bihar-
monic curve in $?(1) [4].

4 Stability of Biharmonic Legendrian Submanifolds

In [10] Jiang obtained the second variation formula for the bienergy E,. But it is
difficult to compute the formula when the ambient space is not locally symmetric.
We remark that Sasakian space forms are not locally symmetric in general. In this
section, we shall compute the second variation formula for a biharmonic Legendrian
immersion into Sasakian space forms in a similar way as in [11].

Let f: M" — N?""(¢) be a biharmonic Legendrian immersion from a com-
pact n-dimensional manifold into a (2n + 1)-dimensional Sasakian space form. Let
F: R x M" — N?"*1(¢) be a smooth variation of f such that F(0, p) = f(p) for any
p € M. Let ( %) ) and X(; ) be the vector fields which are the extension of % on
R and X on M" to R x M", respectively. We put f,(p) = F(t, p). The corresponding
variational vector field V is given by

d
V(p) = a

0
o) =ar( )

. ©0.p)

We recall the following from [11].

1 42
(a) sqr| B0 = [ a0 v)d,
where
(12 1) = ¥ a {~Ag7 — traceR(dfs - 7)dfi -}

V =VFfand7 = 7(f).
If (4.1) is non-negative for any vector field V, then f or M" is said to be stable.
Otherwise it is said to be unstable.
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We shall calculate (4.2) more precisely.

(4.3)
~ VA=Y (V4 VeV = Vy Ve um)

JdF(e)) (Vo) + ¥,

Vori + Vs ]ve;,}

2 2
ot Lo

) L _
5) ,dF(Veie,-)) 7+ Vv, Vo + v[g,%ei]n} .
Asin [11], we have

(4.4) Vaori|,_y ==V —trace RN(df -, V)df - = —F(V).

Let {e;} be a geodesic frame field around an arbitrary point p € M". Then from
(4.3) and (4.4), when t = 0, at p we get the following.

Lemma 4
@5 =VaApn|,_ =Y {RNV,e) (V1) + Vo (RN (V,e)T) } +A73,V,

whereV =V/, 1 =7,
We need the following lemma in order to compute (4.5) more precisely.
Lemma 5

(16)  RYV,e)(Ver) = T (e, Vor)V — (Tor, V)er)

+ WV InTamen — (e Verhn(VIE + (T, e oV

- <v€i7—7 ¢V>¢ei + 2<V7 ¢ei>¢(vei7—)} y

6+3

(47) Vo RNV, e)T) = Ve,(<T Vei)

e—1
+

{9a((7.00)8V — (r,0V)6e + 27, pe)or ) |

Proof By using the fact that 7 is normal to M" and £, we can easily obtain (4.6) and
(4.7) from (2.2). [ |
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We continue to calculate (4.2). Using (2.1) and (2.2), we have
(4.8) _vg trace RN (dF -, 7;)dF -

€+3

= =52V { (n dF(e))dF(e) — (dF(e), dF(e)m |

— S STV LR R — e n(dE(e)dR(e)
+ (dF(er), dF(&))n(m )€ — (7, dF(x)n(dF(e)€

+3(dF(ei), ¢7:)p(dF(ei)) — (dF(er), ¢(dF(ei))>¢>Tr} ;

e+3

T4 Z{<v§7—f’dp(ef)>dp(€i)+<7’t7

VaL?’dF(ei»dF(ei)

+ (7, dF(e:))V o dF(e;) — 2{V o dF(e;), dF(e;)) 7 — (dF(e,-LdF(e,))Val }

_ e; 1 Z
+(dF(e))’V o 7 — {( o7, €) = <Tt,¢(dp(%) ) > }7)(dF(e,'))dF(e,v)

] (9 4P, &) — {drten, o(aF( 2) ) ) }are)

2 2
o ot

2(dF(e), O] (7 ydrte. ) - (are),o(ar(5)) ) b

— n(1)n(dE(e;))V a 2 dF(e;) +2( 2 dF(e;),dF(e;))n(m: )¢

+<dF(ei),dF<e1{ g8 = (m0(d ( )t

— (dF(es), dE(e)n (aﬁ)) ¥ o 7 dF () n(dF ()€
~(m vng(ei>>n<dF(e,->>f

~ (rdrte){ (¥ ydr(e). ) - (are).o(dr( ) ) ) }¢

3)) +3{< o dF(e), ¢7:) BdF(e:)

+ (7, dF(ei)M(dF(ei))(b(dF( a

+<dF(e,v),<dF(%> >§ 7,(Tt)dp(8)+¢(vm Yo(dF(er))

+ (dF(en, om) ({ aP( ) dF(e) ) € — n(dF(e)dF( ) + (7 s dF(en)) }

—(V o dF(e;), $(dF(e:))d7i

— {aren, (ar( 2) dre)) €~ n(arendr( 2) +6(T ydF(e)) or

— (ar(e), s(r@N) { (db( o) 7)€~ nmd( 5) + 6V m}].
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We need the following lemma.
Lemma 6 N ydF(e)|,_ )= VedF(§)|,_ = V.V.
From (4.8) and Lemma 6 we deduce the following.
Lemma 7
—7% trace RN (dF -, 7)dF - |;—o

€e+3

== @+ (1 YV — 2V, )7 403,V )

e—1
4

{—n(<3fv, &)+ (r, V) € +3(3;V)*
+3 Z(mv, ¢r)de; + (i, ¢7) ((V, €& + ¢(ve,.V))) } ,

where (V)T (resp. (J7V)1) denotes the tangent (resp. normal) part of 3¢V .
Consequently, we obtain the second variation formula as follows.

Theorem 8 Let f be a biharmonic Legendrian immersion from a compact n-dimen-
sional manifold M" into a Sasakian space form N*"*1(¢). Let { f;} be a smooth variation
of f such that fy = f andV are the corresponding variational vector field. Then we have

1 d*
(49) sl = [ v vyay,
where
(V) = — €3 { |7|?V + 2trace<Vf. 7,V +2trace(r, v/ V) +(r, V)T

~ 2trace(V/LV, )r — (@) + gV |

e—1

+ {n(V) trace(n(V 7)) + | Pn(V)E + 2 trace(V 7, ¢ - )6V
—2trace(V 7, 6V)g- — 40(V],, V) = 2V, ¢7) + (Vg7
— 46(V] V) + 2 trace(r, p(V. V)¢ -

— 3(r, ¢V )1 + 2 trace(VL V, ¢ b7 + 2nn(V) 7
+2(V)(@V)T +m(@V)E =3V} + Adyv.

Proof When we compute (4.7) at p, we use the following;

Ve (V) = (e, VIE —n(V)ei + 9(Ve,V), Ve (de) = (e, &) + d(h(ei, ).

Combining Lemmas 4, 5 and 7 we get (4.9). ]
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Observe that if € = 1, formula (4.9) agrees with [11, (2.2)].

We put F(X) := (h(X, X), $X) for a vector field X of M". Then F(¢7) is globally
defined on M". In terms of ||7|| and F(¢7), we give the sufficient conditions for
proper biharmonic Legendrian submanifolds to be unstable.

Theorem 9 Let M" be a compact proper biharmonic Legendrian submanifold in a
Sasakian space form N*"*1(¢). If

/ {(e +3)|7]]* = 3(e — I)F(gsz)}dvg >0,
Mﬂ

then M" is unstable.

Proof We take 7 as the variational vector field V. By Theorem 8, (2.3), (2.4), and
(2.5) we have

(I(7),7) = —(e+3)||7||* — 3(e — 1){h(dT, $T),T).

This completes the proof. ]

Inoguchi [9] determined proper biharmonic Legendrian curves of 3-dimensionl
Sasakian space forms.

Theorem 10 ([9]) Let~y: I — N°(¢) be a proper biharmonic Legendrian curve. Then
€ > 1 and vy is a Legendrian helix of curvature /e — 1.

It follows from Theorem 10 and Corollary 2(ii) that in case n = 1 or 2, then
€ > —3and F(¢7) = —n||7||*(e — 1). Therefore applying Theorem 12 we state the
following.

Corollary 11 Let M" be a compact proper biharmonic Legendrian submanifold in
Sasakian space form N*"*1(¢). If n < 2, then M" is unstable.

There is a special vector field along submanifolds in contact manifolds, i.e., Reeb
vector field €. Thus, it is natural and interesting to consider variations

V € Span{¢} := {af | a € C*(M)}.

We call such variations R-variations. If the second variation (4.1) under any R-
variation is non-negative, f or M" is said to be R-stable. Otherwise it is said to be
R-unstable.

Proposition 12 Let M" be a compact proper biharmonic Legendrian submanifold in
Sasakian space form N*"*1(¢). Then we have

/Mng(‘lf),a@ dv= /n{(AM"fl)2 + = ; 36(AMna)a} dvg,

wherea € C*°(M").
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Proof Let f be a proper biharmonic Legendrian immersion from M" into N*"*1(e).
We take a¢ as the variational vector field, where a € C*°(M"). We can easily see the

following:

(4.10) Ag(ag) = (Aypa + na)é +2¢ grada + agr,
(4.11) Re(al) = ank.

By using Theorem 8, (4.10), (4.11), and Stokes’ theorem, we obtain

/"<I(af),a§> dv

_ /{ — &7 + (A3 (a)), a) + 3—3;7—‘“1@)((&5)’@} v,
/{ = @[7* +(37(ak), Ag(ad) + 32_ 4n(AMna)a} dv,
/ { (Apra)® + n(Aypa)a + 4 grad al|* + 34 - 4”(AM,,a)a} dv,
/ ”{(AMna) N 3€(AMna)a} dvg.
This completes the proof. .

Theorem 13 Let M" be a compact proper biharmonic Legendrian submanifold in
Sasakian space form N*"*(¢). Then M" is R-stable if and only if A, > #, where A\
is the first non-zero eigenvalue of the Laplacian acting on C>°(M").

Proof For each a € C°°(M"), we have the spectral decomposition (in L2-sense):

a:§ ag,

>0

where Appa, = Magand 0 = Ay < A\j < Ay < --- 1 c0. Since [}, a;a;dv = 0 for
i # j, from Proposition 12 we get
3
A / 2 dv.
M

19
/ (I(ag),al) dv ="y (X} +
" t>1
If A > 382, wehave [, (I(a€), a&) dv > 0 for any function a and hence R-stable.
Conversely, suppose that M" is R-stable. If A\; < 35119, then fM” (I(a1&),m &) dv < 0
for an eigenfunction a; of A;. This is a contradiction. Therefore M" must satisfy
)\1 > 35:19. ]

Corollary 14 Compact proper biharmonic Legendrian submanifolds of Sasakian space
forms N**1(e) with e < £ are R-stable.
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Remark. A compact proper biharmonic Legendrian surface in S (see (3.5)) is unsta-
ble but R-stable.

Theorem 13 indicates that the spectral geometry of compact proper biharmonic
Legendrian submanifolds in Sasakian space forms is important.
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