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Stability of Biharmonic Legendrian
Submanifolds in Sasakian Space Forms

Toru Sasahara

Abstract. Biharmonic maps are defined as critical points of the bienergy. Every harmonic map is a

stable biharmonic map. In this article, the stability of nonharmonic biharmonic Legendrian subman-

ifolds in Sasakian space forms is discussed.

1 Introduction

The study of Legendrian submanifolds in contact manifolds from the Riemannian

geometric point of view was initiated in the 1970’s. In particular, the class of minimal

Legendrian submanifolds is one of the most interesting objects of study from both the

geometric and the physical points of view. It is important to introduce classes which

include such submanifolds.

A natural extension of the class of minimal submanifolds is the class of those with

parallel mean curvature vector field. During the last three decades, many geometers

have obtained interesting results on nonminimal submanifolds with parallel mean

curvature vector field.

On the other hand, it is known that there exist no Legendrian submanifolds with

parallel mean curvature vector field in Sasakian manifolds, apart from the minimal

ones [13]. Thus, when the ambient space is a Sasakian manifold, we need to con-

sider some other extensions of minimal Legendrian submanifolds. In this paper, we

consider an extension from a variational point of view.

Eells and Sampson introduced the notion of biharmonic maps, which are critical

points of bienergy functionals [8]. Harmonic maps are biharmonic maps; however

the converse is not true in general. Recently, nonharmonic biharmonic submanifolds

have been investigated intensively. In particular, nonharmonic biharmonic Legen-

drian submanifolds in Sasakian space forms of low dimension have been classified

[9, 12]. The purpose of this paper is to establish the second variation formula for

nonharmonic biharmonic Legendrian submanifolds in Sasakian space forms of gen-

eral dimension and then to investigate their stability.

2 Preliminaries

A (2n + 1)-dimensional differentiable manifold N2n+1 is called a contact manifold

if there exists a globally defined 1-form η such that η ∧ (dη)n 6= 0. On a contact
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manifold there exists a unique global vector field ξ satisfying

dη(ξ, X) = 0, η(ξ) = 1,

for all X ∈ TN2n+1. The vector field ξ is called a Reeb vector field.

Moreover, it is well known that there exist a tensor field φ of type (1, 1) and a

Riemannian metric g which satisfy

φ2
= −I + η ⊗ ξ, g(φX, φY ) = g(X,Y ) − η(X)η(Y ),

g(ξ, X) = η(X), dη(X,Y ) = g(X, φY ),

for all X,Y ∈ TN2n+1 (see [2]).

The structure (φ, ξ, η, g) is called a contact metric structure, and the manifold

N2n+1 with a contact metric structure is said to be a contact metric manifold. A contact

metric manifold is said to be a Sasakian manifold if it satisfies [φ, φ] + 2dη ⊗ ξ = 0

on N2n+1, where [φ, φ] is the Nijenhuis torsion of φ. On Sasakian manifolds, we have

(2.1) (∇̄Xφ)Y = g(X,Y )ξ − η(Y )X, and ∇̄Xξ = −φX,

for any vector fields X and Y , where ∇̄ is the Levi–Civita connection of N2n+1. In

some respects, Sasakian manifolds may be viewed as odd-dimensional analogues of

Kähler manifolds.

A tangent plane in TpN2n+1 which is invariant under φ is called a φ-section

(see [2]). The sectional curvature of φ-section is called a φ-sectional curvature.

If the φ-sectional curvature is constant on N2n+1, then N2n+1 is said to be of con-

stant φ-sectional curvature. Complete and connected Sasakian manifolds of constant

φ-sectional curvature are called Sasakian space forms. Denote Sasakian space forms

of constant φ-sectional curvature ǫ by N2n+1(ǫ). The curvature tensor R̄ of N2n+1(ǫ)

is given by

R̄(X,Y )Z =
ǫ + 3

4
{g(Y, Z)X − g(Z, X)Y} +

ǫ − 1

4

{

η(X)η(Z)Y

− η(Y )η(Z)X + g(X, Z)η(Y )ξ − g(Y, Z)η(X)ξ

+ g(Z, φY )φX − g(Z, φX)φY + 2g(X, φY )φZ
}

.

(2.2)

Let Mm be a submanifold in a contact manifold N2n+1. If η restricted to Mm van-

ishes, then Mm is called an integral submanifold; in particular if m = n, it is called a

Legendrian submanifold.

Let f : Mm → N2n+1(ǫ) be an isometric immesion. Denote the Levi–Civita con-

nection of N2n+1(ǫ) (resp. Mm) by ∇̄ (resp. ∇). Let ∇ f be the induced connection

by f on the bundle f ∗TN2n+1, which is the pull-back of ∇̄.

The formulas of Gauss and Weingarten are given respectively by

∇ f
Xd f (Y ) = d f (∇XY ) + h(X,Y ),(2.3)

∇ f
XV = −d f (AV X) + DXV,(2.4)
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where X,Y ∈ TMm, V ∈ T⊥Mm, h, A and D are the second fundamental form, the

shape operator and the normal connection, respectively. We identify d f (X) and X

for any vector fields X on Mm. The following relation holds:

(2.5) 〈AV X,Y 〉 = 〈h(X,Y ),V 〉,

where 〈 , 〉 := g( , ).

The mean curvature vector H is given by H =
1
m

trace h. The length of H is called

the mean curvature. If the mean curvature vector vanishes on Mm everywhere, then

Mm is called a minimal submanifold.

In this paper, submanifolds and immersions mean isometrically immersed mani-

folds and isometric immersions, respectively.

3 Biharmonic Legendrian Submanifolds

Let Mm and Nn be Riemannian manifolds and f : Mm → Nn a smooth map. The

tension field τ ( f ) of f is a section of the vector bundle f ∗TN defined by

τ ( f ) := tr(∇ f d f ) =

m
∑

i=1

{∇ f
ei

d f (ei) − d f (∇ei
ei)},

where {ei} denotes a local orthonormal frame field of M.

A smooth map f is said to be a harmonic map if its tension field vanishes. It is well

known that f is harmonic if and only if f is a critical point of the energy

E( f ) =

∫

Ω

|d f |2 dvg

over every compact domain Ω of M, where | · | denotes the Hilbert–Schmidt norm.

J. Eells and J. H. Sampson [8] suggested studying k-harmonic maps which are crit-

ical points of k-energy Ek:

Ek( f ) =

∫

Ω

|(d + d∗)k f |2 dvg ,

where d∗ is the codifferential operator.

Clearly, a 1-harmonic map is a harmonic map. In case of k = 2, we have

E2( f ) =

∫

Ω

|τ ( f )|2 dvg .

The functional E2 is frequently called the bienergy. The Euler–Lagrange equation of

the functional E2 was computed by Jiang [10] as follows:

(3.1) J f (τ ( f )) = 0,
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where the operator J f is the Jacobi operator defined by

J f (V ) := ∆̄ f V − R f (V ), V ∈ Γ( f ∗TN),(3.2)

∆̄ f := −
m

∑

i=1

(∇ f
ei
∇ f

ei
−∇ f

∇ei
ei

), R f (V ) :=

m
∑

i=1

RN (V, d f (ei))d f (ei),(3.3)

where RN is the curvature tensor of N .

In particular, if N is the Euclidean n-space En and f = (x1, . . . , xn) is an immer-

sion from M into En, then

J f (τ ( f )) = (−∆M∆Mx1, . . . ,−∆M∆Mxn),

where ∆M is the Laplace operator acting on C∞(M). Thus the 2-harmonicity for

an immersion into Euclidean space is equivalent to the biharmonicity in the sense of

Chen [6]. For this reason, 2-harmonic maps are frequently called biharmonic maps.

Every harmonic map is a stable biharmonic map [10]. Nonharmonic biharmonic

maps are said to be proper.

Now let f : M2 → N5(ǫ) be a Legendrian immersion into Sasakian space forms.

Then from (3.1), (3.2), (3.3), and (2.2) we see that f is biharmonic if and only if

∆̄ f H =

( 5ǫ + 3

4

)

H.

In [12] the author determined the intrinsic and the extrinsic structures of Legen-

drian surfaces satisfying ∆̄ f H = λH for a constant λ.

Theorem 1 ([12]) Let f : M2 → N5(ǫ) be a nonminimal Legendrian immersion sat-

isfying ∆̄ f H = λH for a constant λ. Then there exists a suitable local coordinate system

{u, v} on a neighborhood of p such that the metric tensor g and the second fundamental

form h take the following forms:

(i) g = du2 + dv2,

(ii)
h(∂u, ∂u) =

√
λ − 1cosθφ∂u,

h(∂v, ∂v) =
√

λ − 1sinθφ∂u,

h(∂u, ∂v) =
√

λ − 1sinθφ∂v,

where ∂u =
∂
∂u

, ∂v =
∂
∂v

, and θ is a constant which satisfies

(3.4) sin θ(cos θ − sin θ) =
ǫ + 3

4(1 − λ)
.

Conversely, suppose that θ, λ( > 1) and ǫ are constants satisfying (3.4). Let g =

du2 + dv2 be the metric tensor on a simply-connected domain V ⊂ R2. Then, up to rigid

motions of N5(ǫ), there exists a unique Legendrian immersion f of (V, g) into N5(ǫ)

whose second fundamental form is given by (ii). Moreover such an immersion satisfies

∆̄ f H = λH.
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In case λ =
5ǫ+3

4
in Theorem 1, we get the following.

Corollary 2 ([12]) Let M2 be a proper biharmonic Legendrian surfaces in N5(ǫ).

Then ǫ ≥ −11+32
√

2
41

and at each point p ∈ M2 there exists a suitable local coordi-

nate system {u, v} on a neighborhood of p such that the metric tensor g and the second

fundamental form h take the following forms:

(i) g = du2 + dv2,

(ii)

h(∂u, ∂u) =
ǫ − 1

α
φ∂u, h(∂v, ∂v) =

(

α − ǫ − 1

α

)

φ∂u,

h(∂u, ∂v) =

(

α − ǫ − 1

α

)

φ∂v,

where

α =

√

13ǫ − 9 ±
√

41ǫ2 + 22ǫ − 47

8
(6= 0).

Conversely, suppose that ǫ is a constant satisfying ǫ ≥ (−11 + 32
√

2)/41 and let g

be the metric tensor on a simply-connected domain V ⊂ R2 defined by (i). Then, up to

rigid motions of N5(ǫ), there exists a unique Legendrian immersion of (V, g) into N5(ǫ)

whose second fundamental form is given by (ii). Moreover such an immersion is proper

biharmonic.

We consider the complex Euclidean (n + 1)-space Cn+1 and identify

z = (x1 + i y1, . . . , xn+1 + i yn+1) ∈ Cn+1

with (x1, . . . , xn+1, y1, . . . , yn+1) ∈ E2n+2. Let J be its usual almost complex structure.

It is well known [2] that a Sasakian space form N2n+1(1) is isomorphic to S2n+1(1)

endowed with the Sasakian structure induced by J of Cn+1.

We can explicitly represent proper biharmonic Legendrian immersions into S5(1)

in C3 as follows:

Corollary 3 ([12]) Let f : M2 → S5(1) ⊂ C3 be a proper biharmonic Legendrian

immersion. Then the position vector f = f (u, v) of M2 in C3 is given by

(3.5) f (u, v) =
1√
2

(eiu, ie−iu sin
√

2v, ie−iu cos
√

2v).

Remark. (i) We see that (3.5) is doubly periodic. More precisely, it is periodic

with period 2π with respect to u and
√

2π with respect to v. Thus, it is a proper

biharmonic Legendrian embedding from the flat torus T2
= R2/Λ with Λ generated

by {(2π, 0), (0,
√

2π)}.

(ii) Let f : M → En be an immersion. If the position vector f can be written as

f = f1 + f2, ∆M f1 = λ1 f1, ∆M f2 = λ2 f2,
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for two different constants λ1 and λ2, then f is said to be of 2-type. Compact 2-type

submanifolds are characterized by the minimal polynomial criterion which estab-

lishes an existence of a polynomial of degree 2 such that P(∆̄ f )(H̃) = 0 [5]. Here H̃

is the mean curvature vector field of f . Since (3.5) satisfies (∆̄2
f − 4∆̄ f + 3I)(H̃) = 0,

where I is the identity transformation of En, we obtain that f is biharmonic by

[4, Proposition 4.1] and 2-type by [5]. In fact, we put

f1(u, v) :=
1√
2

(eiu, 0, 0) and f2(u, v) :=
1√
2

(0, ie−iu sin
√

2v, ie−iu cos
√

2v).

Then we have f = f1 + f2, ∆M f1 = f1 and ∆M f2 = 3 f2. Note that (3.5) is not of the

type given by [4, Theorem 3.9 or 3.13].

(iii) We put g1(u) = (cos u, sin u) and g2(v) =
1√

2
(1, sin

√
2v, cos

√
2v) ∈ S2(1).

Then f (u, v) can be written as f (u, v) = g1 ⊗ g2 [7]. Note that g2 is a proper bihar-

monic curve in S2(1) [4].

4 Stability of Biharmonic Legendrian Submanifolds

In [10] Jiang obtained the second variation formula for the bienergy E2. But it is

difficult to compute the formula when the ambient space is not locally symmetric.

We remark that Sasakian space forms are not locally symmetric in general. In this

section, we shall compute the second variation formula for a biharmonic Legendrian

immersion into Sasakian space forms in a similar way as in [11].

Let f : Mn → N2n+1(ǫ) be a biharmonic Legendrian immersion from a com-

pact n-dimensional manifold into a (2n + 1)-dimensional Sasakian space form. Let

F : R × Mn → N2n+1(ǫ) be a smooth variation of f such that F(0, p) = f (p) for any

p ∈ M. Let
(

∂
∂t

)

(t,p)
and X(t,p) be the vector fields which are the extension of ∂

∂t
on

R and X on Mn to R × Mn, respectively. We put ft (p) = F(t, p). The corresponding

variational vector field V is given by

V (p) =
d

dt

∣

∣

∣

∣

t=0

ft (p) = dF
( ∂

∂t

)

(0,p)
.

We recall the following from [11].

(4.1)
1

2

d2

dt2

∣

∣

∣

∣

t=0

E2( ft ) =

∫

Mn

〈I(V ),V 〉 dvg,

where

(4.2) I(V ) = ∇̃ ∂
∂t
{−∆̄ ft τt − traceRN(d ft · , τt )d ft · }

∣

∣

t=0
,

∇̃ = ∇F and τt = τ ( ft ).

If (4.1) is non-negative for any vector field V , then f or Mn is said to be stable.

Otherwise it is said to be unstable.
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We shall calculate (4.2) more precisely.

− ∇̃ ∂
∂t
∆̄ ft τt =

∑

(

∇̃ ∂
∂t
∇̃ei

∇̃ei
τt − ∇̃ ∂

∂t
∇̃∇ei

ei
τt

)

=

∑

{

RN
(

dF
( ∂

∂t

)

, dF(ei)
)

(∇̃ei
τt ) + ∇̃ei

∇̃ ∂
∂t
∇̃ei

τt + ∇̃[ ∂
∂t

,ei ]
∇̃ei

τt

}

−
∑

{

RN
(

dF
( ∂

∂t

)

, dF(∇ei
ei)

)

τt + ∇̃∇ei
ei
∇̃ ∂

∂t
τt + ∇̃[ ∂

∂t
,∇ei

ei ]
τt

}

.

(4.3)

As in [11], we have

(4.4) ∇̃ ∂
∂t
τt

∣

∣

t=0
= −∆̄ f V − trace RN (d f · ,V )d f · = −J f (V ).

Let {ei} be a geodesic frame field around an arbitrary point p ∈ Mn. Then from

(4.3) and (4.4), when t = 0, at p we get the following.

Lemma 4

(4.5) −∇̃ ∂
∂t
∆̄ ft τt

∣

∣

t=0
=

∑

{

RN (V, ei)(∇̄ei
τ ) + ∇̄ei

(RN (V, ei)τ )
}

+∆̄ f J f V,

where ∇̄ = ∇ f , τ = τ0.

We need the following lemma in order to compute (4.5) more precisely.

Lemma 5

RN(V, ei)(∇̄ei
τ ) =

ǫ + 3

4

(

〈ei, ∇̄ei
τ 〉V − 〈∇̄ei

τ ,V 〉ei

)

+
ǫ − 1

4

{

η(V )η(∇̄ei
τ )ei − 〈ei, ∇̄ei

τ 〉η(V )ξ + 〈∇̄ei
τ , φei〉φV

− 〈∇̄ei
τ , φV 〉φei + 2〈V, φei〉φ(∇̄ei

τ )
}

,

(4.6)

∇̄ei
(RN (V, ei)τ ) = −ǫ + 3

4
∇̄ei

(〈τ ,V 〉ei)

+
ǫ − 1

4

{

∇̄ei

(

〈τ , φei〉φV − 〈τ , φV 〉φei + 2〈V, φei〉φτ
)}

.

(4.7)

Proof By using the fact that τ is normal to Mn and ξ, we can easily obtain (4.6) and

(4.7) from (2.2).
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We continue to calculate (4.2). Using (2.1) and (2.2), we have

−∇̃ ∂
∂t

trace R
N

(dF · , τt )dF ·

= −
ǫ + 3

4

X

∇̃ ∂
∂t

n

〈τt , dF(ei)〉dF(ei) − 〈dF(ei), dF(ei)〉τt

o

−
ǫ − 1

4

X

∇̃ ∂
∂t

n

η(dF(ei))η(dF(ei))τt − η(τt )η(dF(ei))dF(ei)

+ 〈dF(ei), dF(ei)〉η(τt )ξ − 〈τt , dF(xi)〉η(dF(ei))ξ

+ 3〈dF(ei), φτt〉φ(dF(ei)) − 〈dF(ei), φ(dF(ei))〉φτt

o

,

= −
ǫ + 3

4

X

n

〈∇̃ ∂
∂t

τt , dF(ei)〉dF(ei) + 〈τt , ∇̃ ∂
∂t

dF(ei)〉dF(ei)

+ 〈τt , dF(ei)〉∇̃ ∂
∂t

dF(ei) − 2〈∇̃ ∂
∂t

dF(ei), dF(ei)〉τt − 〈dF(ei), dF(ei)〉∇̃ ∂
∂t

τt

o

−
ǫ − 1

4

X

"

2〈dF(ei), ξ〉
n

〈∇̃ ∂
∂t

dF(ei), ξ〉 −
D

dF(ei), φ
“

dF
“ ∂

∂t

” ” E o

τt

+ η(dF(ei))2∇̃ ∂
∂t

τt −
n

〈∇̃ ∂
∂t

τt , ξ〉 −
D

τt , φ
“

dF
“ ∂

∂t

” ” E o

η(dF(ei))dF(ei)

− η(τt )
n

〈∇̃ ∂
∂t

dF(ei), ξ〉 −
D

dF(ei), φ
“

dF
“ ∂

∂t

” ” E o

dF(ei)

− η(τt )η(dF(ei))∇̃ ∂
∂t

dF(ei) + 2〈∇̃ ∂
∂t

dF(ei), dF(ei)〉η(τt )ξ

+ 〈dF(ei), dF(ei)〉
n

〈∇̃ ∂
∂t

τt , ξ〉 −
D

τt , φ
“

dF
“ ∂

∂t

” ” E o

ξ

− 〈dF(ei), dF(ei)〉η(τt )φ
“

dF
“ ∂

∂t

” ”

− 〈∇̃ ∂
∂t

τt , dF(ei)〉η(dF(ei))ξ

− 〈τt , ∇̃ ∂
∂t

dF(ei)〉η(dF(ei))ξ

− 〈τt , dF(ei)〉
n

〈∇̃ ∂
∂t

dF(ei), ξ〉 −
D

dF(ei), φ
“

dF
“ ∂

∂t

” ” E o

ξ

+ 〈τt , dF(ei)〉η(dF(ei))φ
“

dF
“ ∂

∂t

” ”

+ 3



〈∇̃ ∂
∂t

dF(ei), φτt〉φ(dF(ei))

+ 〈dF(ei),
D

dF
“ ∂

∂t

”

, τt

E

ξ − η(τt )dF
“ ∂

∂t

”

+ φ(∇̃ ∂
∂t

τt )〉φ(dF(ei))

+ 〈dF(ei), φτt〉
“ D

dF
“ ∂

∂t

”

, dF(ei)
E

ξ − η(dF(ei))dF
“ ∂

∂t

”

+ φ(∇̃ ∂
∂t

dF(ei))
”

ff

− 〈∇̃ ∂
∂t

dF(ei), φ(dF(ei))〉φτt

−
D

dF(ei),
D

dF
“ ∂

∂t

”

, dF(ei)
E

ξ − η(dF(ei))dF
“ ∂

∂t

”

+ φ(∇̃ ∂
∂t

dF(ei))
E

φτt

− 〈dF(ei), φ(dF(ei))〉
n D

dF
“ ∂

∂t

”

, τt

E

ξ − η(τt )dF
“ ∂

∂t

”

+ φ(∇̃ ∂
∂t

τt )
o

#

.

(4.8)
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We need the following lemma.

Lemma 6 ∇̃ ∂
∂t

dF(ei)
∣

∣

t=0
= ∇̃ei

dF( ∂
∂t

)
∣

∣

t=0
= ∇̄ei

V .

From (4.8) and Lemma 6 we deduce the following.

Lemma 7

−∇̃ ∂
∂t

trace RN (dF · , τt )dF · |t=0

= −ǫ + 3

4

{

− (J f V )⊤ +
∑

(

〈τ , ∇̄ei
V 〉ei − 2〈∇̄ei

V, ei〉τ
)

+nJ f V
}

− ǫ − 1

4

{

−n
(

〈J f V, ξ〉 + 〈τ , φV 〉
)

ξ + 3(J f V )⊥

+ 3
∑

(

〈∇̄ei
V, φτ〉φei + 〈ei, φτ〉

(

〈V, ei〉ξ + φ(∇̄ei
V )

)

)}

,

where (J f V )⊤ (resp. (J f V )⊥) denotes the tangent (resp. normal) part of J f V .

Consequently, we obtain the second variation formula as follows.

Theorem 8 Let f be a biharmonic Legendrian immersion from a compact n-dimen-

sional manifold Mn into a Sasakian space form N2n+1(ǫ). Let { ft} be a smooth variation

of f such that f0 = f and V are the corresponding variational vector field. Then we have

(4.9)
1

2

d2

dt2

∣

∣

∣

t=0
E2( ft ) =

∫

Mn

〈I(V ),V 〉 dvg,

where

I(V ) = −ǫ + 3

4

{

|τ |2V + 2 trace〈∇ f
· τ ,V 〉 · + 2 trace〈τ ,∇ f

·V 〉 · + 〈τ ,V 〉τ

− 2 trace〈∇ f
·V, · 〉τ − (J f V )⊤ + nJ f V

}

+
ǫ − 1

4

{

η(V ) trace(η(∇ f
· τ ) · ) + |τ |2η(V )ξ + 2 trace〈∇ f

· τ , φ · 〉φV

− 2 trace〈∇ f
· τ , φV 〉φ · − 4φ(∇ f

(φV )⊤
V ) − 2〈V, φτ〉ξ + η(V )φτ

− 4φ(∇ f
φτV ) + 2 trace〈τ , φ(∇ f

·V )〉φ ·

− 3〈τ , φV 〉φτ + 2 trace〈∇ f
·V, φ · 〉φτ + 2nη(V )φτ

+ 2η(V )(φV )⊤ + nη(J f V )ξ − 3(J f V )⊥
}

+ ∆̄ f J f V.

Proof When we compute (4.7) at p, we use the following:

∇̄ei
(φV ) = 〈ei,V 〉ξ − η(V )ei + φ(∇̄ei

V ), ∇̄ei
(φei) = 〈ei, ei〉ξ + φ(h(ei , ei)).

Combining Lemmas 4, 5 and 7 we get (4.9).
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Observe that if ǫ = 1, formula (4.9) agrees with [11, (2.2)].

We put F(X) := 〈h(X, X), φX〉 for a vector field X of Mn. Then F(φτ ) is globally

defined on Mn. In terms of ‖τ‖ and F(φτ ), we give the sufficient conditions for

proper biharmonic Legendrian submanifolds to be unstable.

Theorem 9 Let Mn be a compact proper biharmonic Legendrian submanifold in a

Sasakian space form N2n+1(ǫ). If

∫

Mn

{

(ǫ + 3)||τ ||4 − 3(ǫ − 1)F(φτ )
}

dvg > 0,

then Mn is unstable.

Proof We take τ as the variational vector field V . By Theorem 8, (2.3), (2.4), and

(2.5) we have

〈I(τ ), τ 〉 = −(ǫ + 3)‖τ‖4 − 3(ǫ − 1)〈h(φτ, φτ ), τ 〉.

This completes the proof.

Inoguchi [9] determined proper biharmonic Legendrian curves of 3-dimensionl

Sasakian space forms.

Theorem 10 ([9]) Let γ : I → N3(ǫ) be a proper biharmonic Legendrian curve. Then

ǫ > 1 and γ is a Legendrian helix of curvature
√

ǫ − 1.

It follows from Theorem 10 and Corollary 2(ii) that in case n = 1 or 2, then

ǫ > −3 and F(φτ ) = −n‖τ‖2(ǫ − 1). Therefore applying Theorem 12 we state the

following.

Corollary 11 Let Mn be a compact proper biharmonic Legendrian submanifold in

Sasakian space form N2n+1(ǫ). If n ≤ 2, then Mn is unstable.

There is a special vector field along submanifolds in contact manifolds, i.e., Reeb

vector field ξ. Thus, it is natural and interesting to consider variations

V ∈ Span{ξ} := {aξ | a ∈ C∞(M)}.

We call such variations R-variations. If the second variation (4.1) under any R-

variation is non-negative, f or Mn is said to be R-stable. Otherwise it is said to be

R-unstable.

Proposition 12 Let Mn be a compact proper biharmonic Legendrian submanifold in

Sasakian space form N2n+1(ǫ). Then we have

∫

Mn

〈I(aξ), aξ〉 dv =

∫

Mn

{

(∆Mn a)2 +
19 − 3ǫ

4
(∆Mn a)a

}

dvg ,

where a ∈ C∞(Mn).
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Proof Let f be a proper biharmonic Legendrian immersion from Mn into N2n+1(ǫ).

We take aξ as the variational vector field, where a ∈ C∞(Mn). We can easily see the

following:

∆̄ f (aξ) = (∆Mn a + na)ξ + 2φ grad a + aφτ,(4.10)

R f (aξ) = anξ.(4.11)

By using Theorem 8, (4.10), (4.11), and Stokes’ theorem, we obtain

∫

Mn

〈I(aξ), aξ〉 dv

=

∫

Mn

{

− a2|τ |2 + 〈∆̄ f (J f (aξ)), aξ〉 +
3 − 3ǫ − 4n

4
〈J f (aξ), aξ〉

}

dvg

=

∫

Mn

{

− a2|τ |2 + 〈J f (aξ), ∆̄ f (aξ)〉 +
3 − 3ǫ − 4n

4
(∆Mn a)a

}

dvg

=

∫

Mn

{

(∆Mn a)2 + n(∆Mn a)a + 4‖ grad a‖2 +
3 − 3ǫ − 4n

4
(∆Mn a)a

}

dvg

=

∫

Mn

{

(∆Mn a)2 +
19 − 3ǫ

4
(∆Mn a)a

}

dvg .

This completes the proof.

Theorem 13 Let Mn be a compact proper biharmonic Legendrian submanifold in

Sasakian space form N2n+1(ǫ). Then Mn is R-stable if and only if λ1 ≥ 3ǫ−19
4

, where λ1

is the first non-zero eigenvalue of the Laplacian acting on C∞(Mn).

Proof For each a ∈ C∞(Mn), we have the spectral decomposition (in L2-sense):

a =

∑

t≥0

at ,

where ∆Mn at = λt at and 0 = λ0 < λ1 < λ2 < · · · ↑ ∞. Since
∫

Mn aia j dv = 0 for

i 6= j, from Proposition 12 we get

∫

Mn

〈I(aξ), aξ〉 dv =

∑

t≥1

(λ2
t +

19 − 3ǫ

4
λt )

∫

M

a2
t dv.

If λ1 ≥ 3ǫ−19
4

, we have
∫

Mn〈I(aξ), aξ〉 dv ≥ 0 for any function a and hence R-stable.

Conversely, suppose that Mn is R-stable. If λ1 < 3ǫ−19
4

, then
∫

Mn〈I(a1ξ), a1ξ〉 dv < 0

for an eigenfunction a1 of λ1. This is a contradiction. Therefore Mn must satisfy

λ1 ≥ 3ǫ−19
4

.

Corollary 14 Compact proper biharmonic Legendrian submanifolds of Sasakian space

forms N2n+1(ǫ) with ǫ ≤ 19
3

are R-stable.
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Remark. A compact proper biharmonic Legendrian surface in S5 (see (3.5)) is unsta-

ble but R-stable.

Theorem 13 indicates that the spectral geometry of compact proper biharmonic

Legendrian submanifolds in Sasakian space forms is important.
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