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Abstract

Let ((*)) = x — lx\ — 1/2 be the sawtooth function. If a, b, c and e are positive integers, then the integral
of ((ax))((bx))((cx))((ex)) over the unit interval involves Apostol's generalized Dedekind sums. By
expressing this integral as a lattice-point sum we obtain an elementary method for its evaluation. We also
give an elementary proof of the reciprocity law for the third generalized Dedekind sum.

1991 Mathematics subject classification (Amer. Math. Soc): 26A09, 11F20.

1. Introduction

In 1924 Franel [5] gave the formula

(1) /
Jo

where a and b are positive integers, (a, b) denotes the greatest common divisor of a
and b, and ((*)) = x — L*J — 1/2 is the first Bernoulli periodic function. Here [x]
denotes the greatest integer < x. (For a proof see [7, pp. 170-171 ] or [9, pp. 24-25]).
By symmetry about the midpoint x = 1/2 it is easy to see that the corresponding
integral of the product ((ax))((bx))((cx)) is equal to 0. This naturally leads us to the
question — Is there a simple formula for

(2) / ((ax))((bxM(.cx))((ex))dx,
Jo

where a, b, c and e are positive integers?
Unfortunately, (2) does not have a simple formula, even when c = e = 1. A general

formula involves Apostol's generalized Dedekind sums [2] and related cotangent
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[2] Franel integrals of order four 193

sums. In this paper an elementary method is given for evaluating (2) and for special
cases explicit formulae are provided.

2. An equivalent lattice-point sum

Denote the integral in (2) by \{a, b, c, e). Since

coo) = -- E s i n ( 2 n n x )

it follows that

sin(2nsax) sin(2ntbx) sin(27Tucx) sin(27rvejc)T/ , 1 /
l(a, b,c,e) = — I hm

1 /"' v ^
= ——• / hm >

16TT 4 J 0 "-*0O,<|J|,i^'i,|u|<n

cos{27r(5a + tb + MC + ve)x}
dx

167T4

Observe that the last sum, which we will denote by L(a, b, c, e), is taken over all
lattice points (s,t,u,v) with non-zero coordinates lying on the hyperplane in R4

orthogonal to (a, b, c, e). To see that L(a, b, c, e) is absolutely convergent, we follow
an argument due to Peter Montgomery [8]. Firstly, observe that

\-^ 1 ^

uTd-IO) \StUV\ A/T^oo
sa+tb+uc+ve=O

where

= E
s,tel-{0)
sa+tb=M

By a straight forward calculation F0(a, b) < 2 Y1T=\ 1/k2 = it2/3. The proof of the
absolute convergence of L(a, b, c, e) will be complete once we show that FM(a, b) =
O ((log M)/M) as M —*• oo. We now consider the case a = b = 1. The general case
is similar. By partial fractions we obtain

M-\ |
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194 Richard J. Mclntosh [3]

ff \k + M -k) + Mf^\k M + k)

which is what we wanted to prove.

THEOREM 1. Let k be a positive integer. Then

(i) L(ka,kb,kc,ke) = L(a,b,c,e);
(ii) L(ka,kb,kc,e)=k-1L(a,b,c,e) if (k,e) = l;

(iii) L(o, b, c, e) = -————' ' ' — L(a, /8, y, e), where
(a, b, c)(a, b, e)(a, c, e)(b, c, e)

_ a(a, b, c, ef _ b(a, b, c, e)2

(a,b, c)(a,b, e)(a, c, e)' (a, b, c)(a,b, e)(b, c, e)'

c(a,b,c,e)2 e(a,b,c,e)2

y = , € =
(a, b, c){a, c, e)(b, c, e) (a, b, e)(a, c, e)(b, c, e)

are triplet-wise relatively prime, that is, (a, fi, y) = (a, fi, e) = (a, y, e) =

PROOF. For (i) we have

L(ka,kb,kc,ke) = V = V =L(a,b,c,e).
,,,.B^z-{o) stuv s,,,u7?i-m

 stuv

ska+tkb+ukc+vke=O sa+tb+uc+ve=O

For (ii) observe that if ska + tkb + ukc + ve — 0, then k divides v since k is
relatively prime to e. Setting v = kw, we get

h(ka,kb,kc,e)= V —!— = - Y* —l— = - L(a, b, c, e).
*—L ... stuv k *—L ... stuw k

s,t,u.vei.-{0) s,t,u,weI-{0}
ska+tkb+ukc+ve=0 sa+tb+uc+we—0

For (iii) we first apply (i) to factor out (a, b, c, e), and then we apply (ii) four
times to factor out {a, b, c)/(a, b, c, e), (a, b, e)/{a, b, c, e), (a, c, e)/(a, b, c, e),
and (b, c, e)/(a, b, c, e).

Numerical calculations suggest that the function f{a,b,c,e) defined by

240fl3fe3cV(a, b, c)(a, b, e)(a, c, e)(b, c, e)
f (a, b, c, e) - ( ^ & ) 2 ( ^ c ) 2 ( f l > e ) 2 ( ^ c)2^ e ) 2 ( ^ e)1^^ b^ ^ g ) 4 i(a, b, c, e)

is integer-valued, but a proof is out of our reach.
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REMARK. If we apply the above technique to the Franel integral of order two we
get

I
Jo

„„. „ . 1 ^ 1 (a,b)2S(2) (a, b)2

{{ax)){{bx))dx = - >
ma+nb=0

3. The evaluation of L(a, b, c, e)

Again, following Peter Montgomery's idea, define

LM(a,b) =

and observe that

41 st
sa+tb=M

cc oo

L(a,b,c, e) = Y~] L_M(a, Z?)LM(c, e) = Y^ LM(a, b)LM(c, e).
M=—oo M=—oo

The evaluation of LM(a, fo) depends on the divisibility of M by a and b. Here M is an
integer and a and fr are positive integers. Theorem 2 below considers all five possible
cases. These are (i) M = 0, (ii) both a and ft divide M, (iii) only 6 divides M (if only
a divides M, then we interchange the roles of a and b), (iv) both a and b do not divide
M, but (a, b) divides M, and (v) {a, b) does not divide M. In order to simplify the
expressions involved in these five cases we employ the following notation:

(a, b) = gcd{a, b), [a, b] = \cm{a, b],

a b
A = — , B = (a, bY

A = A~x (mod B), B = B~l (mod A).

THEOREM 2. (i) U>{a,b) = -TT2/3AB.

(ii) LlaM]N(a,b) = -2/ABN2 if N ± 0.

(iii) LbN(a,b) = -^-2 + ^ c o t ^ ifA\N.

(iv) I W « . b) = l cot (t^L) + I cot (*!£) if A \N,B\N.
IS \ A / N \ D /

(v) LN(a,b) = 0if(a,b)]N.
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196 Richard J. Mclntosh [5]

PROOF. Since

V - = — V -
s^ZHO) St AB uvil^{0)UV'

sa+tb=[a,b]N u+v=N

where s = Bu and t = Av, it follows that h[aMN(a, b) = Lw(l, \)/AB. A straight
forward calculation shows that LQ(1, 1) = —2£(2) = — TT2/3, and when W ^ Owe
get

N-i , oo ,

For (iii) we begin with LbN(a, b) = LN(A, l)/B. UA\N then

1 1
= k(N + Ak)

N j^(\\k N-AkJ \k N + Ak
oo

f ^ 2 - A2k2

An fN7i

since

1
(4) „ cot(Trz) = - + 2z £ ^ p = £ ^ ,

(see, for example, [1, p.75] or [6, p. 197]).
For (iv) we have

«,i,)jv(fl, b) = LN(A,B)=
- Ak)(AN + Bk)

B
+~ N khL \BN - Ak + AN + Bk
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[6] Franel integrals of order four 197

n (ANn\

where A\N, B \ N and AA + BB = 1.
For (v) observe that if (a, b) \ N then the sum LN(a, b) is empty.

4. Some special cases

A general formula for L(a, b, c, e) is very cumbersome. It involves the greatest
common divisors of various subsets of {a, b, c, e}. However, formulae for special
cases can be obtained easily with the help of Theorem 2. For the most simple case,
we have

L(l, 1,1,1)= £ Lj,(l,l) = Lg(l,l) + 2 ^ L ^ ( l , l ) = + 8£(4) = ,
M=-oo A/=l

by Theorem 2(i) and (ii). A somewhat more difficult example is

L ( a , 1 , 1 , 1 ) =

= Lo(fl, ^
/v=i

la
= I-

9a a'

U4 47T4

9a + 45a3

n4 An4 In4^ 2n4

9a + 4 5 ^ + ~9a ~ 9a3" ~ a f r ' k2 f-f N2 - a2k2

.3a 15a3

where we have used (3) and the identity

a\N
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198 Richard J. Mclntosh [7]

For the remaining cases we do not assume that a and b are relatively prime. In the next
case we use the fact, which follows from Theorem 2(v), that hM(k, k) = 0 whenever
k does not divide M. Thus, we have

L(a,a,b,b)=

, b) + 2^L[ a , i ] y v(a, a)h[aMN{b, b)

= n 8(a, b)S(4) = f 1 4(a, bf 1 4

9 a2*2 19 452fc2 P '
In the introduction we claimed that some Franel integrals of order four do not have

a simple formula. By a simple formula we mean a rational function of a, b, c, e,
and the greatest common divisors of various subsets of {a, b,c,e}. An example not
having a simple formula is

Ua,a,b,l)=
M=-oo

N=\

J V = 1

_ n^
~ 9b+9b+ a2b3 +a£T{\^N*JpCOt\ B ) \

B\N

1 . 2 * . 2(a,b)> , 16

where S^(h, k) is a generalized Dedekind sum introduced by Apostol [2] and defined
by

where h and £ are relatively prime positive integers and Bn(t) is the «th Bernoulli
polynomial defined by the generating function
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[8] Franel integrals of order four 199

This generalized Dedekind sum can also be expressed by

3 ^ 1 (rhn\
4JT3 f^ r3 \ k )

Jk2-\)(k2-A)

(6)
4?rJ

* {<

(see, for example, [3, p.2, p.4]).
By direct calculation

In general there is no closed expression for the sum 53(/i, k). However, 53 enjoys the
following reciprocity law.

THEOREM 3. For relatively prime positive integers h andk,

(8) \20hk3S3(h, k) + \20kh3S3(k, h) = -h4 - k4 + 5h2k2 - 3.

PROOF. By (6) and (4) we have

4TT4 An4 7r ^ 1 /rhn\ n ^ 1

hk ^ <A hk
2-h2t2)

if/-' ' ~ 'h\r '

oo oo . i oo oo u u

f^ *-( h2r2(h2r2 - k2t2) £ - frf k2r2{h2t2 - k2r2)
k\r h\t h\r k\t

h k ^

hi / ^ o h2r2(h2r2 - h2k2t2) j~i ^ k2r2{h2k2t2 - k2r2)

- k2t2) j-f f-f k2t2(h2r2 - k2t2)
k\r h\l h\t k\r

f k 1 ^ y , 1

'v r=\
k\r h\r
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200 Richard J. Mclntosh [9]

O O O O ; °° 1 J.

r = l r = l " * ' ' " r = l ' K r=\
k\r h\l k\r h\r

M i
2 /

- 1)JT4 (A:4 - 1)7T4 (/i4 - 1)7T4 (k2 - 1)7T4

+ ++ 90h3k3

<7Z 2 -1)TT 4 2

+

7t

,=. r 2 - * 2 ? 2 ^r2~h2t2

'k\r \\r

4

since the last term equals 0 by (5). This completes the proof of the reciprocity law.

Our next example, L(a, b, 1, 1), can be evaluated in two different ways, and by
combining the results we obtain an expression for a rather complicated cotangent sum
in terms of generalized Dedekind Sums. By keeping the variables a and b together we
obtain a formula involving two generalized Dedekind Sums. In particular, we have

M=-oo

N=\

OO

B\N

(a,b)2n4

9ab

4 ^

B{W

An

(a, b)2

aN(a,b)haN(l, 1)

4(a, b)4n4
 | 4

45a3b3 ' ft2

j 6 ;r
U N 4 A N 3 C O

A\N
B\N

A\N

OO

+ ^ / ^L(a,i)Ar(

BJW

y, ( a

A\N

' K B ) ]

Nn\ 1
A ) yv3co

W3°0 \ A

/ANn\\

\ B )\
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[10] Franel integrals of order four 201

where we have used (7) and the identity

^ 4TT3 - 4TT3

B\N

which follows from (6) and the fact that BB = 1 (mod A).
In the second method we begin by separating the variables a and ft and eventually

obtain a formula involving a single cotangent sum. We have

L(a,b, 1,1) =
M=-oo

= Lo(a, l)L0(l,ft)
oo oo

?) + 2^U;v(a, l)LiW(l,ft)

4(a, fe)V4

A\N

b n

B\N

7T4

9ab + 45 + 45a3

+ ^ S , ( l , a) + 5^5 , (1 , ft) + %S3(B, A) + S^S3(A, B)
3 3 3ft2 3a2
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202 Richard J. Mclntosh [11]

ab b a 2 Ab Aa 2(a,b)4

+ + +

b\r

where we have used (7), (8) and the identity

a\M
b\N

Combining (9) and (10) we obtain the formula

(rn\ (rn\ , (rn\
I — I cot I — esc2 —
V a ) \b ) \ab)

a3b3 2a3 2b3 a3b ab3 2ab ab(a,b)2

cot

9 9 9
2(a, b)4 I6a2b2

a\r
b\r

3(a, ft

5. Concluding remarks

Bruce Berndt gives two generalizations of (1) in [4, Lemmas 4.2 and 7.1].
Subsequent to the writing of this article, it was brought to the author's attention

that George Greaves, Richard Hall, Martin Huxley and Julie Wilson are also working
on Franel Integrals and have had a paper accepted by Mathematika.
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