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Abstract

Lipschitz spaces are important function spaces with relations to Hp spaces and Campanato spaces, the
other two important function spaces in harmonic analysis. In this paper we give some characterizations
for Lipschitz spaces on compact Lie groups, which are analogues of results in Euclidean spaces.

1991 Mathematics subject classification (Amer. Math. Soc): 43A15, 22E30,41A25,41A30.

1. Introduction and Notation

Lipschitz spaces are very important function spaces with close relations to Hp spaces
and Campanato spaces, the other two important function spaces in harmonic analysis.
The theory of these spaces on Euclidean spaces has been fruitfully developed by
several authors (see [2, 3, 4]). In this paper we consider Lipschitz spaces on compact
Lie groups and give some characterizations for these spaces, which are analogues of
the results in the case of Euclidean spaces.

Let G be a compact connected semisimple Lie group of dimension n. Choose
T c G to be a fixed maximal torus of G with dim T = rank G = I. Let g and t
denote the Lie algebras of G and T respectively, and gc and tc their complexification.
If A is the set of roots of (gc, tc) we choose in A a system A+ of positive roots.
Write m — card A+ and n = 2m + /. We choose inner product (•, •) on g which is
invariant under the adjoint action of G on g. Put (•, )1/2 = | | , so that | | is a norm
on g. Let d be the geodesic metric on G associated with (-, •), so that for small t,
d(exptX, e) = \t\ \X\, for X e g, where e is the identity of G. Let G be the set of
equivalence classes of irreducible unitary representations of G and denote by \x and dk

the character and dimension of the unitary representation Ux corresponding to A e G.
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[2] Characterization of Lipschitz spaces on compact Lie groups 201

Fix once and for all an orthonormal basis {Xl, • • •, Xn} of g. Set Xy = XiYl • • • Xn
r"

for each positive integral n-tuple y = (yu • • •, yn).
In the sequel we denote by c a positive constant which may change from line to

line.

2. Definitions and main results

Suppose a > 0. We introduce Lipschitz spaces on G.

DEFINITION 1. Denote by Aa the homogeneous Lipschitz spaces and Aa the (in-
homogeneous) Lipschitz spaces.

(i) F o r O < a < l , A a = {/ : \f(x)-f(y)\ < cd(x,y)a, x,y e G] and

|| / 1 | Ao is the infimum of all c for which the above estimate holds,
(ii) Fora = 1, A, = {/ : ||/||Al < oo}, where

ll/llA,=sup

(iii) For a > 1, let k be the positive integer such that k < a < k + 1. Then
A« = {/ : 11/II A. < oo} where

(iv) For any a > 0 we define ||/||Aa = (Iy IIi + | | / | |A . and Ao = {/ e L\G) :
II/IIA. < oo}.

For an integer k > 0 we define Ak and Ak by

<p radial, supp<p c {// : | / / | < 1} )
9 U " and £ <p(H)Hr dH = 0 for all \y\ <k ['

<p e At :

where \y\ — yx + • • • + yn for a positive integral n-tuple y = (yu . . . , yn). By [3]
we know Ak, and therefore A t , are not empty.

For t > 0 let ^,(;c) = X!xec $(* ^ + ^l)^xXx(^)< where y8 = X)aeA+ a / 2 -

DEHNITION 2. For 0 < a < 1 and <p e Ao we set ||/1|«„ = sup{(f"" |«pr * / (x ) | :
x eG, t >0], Il/Hn, = H/ll, + 11/11 ,̂ and define fio = {/ : | | / | | ^ < 00} and
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202 Dashan Fan and Zengfu Xu [3]

A standard argument gives

THEOREM 1. For 0 < a < 1 we have Aa = Ba and Aa = Ba.

The following theorem gives a characterization of Aa, for all a > 0.

THEOREM 2. Let a > 0, andk €l,k> [a] where [a] denotes the greatest integer
part of a. Then the following are equivalent.

(i) feAa.
(ii) For all <p e A^+n, sup{t~a \cp, * f(x)\ : x e G, t > 0} < cvj.

(iii) There exists <p e A a ^ such that sup{/""a \<p, * f(x)\ : x € G, t > 0} < cvj.
Moreover, if we define \\f\\Ba = ll/lli + sup ( x / ) / -" \<p, * f(x)\ for some
(PeA2k+nthen\\f\\/,a~\\f\\Ba.

Let exp be the exponential map of g to G. Then exp is an analytic diffeomorphism
on an open neighbourhood of the origin of g. Choose e0 and e0 to be the maximal
positive numbers so that exp is such that a diffeomorphism of B(0, e0 ) onto B(0, e0).
For a positive integer k we set

p _ { . PW = <7(exp~' x) for x e B(e, e0), 1
* I q is a polynomial on g with degree < k I"

DEFINITION 3. Let 1 < q < oo, k > 0 and k > 0, k e Z. The Campanato spaces
are defined as Lk

qX{G) = {/ : | | / | | ^ < oo} where

. ^ = ll/lli + sup inf
f 1

" / \f(y) — p(x~ly)\ dy\
JB(x,r) J

and |fi(;c, r)\ is the Haar measure of the ball B(x, r) = {y : d(v, x) < r}.

We now state a theorem which gives the relationship between the Lipschitz spaces,
the Hardy spaces HP(G) and the Campanato spaces.

THEOREM 3. Let 1 < q < oo, a > 0, k = [a] and p = n/(n + a). Then the

following are equivalent.

(a) /eAa.

(b) There exists c > 0 such that for each x e G and 0 < r < eo> there is a

Pk = Px.r.k € Pk satisfying

sup \f{y)-pk{x-ly)\ < cra.
y€B(x,r)

(c) f€Lk"
n+a"(G).

(d) / e (HP)*, where (//")* <fe/wf« fte dual O / / / P ( G ) .
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[4] Characterization of Lipschitz spaces on compact Lie groups 203

3. Proof of theorems

To prove Theorem 2 we first establish a lemma.

LEMMA. Suppose a, k are as in Theorem 2. Then the following statements are
equivalent:

(a) For all <p e Au, supx, r " \<pt * f(x)\ < cv,f.
(b) There exists some <p e A2k such that sup^ , t~a \q>, * f(x)\ < cvj .

PROOF. We need only prove (b) implies (a). Suppose that <p e A a such that
sup,, ra \<p, * f(x)\ < c9j. Then f(x) = /0°° <p, *<p, * f{x)t~x dt. For any f e A2k

we have

\jr, * f{x) = \fr, * <ps * <ps * fix)s~l ds
Jo

= / f, * (Ps * <Ps * /CO*"1 ds + f, * ys * (ps * fix)s~l ds
Jo Jt

It is easy to check that for any <p e Ak, cp, e Ll(G), suppip, c Bie, t), the Poisson
formula gives

^ L (jjj ,(1) ?>,(*) = <

where exp / / e T is the only element conjugate to x and D(exp/ / ) is the Weyl
function

D(x) = D(exp H) = (-20mR,_ s in ( ^ ^ ) •

So we can easily deduce that for all x e G, t > 0, \hix, t)\ < cVrfta.
For I2, we can assume t < e0 since \I2ix, t)\ < C9I$J < cv^jt" otherwise. Denote

by a t ] , . . . , am all the positive roots. Then

(2) DC*) = D(exp H) = G*(//) + Fk(H),

where

GkiH) = cm ^ ( - lV2" + 2 > J^ f\ ^ot

w i t h / = ( ; i , . . . , ; m ) and

Aj = (O'i, •. •, jm) : h + \-jm = V + m, 7 i , . . . , jm odd),
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and where Fk has the following estimate:

(3) Fk(H) = O(\H\m+2li]+2), \H\ < e0.

Write

/ ~l ds + l < b ™ *<p*<p* f(x)s-1h(x, t) = / * £ > *<ps*<ps* f(x)s~l ds + l < b ™ *<ps*<ps* f(x)s-1 ds

where

<t»>(x) = <Pi]](cxpH) = * , ( exp / / )Gi ( / / )D(expA/) - \

(4) *£>(*) = 4><2)(exp H) = *,(exp H)Fk(H)D(exp / / ) " ' .

Let /ẑ Cx) = <ps * <ps * f(x). Observe that there exists q e 1 such that
cf\k + B\q and <p e S(t). We then have

•:vjs " q if s > €0.

From this and (1), (3) we have \J2(x, t)\ < cv^jt".
Let Y\, Y2,..., Yi be an orthonormal basis of t. Then for y e B(e, e0) there exist

y e G and H € t, \H\ < e0 such that

y-1 - exp(Ad(j)H) = exp ( j

Thus, by the Taylor series expansion (see [5])

(5 ) h,(xy~l) = T X{*)h'{x)
Hl»H2» • • • H,», y€B(e,€0),x€G,

where X(y) is the coefficient of Hx
n H2

n • • • H," in the formal polynomial

Yl\' "JA (Hx Ad(y)Yx + ••• + H,Ad(y)Y,)M.

ly|!
Observe that Ad(y)Yjf(x) = J2"=i Cij(y)Xjf(x), where the c,7(;y) satisfy

;=i
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and

1 "" 1 cVifs~iq+n) for some q e Z+ otherwise.

By (1) and (4) we then can deduce that

\J\(x,t)\< I I l^. 'OOl sup \Xyhs(w)\ dy < c^jt"
Jt JG lyl£*+li u)£B(x,t)

which completes the proof of the Lemma.

PROOF OF THEOREM 2. In view of Theorem 1 and the lemma we are reduced to
proving the equivalence of (i) and (ii) for a > 1. We begin with the implication (i)
implies (ii) for a = 1. Let / e A]. For any <p e A2k+n it is easy to check that
\<P, * fix)\ < c\\f\\A,t for t > e0, and <p, * f(x) = fG <p(y)f(xy)dy. By (2) and (4)
we have, for t < eo>

\<pt * / M I < c\\f\\Kit + I {\f{xy~x)\ + \f(xy)\) \<bu+nAy)\ dy>
JG

then we use (1) and (3) to obtain the desired estimate.
Now we prove (ii) implies (i) for a = 1. We can assume || / 1 | Bl < oo for <p e A2k+n-

Then for any v € G the Calderon formula gives

r(e,y) />oo

Ay
2<ps * <ps * f(x)s~l ds + I Ay

2<ps *(ps* f(x)s~l ds
Jd(e,y)

where
= f(xy) - 2f(x) + f{xy~x).

Observe that ||X>>,||i < c^r^ for? < e0, and that HX'VJi = 0(1) otherwise. We
then have

/.OO

\&y2f(x)\<cv\\f\\Bld(y,e)+ / d{y,e)Y,UY<Ps*<Ps* f Woos~l ds
Jd(y,e) |y |= 2

<cJf\\Bld(y,e)

which shows | | / | |A, < c v | | / | | B l . Thus the theorem follows for a = 1.
For a > 1 choose j e 1, 0 < j < k such that k — a < j < k — a + I and

a — l < | y | = & — j < a. A similar argument as for the case a — 1 gives
X y / € Aa_|y| if / € Ba and | | / | | A . < C | | / | |B O . All that remains now is (i) implies
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(ii). Suppose / € Ao, a > 1. Then Xy f e Ba-M by Theorem 1. Choose <p e A2 to
obtain

p, * f(x) = I <&[!„ ,ft * <p, * f(x)s~l ds + I ^ i i , ,ft * VJ * f(x)s~x ds
Jo ' Jt

+ I ^flnjfs * ft * /(*)•?"' ds + I ^flnjfs * ft * /(•*)•?"' ^
Jo Jt

4

1 = 1

where O^n_,, O ^ n , are as in (4). We may, and do, assume that t < e0. Observe that
lift Hoc < <V*-\ Thus|CT,(A:,OI ^ c J I / H ^ f f o r / = 3,4. Leth^x) = <p,*tp,*f(x)
and A2(JC) = % * <p, * f(x). Then by (1), (2) and (4)

Jt J B(e,t)
\<?2(x,t)\<ctk+l f [ \<t>$.HJ(y)\ sup \Xvhdtv)\dys-1ds<c\\f\\Aat"

J J

and
M sup

This proves (i) implies (ii) for a > 1 and completes the proof of Theorem 2.

PROOF OF THEOREM 3. The equivalence of (c) and (d) is proved in [1]. Now we
prove (b) implies (c) and (d) implies (a) implies (b).

Suppose that (b) is true. Then / e L°°(G) due to the compactness of G. Let pk be
the polynomial as given in (b) for a fixed x e G and 0 < r < e0. We then have

\B(x, r)r<"-*«>/" f \f(y) - pk{x~xy)\q dy < c
J B(x,r)

which implies (c).
To prove (d) implies (a) we need to show that, for some cp € A4k+n, || <p, * f || <» < cta

if / € (Hp)*. Observe that | |^| |w, < c E^clH^ + £|)l V - Hence, for t > e0,
\\f,*f\\oc<c\\f\UHPrt

a.
We now assume t < e0 and write

f, * fix) = <Vn,, * f(x) + <»+n, * /(*)

where <V n , , , <P%+nJ are as in (4). By (3), U ^ , , * /Hoc < c\\f\\(Hn.t
a. Observe

that for any p2k+i e
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ra<P<
2\

)
+n,(x)P2i+1(x)dx

="•"7 {/
JG/T I JB(O,i)

Moreover s u p p t r - " * ^ , } C *(«,*), and II r " <>+„,, II oo < cr«». Thus r ^ ^ , ,
is a (p, oo) atom which implies H * ^ . / * /lloo < c 11/II *//?/"• The implication (d)
implies (a) is therefore proved.

It remains to prove (a) implies (b). Suppose first that a is not an integer. Then
k < a < k + 1. For any x 6 G and 0 < r < e0, if v e fi(x, r) then there exists a
zy e B(x,r) such that

f(y)=
\y\<k-l \r\=k

where PY e Pm. Let pk(x~ly) = J^M£t X(y)f(x)PY(x-ly) for y e B(JC, r). Then

\f(y) ~ Pkix~xy)\ < c £ \X(y)f(x) - X{y)f{zy)\ \Pr(X-ly)\ < c\\f\\Kra

which gives ||/||/.t«.» < c||/||Ao for k < a < k + 1. Now we consider the case
when a is an integer. Firstly we suppose a — 1. Taking a radial function r\ e
C°°(t) satisfying suppr; c B(O, \) and ft r){H)dH = 1 we then define r)r{x) =
flir l)8|) X!^ec V(.r |A. + )8|)dxXx(^) and Nr = r\r* rjr. It is easy to verify that Afr has
the following properties.

(i) fGNr(x)dx = l,
(ii) Nr(x-X) = Nr(x),

(iii) Â r is central, and
(iv) fG XyNr(x) dx = 0 for |y| = 2.

Thus

I/OO - Wr * f(y)\ = I [2f(y) - f{yz'x) - f(yzj\ Nr(z)dz

JG JG
[d(zw-\e)+d(w,e)]\rlr(w)r,r(w-lz)\dwdz

JG
<c\\f\\Alr.

Given x e G and 0 < r < e0, for any y e B(x, r) we write

Nr * f(y) = J2 X(y)(Nr * f)(x)Pr(x-ly) + J^ X(y)(Nr * f)(zy)PY(X-ly)
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where zy € B(x, r) as before. Thus we are reduced to proving that, for / e Ai,

(6) sup \X,Xj{Nr*f){w)\<cr-l\\f\\Al,
w€B(x,r),l<i,j<n

where c is a constant independent of x and r. To see this let D(G) be the algebra of
all left-invariant differential operators on G. We recall that g can be regarded as a Lie
subalgebra of D(G) with [X, Y] = XY - YX, where [X, Y] is the bracket of X and
Y. Then we have

-1

and

X,XjNr(y-1) = XiXjNr(y) +
*=i

(7) XiXjN, * f(y) = \ l XiXjNr(yKf(xy) + f(xy~l) - 2f(x))
z
 JG

J = l

Observe that A] c A1/2 and we have

\XsNr*f(y)\<

Thus (6) follows from (8).
Now we consider the case when a = k e Z+ and k > 2. Suppose / 6 Ak. Then

/ e V and

(8) llX'tf - Nr * .

for all y, |y | = k — 1. On the other hand, Taylor's formula gives

qk_2(x-1y)+ £ X(y)(f - Nr * f)(zy)Py{X-1y)
\Y\=k-l

for each y e B(x,r) and some zy e B(^,r), where qk-i e P*_2 and fr 6 P|X|.
By (8),

(9) |/(y) -Nr* f(y) - qk-2(x-ly)\ < c\\f\\Aja.

For each v e B(x, r), there is also a z', e BU, r) such that

X(y)(Nr*f)(z'y)PY(x-'y)
\y\=k+l
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where
qdx~]y) = Y, X(Y)(Nr * f){x)PY{x'xy).

\Y\<k

Write \y\ = |y,| + \Yi\ where \yx\ = 2. Then

r"^ <c\\f\\Kra

\y,\=2.\n\=k-l

which together with (9) gives the desired result. The theorem is therefore proved.
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