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0. Introduction. The theory of algebraic curves associated with subgroups of finite
index in the modular group F is highly developed for such subgroups of F as may be
defined by means of congruences in the ring Z of rational integers. The situation in ihe
case of non-congruence subgroups of F, on the other hand, is drastically different. It
reduces to a few isolated examples, two of which may be found in [12]. Related research
by A. O. L. Atkin and H. P. F. Swinnerton-Dyer began in [1].

Observing that Macbeath's curve [4] affords another pertinent example made us look
at it more closely. Its automorphism group is isomorphic with the simple group PSL(2, 8)
of order 504. Accordingly, the associated subgroup A of F is a maximal normal subgroup
of index 504. We shall prove, in passing, that there are exactly two such subgroups in F,
neither of them a congruence group.

The view above renders Macbeath's curve as a covering of the projective line with
Galois group G isomorphic to PSL(2, 8). Corresponding to any of its Sylow 7-subgroups
and its normalizer in G we find two intermediate curves B and A, respectively elliptic and
rational, of which the former covers the latter 2-fold and with 4 branch points. In this
classical situation the 4 points of A under the branch points may, moreover, be made
explicit through Macbeath's model. Their cross ratio, or Legendre's modulus A, and in
turn the absolute invariant J of B could then be calculated.

There is, however, more to gain with less effort. We find the said 4 points on A, after
a Mobius transformation, to satisfy an algebraic 4th-degree equation P(X) = 0 with
integral rational coefficients. Thus Y2 = P(X) describes B as a curve over Q. Its Weier-
strass normal form yields the invariants g2=196, g3 = -196, and J=(14/13)2. The
Mordell-Weil rank of B(Q) may then be seen to be greater than 1, by reduction modulo
29.

The genus g = 7 of Macbeath's curve and the order h = 504 of its automorphism
group are related by h = 84(g-l) . G is then called a Hurwitz group. Many instances of
such groups were recently constructed by J. M. Cohen [2, 3], as abelian extensions of
PSL(2,7). We should like to point out that all such extensions occur in [10]; they
correspond to the ideals I of algebraic integers in Q(V-7), and their orders are h =
168(N(I))3. This also accounts for the orders of some groups in Sinkov [7].

1. Notation and generalities. We take F = PSL(2, T) for the modular group, and we
represent its elements by matrices L = (a b | c d)eSL(2,l); L and —L are iden-
tified under this representation. We write

l/ = (l 1 | 0 1), T=(0 - 1 | 1 0), S = TU=(0 - 1 | 1 1).

F is then the free product of two cyclic groups of orders 2 and 3, respectively, generated
by (Mobius transformations induced by) T and S.
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Let G be any finite group generated by two elements T and a, respectively of periods
2 and 3. Then TT(T) = T and TT(S) = O- determine a surjective homomorphism 7r:F-»G.
Its kernel A is a normal subgroup of F with factor group isomorphic with G. Moreover,
under 77 the set of all subgroups X of G corresponds bijectively to the set of all subgroups
4> of T which contain A, by X = TT(4>), and [G : X] = [F:*].

If G is a transitive permutation group on, say, symbols 0 , 1 , . . . , m - 1 then TT is a
permutation representation of F, the stabilizers Xj of / (0 < / < m) form a set of conjugate
subgroups of index m in G, and their intersection is the trivial subgroup. Their inverse
images $j = ir~1(Xj) under 77 constitute a set of conjugage subgroups of index m
in F with A as their intersection. The level of each of the <!>„ in the sense of [9], equals
the level of A, and the <E>, are congruent subgroups of the W if and only if A is such a sub-
group.

Conversely, if 4> is any subgroup of finite index m in F, a transitive permutation
representation 77 of degree m of F is induced by right-hand multiplication of the cosets
OL, where L e F with elements MeF . Its image G = TT(F) is generated by T=TT(T) and
a = TT(S). Also X = TT(<&) is the stabilizer of the coset <J> under 77. The intersection of the
conjugates of <t> in F is again the kernel A of IT. Such representations were introduced in
[5], [6], and [11].

Let 77: F -> G be any transitive permutation representation, as above, and X a
subgroup of G. To $ = 77^1(X) as a subgroup of F there canonically corresponds a
modular curve, or compact Riemann surface, which we shall denote by X. If Y is another
subgroup of G and Y<X, then 1Jr= TT~1(Y) is a subgroup of O, and there is a natural
projection turning Y into a covering of X: each ^P-orbit of a point 2 in the extended upper
half-plane is mapped on the <J>-orbit of 2. The index of Y in X equals the degree of the
covering.

2. Two normal subgroups of F

PROPOSITION. There are exactly two normal subgroups A of F with factor group F/A
isomorphic to the simple group PSL(2, 8) of order 504. They are both non-congruence
groups, and their levels are 7 and 9.

Proof. The group PSL(2, 8) may (in various ways) be realized as a transitive subgroup
G of the symmetric group S9, acting on the set N = {0, 1 , . . . , 8} (see [11]). G contains
elements of periods 1, 2, 3, 7, and 9. If T, ere G respectively have periods 2 and 3 then
they generate G if and only if their product co = ra is of period 7 or 9. To prove the
proposition we have to show that there are essentially, i. e. up to a permutation, or a
renumbering of N, two different ways G may be generated by such a pair of elements T
and o\

As all 63 elements of period 2 are conjugate in G we may fix r = (14)(26)(37)(58).
There is then exactly one Sylow 2-subgroup D of G, abelian of type (2, 2, 2), containing T.
Also D has index 7 in its normalizer C = Na(D), and we may take 17 = (2456873) to be an
element of C.

Again, all 56 elements of period 3 are conjugate in G, and if a = (015)(274)(386) is
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one of them, then the others are of the form a'1 era with aeC. But aeD implies
<x~1Ta = T, and so we may confine ourselves to the 7 pairs (T, a-j), af = T)~'<TT)' (/ mod 7). A
short calculation and suitable renumbering then yields essentially two ways to generate G:
either

T = (14)(26)(37)(58), cr = (015)(274)(386), w = (012345678);
or

T = (13)(28)(46)(57), a = (014)(283)(576), a> = (0123456).

The permutation representations TT of F induced in those two cases have kernels A as
required, and their respective levels are 7 and 9. As the index 504 of A in F is not a
divisor of [F:7F] = 168 or of [F:9F] = 324, neither of the principal congruence groups ,F
of level / = 7 or I = 9 is a subgroup of A. Therefore, A is not a congruence group, and the
proposition is proved.

3. Elliptic and parabolic fixed points. Let $ be a subgroup of finite index m in F
and X the associated Riemann surface of genus g and Hurwitz characteristic x = 2 g - 2 .
Then

6\ = m -6h-3e2-4e3,
where h denotes the number of classes of parabolic, and ek the number of classes of
elliptic fixed points, of order k, of <I>.

e2 and e3 may be determined as numbers of cosets of O in F, respectively fixed under
<£>L i-» <£>LT and <&L >-> <£>LS. h is less simple to find: this is the number of orbits under
<5L >->®LU, the length of each orbit equalling the respective cusp amplitude. Hence the
level / of <& is equal to the period of <£>L >-*• <£>LU as a permutation of cosets. Let K(()
denote the number of fixed elements of the tth power of that permutation, and h(t) the
number of cusps of <5 of amplitude t. Then obviously ic(d)= X th(t). Mobius inversion
gives

t Id

for each divisor d of the level I of <l>.
We shall later use a lemma whose proof is straightforward.

LEMMA. Let X be a subgroup of finite index in a group G and let b be an element of G.
Then the number of cosets Xa of X, fixed under Xa •-» Xab, equals the number of conjugates
of Xin G containing b, multiplied by the index of Xin its normalizerNG(X) with respect to G.

The lemma often obviates the need to construct sets of coset representatives when
numbers (of classes) of fixed points are to be determined. Besides, it may directly be
applied to X = TT(<I>) and G instead of to <J> and F, with TT : F —» G any surjective
homomorphism.

4. Branch schemes. In the diagram below G denotes the simple group of order 504,
H its trivial subgroup, and the arrows represent injections; a number m near an arrow
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gives the corresponding (relative) group index. B, D, and F are Sylow subgroups of G,
and A, C, and E are their respective normalizers in G.

Again, if each of the letters A through H is boldfaced the same diagram may be read
as one of covering maps of algebraic curves, together with their degrees.

Or, finally, the letters in the original diagram may be interpreted as the Galois groups
X of the field K(H) of functions on H over K(X); here, of course, K(G) is the rational
function field.

G

In regard to a permutation representation -n: T —* G the diagram refers to either the
level I = 1 or I = 9. In the latter case C has genus 1 and known absolute invariant [12]. C
and D are isogenous as elliptic curves. In the former case, as we shall see, H has genus 7
and G is its automorphism group. Macbeath [4] has constructed a canonical model of H
and explicit generators of G. We shall use his results to determine the curve B.

The branch behaviour of the various covering maps depends on the numbers of classes
of elliptic and parabolic fixed points of the relevant groups. They are found on applying
the lemma in Section 3, using appropriate information on the structure of G. For any
subgroup X of G the number of conjugates of X in G which contain some element b of G
only depends on the period of b. We collect those numbers in the following table and,
besides, note in its last column the indices of the various subgroups X of G in their
normalizers.

per(b) 1 2 3 7 9 index

A
B
C
D
E
F
G
H

36
36

9
9

28
28

1
1

4
0
1
1
4
0
1
0

0
0
0
0
1
1
1
0

1
1
2
0
0
0
1
0

0
0
0
0
1
1
1
0

1
2
1
7
1
2
1

504

Restricting attention now to the left-hand chain of maps in the diagram and using the
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lemma we find the following numbers of classes of fixed points.

243

H
B
A
G

e2

0
0
4
1

e3

0
0
0
1

1 =

0
2
1
1

Ml)
7 1 = 9

0
0
0
1

HI)
1=1

72
10
5
0

1 = 9

56
8
4
0

Let now A : Y—» X be one of the covering maps considered. Its branch points are over
points of X which, with reference to a fundamental domain of <l> = TT~1(X) in the extended
upper half-plane H, are represented by points in the F-orbit of i = exp(7n/2), p =
exp(iri/3), or °°. The fixed point numbers given above then allow for the relevant genera
and branch schemes to be evaluated. If over some point of X corresponding to z eH there

are r branch points in Y, each of multiplicity k, we write ; if r = 1 we abbreviate to - .
Then we obtain the following table. z z

genus

H 7

| 7

B 1

4 2
A 0

| 36

G 0

level 7
branch scheme genus

level 9
branch scheme

15

c

2

16*2

7

2

»2

12

7

2

' 3

*3

2

' 4

5 *7

2

h

16*2

none
none

2 2

i2 i3

12*

2

«4

3 4 *9

0

We note that in the level 7 case the mapping B -*• A is a 2-fold covering with 4
branch points of a complex line A by an elliptic curve B. Thus given a univalent function
/ : A - » P , the cross ratio of /(ix) through f(i4) equals Legendre's modulus A, and so the
absolute invariant

J = 4(1-AA')3/27(AA')2

of B becomes calculable. We shall use Macbeath's model [4] to construct such a func-
tion /.
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As it will appear, the numbers /(i,) satisfy a 4th-degree equation over Z. A
description of B as a curve over Q is hence immediate. The Weierstrass invariants g2, g3
and therefore J are then much more easily determined than via the above cross ratio.

5. Macbeath's model. We write £ = exp(2Tn'/7). The index /, wherever it occurs,
runs through a complete set of residues of 1 modulo 7. The points y = (y0: yi: . . . :ye) of
Macbeath's curve [4] are in complex projective space P£ ot six dimensions and charac-
terized by 10 equations:

IyJ
?=IciyJ

?=Ir'y? = o,
(C4- r4)y]+4y,-2+(C2- r2)y,+2yJ-i+U ' - C^y^y,-* = o.

The automorphism group of the curve may be generated by substitutions u, v, and w,
as follows:

«y,- = 7.(y-i - yi-,- - ya-,- - y4-,),

vy, = e,y,, e, = 1 (j = 1, 2, 4) or = - 1 (otherwise),
wy, = y,+i-

They satisfy
w7 = u 2 = u 2 = l . uwu~* = w"1, (uu)3=l.

The 4 fixed points of v are characterized by

yo=i , yi = y2 = y4 = o,

Coordinates of the 4 fixed points of u may be derived thereof, w has 2 fixed points,

Macbeath's curve, because of its uniqueness property, is isomorphic to H. The
coordinates y, of his model may, therefore, serve to describe the points of H. Also, u, v
and w may now be viewed as elements of G. Then, as u normalizes the subgroup of G
generated by w, we may choose A among its conjugates in G such that A is invariant
under both u and w. In the branch scheme of the covering map H —* A, composed via B,

7 * 2 7 * 2 7 * 2 7 * 2 2 * 7

<i '2 h »4 °°

the 4 fixed points of u lie over il through i4, while the 2 fixed points of w are the points
over oo.

We now introduce homogeneous linear forms

Ft(y) = I f y j (femod7),
which transform according to

Ffc(uy) = KkF_k(y), KkK^k = 1,
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On Macbeath's curve, Ft vanishes in one of the 2 fixed points of w, F_! in the other,
and Fo in both of them.

Taking local parameters t and remembering that Macbeath's model is canonical, we
have abelian differentials Fk(y) dt of the first kind. Hence the sum of the orders of the
zeros, in particular, of Fo on H is 2 g - 2 = 1 2 . But Fo is invariant under w and thus
vanishes in each of the fixed points of w, of period 7, to an order congruent to 6 modulo
7. The 2 fixed points of w then account for all the zeros of Fo on H.

In view of the transformation formulae, / = FXF.J/FQ is invariant under u and w;
hence / is a function on A, holomorphic but for a simple pole at oo( and therefore
univalent. We shall now study the values /(if) (/ = 1, 2, 3,4), or, equivalently, viewing / as
a function on H, its values at the 4 fixed points of the automorphism u.

6. Equations for an elliptic curve. Let y be a fixed point of v, vy = -y, normalized
by yo= 1. Then

y3ysy6=i, yl= C2+C2, yt=C + C\ yl=C+C\
and hence

Writing R = y3 + y5 + y6, r = l /y3+l/ys+l/y6, we find that

R 2 = 2 r - 1 , r 2 = 2 R - 2 , r 4 +4r 2 -8 r+8 = 0.

Because of (uv)3= 1, the point x = -2uuy is fixed under u, ux = —x. Its coordinates
are related to those of y by formulae given earlier. We wish to express the value of the
function f at x in terms of the coordinates of y. First we have

F0(x) = 2(2-R), F0(x)2 = 4(3-4R + 2r).
Next

whence F_a(x) results on replacing £ with £~"\ After some calculation, we find that

F1(x)F_1(x) = -2(1 - 2R + 1r), -2/(x) = (1 - 2R + 2r)/(3 - 4R + 2r).

We may replace / with any Mobius transform, and in particular with g =
4(l + 4/)/(l + 2/). Then finally

g(x) = 2 (2 r - l ) / (R- l ) = z2, z = 2R/r,

for any one of the 4 fixed points of u.
The quadratic relations between r and R, and the biquadratic equation satisfied by r,

now yield an algebraic equation for z,

X 4 - 2 X 3 - 2 X 2 - 4 X + 1 8 = 0.

Replacing X by - X and multiplying leads to an equation for z2,

X4 - 8X3 + 24X2 - 88X + 324 = 0,
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whose solutions are now just the 4 values g(x), or those points of A over which B is
branched. Hence B is denned by

y2 = X4 - 8X3 + 24X2 - 88X + 324

as an algebraic curve over Q.
In order to obtain its Weierstrass normal form we first substitute X + 2 for X; next

apply the birational transformation

X = Y/2X, Y = Y2/4X2 - 2X,

2X = X 2 - Y , Y = X ( X 2 - Y ) ;

then write X and Y again for X and Y, and finally substitute Y+14 for Y. This gives

Y2 = 4 X 3 - 1 9 6 X + 196,
and invariants

g 2 = 1 9 6 , g3 = -196 , A = g 3 , -27g 2 =14 4 13 2 ;
hence

Changing coordinates once more we shall now use this minimal equation for B:

Y2 = X 3 -49X + 49.

By Tate's algorithm [8], the curve has conductor 227213. There are at least 30 points on B
whose coordinates are rational integers, none of which has finite period in the group of
rational points on B. Indeed, that group has zero torsion.

Two of the points with integer coordinates are P = (-7, 7) and Q = (21,91); the
others appear as mP + nQ, with integers m and n. Thus the Mordell-Weil rank of B may
well equal 2. It is, at any rate, not less than 2, for, let L = (P, Q) be the subgroup of B(Q)
generated by P and Q. Then the reduction homomorphism A :L—»B(F29) modulo the
prime p = 29 turns out to be surjective and with non-cyclic image. Therefore, neither L
nor B(Q) is cyclic, which proves our claim.
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