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DISK PACKINGS WHICH HAVE NON-EXTREME 
EXPONENTS 

BY 

DAVID W. BOYDC1) 

1. Introduction. Let t /be an open set in the Euclidean plane which has finite 
area. A complete (or solid) packing of U is a sequence of pairwise disjoint open 
disks C={Dn}, each contained in U and whose total area equals that of U. A 
simple osculatory packing of U is one in which the disk Dn has, for each n, the 
largest radius of disks contained in U\(D~[ U • • • U D*^). (S~ denotes the closure 
of the set U.) If rn is the radius of Dn, then the exponent of the packing, e(C, U) 
is the infimum of real numbers t for which 2 r n<°°- I n the sequel we refer to a 
complete packing simply as a packing. 

We shall be concerned here with packings of the unit disk D, and of curvilinear 
triangles T with mutually tangent circular sides. Let C0 be the simple osculatory 
packing of T. Melzak [3] showed that l-035<e(C0, 5T)<1-999971. Wilker [5] 
showed that e(C0, T) is a constant S independent of the radii of the sides of T. 
In [4], Melzak has given numerical evidence to suggest that 5^1-306951. By 
results of [1] and [2], it is known that l-2846<S<l-3500(2). 

Clearly there are packings of D with exponent S, and Melzak [3] gives examples 
of packings of D with exponent 2. In [3], [4] and [5], the question is raised as to 
whether there are packings of D with exponents other than S or 2, and it is con­
jectured that the set of possible exponents is the interval [S, 2]. In this paper we 
lend support to this conjecture by showing that the set of possible exponents 
contains the interval [S, 2]. We in fact show that if [JL is the infimum of possible 
exponents for packings of T then the set of such exponents is either [ju, 2] or [ju, 2]. 

After this paper was submitted, it was pointed out to the author that J. B. 
Wilker in his Ph.D. thesis, University of Toronto, 1968, had proved that the set 
of packing exponents contains the interval [S, 2] (Theorem 5.15). Since the 
construction which he gives is somewhat more complicated than that given here, 
and since it is still not known whether S=ju,we hope that the publication of our 
result will be of some interest. 

2. Preliminaries. We first discuss some well-known facts concerning inversion. 
A similar discussion is found in [5]. Let T(a, b, c) be a curvilinear triangle with 
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sides of radii \a\>b>c, where « = + |a| or — \a\ depending on whether the circle 
of radius a touches the other circles externally or internally; in case of internal 
tangency, T(a, h, c) is the smaller of the two possible triangles. We allow a=oo; 
in this case one of the sides of T(a, h, c) is a straight line; but we insist that b and 
c be finite. 

If T=T(a,b,c) and T'=T(a\b\c) are any two such triangles, there is an 
inversion/which maps Tonto T in such a way that a,b, c correspond respectively 
to a\ b', c'. There is a constant k>l such that, if K is a circle of radius p con­
tained in T, and K'=f(K) has radius p\ then 

(1) /r1 < p'lp < k. 

To see this, we take as our standard triangle, r 0 = r ( o o , 1, 1), and show how 
to invert T(a,b,c) into r(oo, 1,1) by applying at most three inversions. For 
each inversion, (1) will be shown to hold by applying the Corollary to Lemma 3.6 
of [5], then (1) will hold for the composition of the inversions. We first map 
T(a, b, c) into T(a, c,c) by an inversion fx which has centre on the common 
tangent line to the sides of T(a, b, c) which have radii a and c. The circle of in­
version passes through the point of tangency. The triangle T(a, b, c) lies outside 
the circle of inversion, hence we can apply the result from [5] to which we have 
just referred. Now we dilate T(a, c, c) to T(a/c, 1, 1), which presents no difficulty 
for (1). 

We shall describe in more detail the inversion of a triangle T(r, 1, 1) into 
T(oo, 1, 1) since we shall be using certain facts concerning this in Theorem 1. 
Set up coordinates so that the centre of the circle of radius r is at the origin and 
so that the point of tangency of the other two sides is on the negative real axis. 
The inverting circle then has centre/with coordinates (|r|, 0) and radius y = |r| + 
V(l+r)2"~"l s o that it is orthogonal to the two circles of radius 1. If K<^T(r, 1, 1) 
is any circle with radius />, and d is the length of the tangent from / to K, then 
p inverts into a circle of radius p' = py2/d2. However, the following inequalities 
hold: if r > 0 , then y2>d2>y2rl(r+l) (see [2, Lemma 1]), and if r < 0 then 
y2<d2<(2r)2. Thus, (1) holds with a constant k(r)>\ such that k(r)-+\ as |r|-*oo. 

If C={Dn} is a packing of T0 with exponent e(C, T0), and iff inverts T0 into 
T(a, b, c) as above, then / (C) is a packing of T(a, b, c) with the same exponent. 
This follows from (1). By abuse of notation, we write f(rn) for the radius of 
f(Dn). If t>e(C, T0), we write 

M(a,b,c;t)=ff(rn)\ 

Note that M (la, lb, lc\ t)=A*M(a, b, c; t) for any X > 0 , and if \r\ ->oo, M(r, 1,1;/) 
->Af(oo, 1,1;/) (since the constant k(r) in (1) tends to 1 as |r|->oo). 
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3. The construction. 

THEOREM 1. Let ju be the infimum of e(C, T0) over all complete packings of T0, 
and let x satisfy [JL<X<2. 

Then, there is a complete packing Cx of D for which 

e(Cx, D) = x. 

Proof. We assume x<2 , since x=2 is covered by the examples in [3]. 
Let square brackets denote the greatest integer function, let s=(x—1)~1>1, 

let £0=0, and let 

(2) en = sin(7r/4[ns]) for n = 1, 2 , . . . . 

Define 

(3) cn = H (1 -£* ) ( !+<T\ for n = 1, 2 , . . . . 

Then c1—\ and {cn} is a strictly decreasing sequence with limit c > 0 (the infinite 
product converges since ^ s ^ 0 0 ) . Now, for « > 1 , let 2pn—cn—cn+1, and 2bn= 
Cn+Cn+i- Then 

(4) 29n = c t t - a - O C l + f i n ) - 1 ) = 2cnen(l+en)-
1 = 2enbn. 

We shall use complex numbers to denote points in the plane. Let An denote the 
annulus {z: cn+1<\z\<cn}, n=l,2,. . . and B the disk {z: \z\<c}. Note that the 
largest disk which will fit into An has radius pn and center at distance bn from 
the origin. The angle subtended at the origin by this disk is 0n, where 

0n = 2 swr\PJbn) = 2 s in- 1^J = (27r)/4[ns], 

using (4) and the definition of sn. Thus, exactly 4[ns] disks of radius pn will fit 
into An, each tangent to two others; removing these disks from An leaves 4[ns] 
triangles Tn=T(cn+1, pn9 Pn) and 4[ns] triangles T'n = T(-cn, Pn, Pn). 

Let C be a fixed packing of T0 whose exponent satisfies ju<e(C, T0)<x. Let 
each of the triangles Tn and T'n be packed with an inversive image of C, as described 
in §2. Our packing Cx consists of the disk B, the 4[ns] disks of radius pn for each 
n, and the disks in the packings of the Tn and T'n for each n. This is clearly a 
complete packing of D, since D differs from B U \J„=1An by a set of measure 
zero. Let Cx={Dk: k=l, 2 , . ..} and let rk be the radius of D'k. If t>e(C, T0), 
we have 

1 ^ = c*+ I4[ns](pt
n+M(cn+1, Pn9 Pn; 0 + M ( - c w , p n P n ; 0) 

(5) 
= c'+ 24[n>I( l+M(c„ + I p- 1

> 1,1; O+MC-c.p;1 , 1,1; 0). 
n=l 
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However, limbn=limcn=C9^0, so pn=bn
8n~('7TCl4)n~s as n->co. Also, 

M(cn+1p-\ 1, 1; 0->M(oo, 1 ,1 ,0 

and M(—cnp^, 1,1; 0 - ^ ( ° ° > 1» 1; 0» s o tbat the «th term in the sum in (5) 
is asymptotic to a constant multiple of ns~st. The constant depends on /, but is 
finite for any t>e(C, T0). Hence the series in (5) diverges if st—s<\ and converges 
if st—s>\. Thus, 

e(C„D) = (s + l)/s = x. 

COROLLARY 1. With the notation of the theorem, for each x in / / < x < 2 , there 
is a packing C'x of T0 with 

e(C'x, T0) = x. 

Proof. Pack the inscribed disk of T0 with Cx (suitably scaled), and the remaining 
three curvilinear triangles with a packing whose exponent lies between JLL and x. 
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